Skip to main content
main-content

12.09.2018 | Original Article

Diagnostic performance of an artificial intelligence-driven cardiac-structured reporting system for myocardial perfusion SPECT imaging

Zeitschrift:
Journal of Nuclear Cardiology
Autoren:
PhD Ernest V. Garcia, MD J. Larry Klein, MD Valeria Moncayo, MSEE C. David Cooke, BSEE Christian Del’Aune, CNMT Russell Folks, MSN Liudmila Verdes Moreiras, MD Fabio Esteves
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s12350-018-1432-3) contains supplementary material, which is available to authorized users.
The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Abstract

Objectives

To describe and validate an artificial intelligence (AI)-driven structured reporting system by direct comparison of automatically generated reports to results from actual clinical reports generated by nuclear cardiology experts.

Background

Quantitative parameters extracted from myocardial perfusion imaging (MPI) studies are used by our AI reporting system to generate automatically a guideline-compliant structured report (sR).

Method

A new nonparametric approach generates distribution functions of rest and stress, perfusion, and thickening, for each of 17 left ventricle segments that are then transformed to certainty factors (CFs) that a segment is hypoperfused, ischemic. These CFs are then input to our set of heuristic rules used to reach diagnostic findings and impressions propagated into a sR referred as an AI-driven structured report (AIsR).
The diagnostic accuracy of the AIsR for detecting coronary artery disease (CAD) and ischemia was tested in 1,000 patients who had undergone rest/stress SPECT MPI.

Results

At the high-specificity (SP) level, in a subset of 100 patients, there were no statistical differences in the agreements between the AIsr, and nine experts’ impressions of CAD (P = .33) or ischemia (P = .37). This high-SP level also yielded the highest accuracy across global and regional results in the 1,000 patients. These accuracies were statistically significantly better than the other two levels [sensitivity (SN)/SP tradeoff, high SN] across all comparisons.

Conclusions

This AI reporting system automatically generates a structured natural language report with a diagnostic performance comparable to those of experts.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Bis zum 22.10. bestellen und 100 € sparen!

Weitere Produktempfehlungen anzeigen
Zusatzmaterial
Supplementary material 1 (PPTX 507 kb)
12350_2018_1432_MOESM1_ESM.pptx
Literatur
Über diesen Artikel
  1. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.

  2. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.

Neu im Fachgebiet Kardiologie

 

 

 
 

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Kardiologie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise