Skip to main content
Erschienen in: Medizinische Klinik - Intensivmedizin und Notfallmedizin 7/2021

07.05.2021 | Diagnostik und Monitoring | Pflege

„Patient self-inflicted lung injury“ (P-SILI)

Von der Pathophysiologie zur klinischen Evaluation mit differenziertem Management

verfasst von: Benjamin Neetz, Thomas Flohr, Felix J. F. Herth, Michael M. Müller

Erschienen in: Medizinische Klinik - Intensivmedizin und Notfallmedizin | Ausgabe 7/2021

Einloggen, um Zugang zu erhalten

Zusammenfassung

Die Etablierung der unterstützten Spontanatmung gilt allgemein als eine vorteilhafte und wenig gefährdende Phase der Beatmungstherapie. Allerdings geben neuere Erkenntnisse Hinweise auf eine potenzielle Schädigung durch exzessive Spontanatembemühungen vor allem bei akuter Lungenschädigung. Das Syndrom wird unter dem Begriff „patient self-inflicted lung injury“ zusammengefasst. Ärzte, Pflegepersonen und Atmungstherapeuten sollten für diese Thematik sensibilisiert werden. Parameter, die mittels Ösophagusdruckmessung oder einfacher Manöver am Respirator bestimmt werden können, sind bei der Entscheidung zur Durchführung und zur Überwachung von Spontanatmung auch in den akuten Phasen der Lungenschädigung hilfreich. Weiterhin gibt es im Umgang mit hohem Atemantrieb oder erhöhter Atemanstrengung therapeutische Möglichkeiten, diesen zu begegnen.
Literatur
1.
Zurück zum Zitat Slutsky AS, Ranieri VM (2013) Ventilator-induced lung injury. N Engl J Med 369(22):2126–2136PubMedCrossRef Slutsky AS, Ranieri VM (2013) Ventilator-induced lung injury. N Engl J Med 369(22):2126–2136PubMedCrossRef
2.
Zurück zum Zitat Putensen C et al (2006) The impact of spontaneous breathing during mechanical ventilation. Curr Opin Crit Care 12(1):13–18PubMedCrossRef Putensen C et al (2006) The impact of spontaneous breathing during mechanical ventilation. Curr Opin Crit Care 12(1):13–18PubMedCrossRef
3.
Zurück zum Zitat Levine S et al (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358(13):1327–1335PubMedCrossRef Levine S et al (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358(13):1327–1335PubMedCrossRef
4.
5.
Zurück zum Zitat Goligher EC et al (2020) Clinical strategies for implementing lung and diaphragm-protective ventilation: avoiding insufficient and excessive effort. Intensive Care Med 46(12):2314–2326PubMedPubMedCentralCrossRef Goligher EC et al (2020) Clinical strategies for implementing lung and diaphragm-protective ventilation: avoiding insufficient and excessive effort. Intensive Care Med 46(12):2314–2326PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Yoshida T et al (2019) Impact of spontaneous breathing during mechanical ventilation in acute respiratory distress syndrome. Curr Opin Crit Care 25(2):192–198PubMedCrossRef Yoshida T et al (2019) Impact of spontaneous breathing during mechanical ventilation in acute respiratory distress syndrome. Curr Opin Crit Care 25(2):192–198PubMedCrossRef
8.
Zurück zum Zitat Spinelli E et al (2020) Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions. Intensive Care Med 46(4):606–618PubMedPubMedCentralCrossRef Spinelli E et al (2020) Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions. Intensive Care Med 46(4):606–618PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Mauri T et al (2016) Extremely high transpulmonary pressure in a spontaneously breathing patient with early severe ARDS on ECMO. Intensive Care Med 42(12):2101–2103PubMedCrossRef Mauri T et al (2016) Extremely high transpulmonary pressure in a spontaneously breathing patient with early severe ARDS on ECMO. Intensive Care Med 42(12):2101–2103PubMedCrossRef
10.
Zurück zum Zitat Yoshida T et al (2013) Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med 188(12):1420–1427PubMedCrossRef Yoshida T et al (2013) Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med 188(12):1420–1427PubMedCrossRef
11.
Zurück zum Zitat Yoshida T et al (2017) Volume-controlled ventilation does not prevent injurious inflation during spontaneous effort. Am J Respir Crit Care Med 196(5):590–601PubMedCrossRef Yoshida T et al (2017) Volume-controlled ventilation does not prevent injurious inflation during spontaneous effort. Am J Respir Crit Care Med 196(5):590–601PubMedCrossRef
12.
Zurück zum Zitat Yoshida T et al (2018) Reverse triggering causes an injurious inflation pattern during mechanical ventilation. Am J Respir Crit Care Med 198(8):1096–1099PubMedCrossRef Yoshida T et al (2018) Reverse triggering causes an injurious inflation pattern during mechanical ventilation. Am J Respir Crit Care Med 198(8):1096–1099PubMedCrossRef
13.
Zurück zum Zitat Loyd JE et al (1986) Effects of inspiratory resistance loading on lung fluid balance in awake sheep. J Appl Physiol 60(1):198–203PubMedCrossRef Loyd JE et al (1986) Effects of inspiratory resistance loading on lung fluid balance in awake sheep. J Appl Physiol 60(1):198–203PubMedCrossRef
14.
Zurück zum Zitat West JB, Mathieu-Costello O (1992) Stress failure of pulmonary capillaries: role in lung and heart disease. Lancet 340(8822):762–767PubMedCrossRef West JB, Mathieu-Costello O (1992) Stress failure of pulmonary capillaries: role in lung and heart disease. Lancet 340(8822):762–767PubMedCrossRef
15.
Zurück zum Zitat Kallet RH et al (1999) Exacerbation of acute pulmonary edema during assisted mechanical ventilation using a low-tidal volume, lung-protective ventilator strategy. Chest 116(6):1826–1832PubMedCrossRef Kallet RH et al (1999) Exacerbation of acute pulmonary edema during assisted mechanical ventilation using a low-tidal volume, lung-protective ventilator strategy. Chest 116(6):1826–1832PubMedCrossRef
16.
Zurück zum Zitat Mauri T et al (2016) Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med 42(9):1360–1373PubMedCrossRef Mauri T et al (2016) Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med 42(9):1360–1373PubMedCrossRef
17.
Zurück zum Zitat de Haro C et al (2018) Double cycling during mechanical ventilation: frequency, mechanisms, and physiologic implications. Crit Care Med 46(9):1385–1392PubMedCrossRef de Haro C et al (2018) Double cycling during mechanical ventilation: frequency, mechanisms, and physiologic implications. Crit Care Med 46(9):1385–1392PubMedCrossRef
18.
Zurück zum Zitat Beitler JR et al (2016) Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria. Intensive Care Med 42(9):1427–1436PubMedPubMedCentralCrossRef Beitler JR et al (2016) Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS: the BREATHE criteria. Intensive Care Med 42(9):1427–1436PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Pohlman MC et al (2008) Excessive tidal volume from breath stacking during lung-protective ventilation for acute lung injury. Crit Care Med 36(11):3019–3023PubMedCrossRef Pohlman MC et al (2008) Excessive tidal volume from breath stacking during lung-protective ventilation for acute lung injury. Crit Care Med 36(11):3019–3023PubMedCrossRef
20.
21.
Zurück zum Zitat Soundoulounaki S et al (2020) Airway pressure morphology and respiratory muscle activity during end-inspiratory occlusions im Druckure support ventilation. Crit Care 24(1):467PubMedPubMedCentralCrossRef Soundoulounaki S et al (2020) Airway pressure morphology and respiratory muscle activity during end-inspiratory occlusions im Druckure support ventilation. Crit Care 24(1):467PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Bertoni M et al (2019) A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation. Crit Care 23(1):346PubMedPubMedCentralCrossRef Bertoni M et al (2019) A novel non-invasive method to detect excessively high respiratory effort and dynamic transpulmonary driving pressure during mechanical ventilation. Crit Care 23(1):346PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Neetz B, Herth FJF, Muller MM (2020) Treatment recommendations for mechanical ventilation of COVID19 patients. Gefässchirurgie 25:408–416CrossRef Neetz B, Herth FJF, Muller MM (2020) Treatment recommendations for mechanical ventilation of COVID19 patients. Gefässchirurgie 25:408–416CrossRef
24.
Zurück zum Zitat Gattinoni L et al (2004) Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Crit Care 8(5):350–355PubMedPubMedCentralCrossRef Gattinoni L et al (2004) Bench-to-bedside review: chest wall elastance in acute lung injury/acute respiratory distress syndrome patients. Crit Care 8(5):350–355PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Yoshida T et al (2018) Esophageal manometry and regional transpulmonary pressure in lung injury. Am J Respir Crit Care Med 197(8):1018–1026PubMedCrossRef Yoshida T et al (2018) Esophageal manometry and regional transpulmonary pressure in lung injury. Am J Respir Crit Care Med 197(8):1018–1026PubMedCrossRef
26.
Zurück zum Zitat Amato MB et al (2015) Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 372(8):747–755PubMedCrossRef Amato MB et al (2015) Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 372(8):747–755PubMedCrossRef
28.
Zurück zum Zitat Bellani G et al (2019) Driving pressure is associated with outcome during assisted ventilation in acute respiratory distress syndrome. Anesthesiology 131(3):594–604PubMedCrossRef Bellani G et al (2019) Driving pressure is associated with outcome during assisted ventilation in acute respiratory distress syndrome. Anesthesiology 131(3):594–604PubMedCrossRef
29.
Zurück zum Zitat Vaporidi K et al (2020) Respiratory drive in critically ill patients. Pathophysiology and clinical implications. Am J Respir Crit Care Med 201(1):20–32PubMedCrossRef Vaporidi K et al (2020) Respiratory drive in critically ill patients. Pathophysiology and clinical implications. Am J Respir Crit Care Med 201(1):20–32PubMedCrossRef
30.
Zurück zum Zitat Holle RH, Schoene RB, Pavlin EJ (1984) Effect of respiratory muscle weakness on P0.1 induced by partial curarization. J Appl Physiol Respir Environ Exerc Physiol 57(4):1150–1157PubMed Holle RH, Schoene RB, Pavlin EJ (1984) Effect of respiratory muscle weakness on P0.1 induced by partial curarization. J Appl Physiol Respir Environ Exerc Physiol 57(4):1150–1157PubMed
31.
Zurück zum Zitat Kera T, Aihara A, Inomata T (2013) Reliability of airway occlusion pressure as an index of respiratory motor output. respir care 58(5):845–849PubMed Kera T, Aihara A, Inomata T (2013) Reliability of airway occlusion pressure as an index of respiratory motor output. respir care 58(5):845–849PubMed
32.
Zurück zum Zitat Rittayamai N et al (2017) Effect of inspiratory synchronization during pressure-controlled ventilation on lung distension and inspiratory effort. Ann Intensive Care 7(1):100PubMedPubMedCentralCrossRef Rittayamai N et al (2017) Effect of inspiratory synchronization during pressure-controlled ventilation on lung distension and inspiratory effort. Ann Intensive Care 7(1):100PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Bertoni M, Spadaro S, Goligher EC (2020) Monitoring patient respiratory effort during mechanical ventilation: lung and diaphragm-protective ventilation. Crit Care 24(1):106PubMedPubMedCentralCrossRef Bertoni M, Spadaro S, Goligher EC (2020) Monitoring patient respiratory effort during mechanical ventilation: lung and diaphragm-protective ventilation. Crit Care 24(1):106PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat de Vries H et al (2018) Assessing breathing effort in mechanical ventilation: physiology and clinical implications. Ann Transl Med 6(19):387PubMedPubMedCentralCrossRef de Vries H et al (2018) Assessing breathing effort in mechanical ventilation: physiology and clinical implications. Ann Transl Med 6(19):387PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Mezidi M, Guerin C (2019) Complete assessment of respiratory mechanics during pressure support ventilation. Intensive Care Med 45(4):557–558PubMedCrossRef Mezidi M, Guerin C (2019) Complete assessment of respiratory mechanics during pressure support ventilation. Intensive Care Med 45(4):557–558PubMedCrossRef
36.
Zurück zum Zitat Roesthuis L, van den Berg M, van der Hoeven H (2021) Non-invasive method to detect high respiratory effort and transpulmonary driving pressures in COVID-19 patients during mechanical ventilation. Ann Intensive Care 11(1):26PubMedPubMedCentralCrossRef Roesthuis L, van den Berg M, van der Hoeven H (2021) Non-invasive method to detect high respiratory effort and transpulmonary driving pressures in COVID-19 patients during mechanical ventilation. Ann Intensive Care 11(1):26PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Yoshida T, Amato MBP, Kavanagh BP (2018) Understanding spontaneous vs. ventilator breaths: impact and monitoring. Intensive Care Med 44(12):2235–2238PubMedCrossRef Yoshida T, Amato MBP, Kavanagh BP (2018) Understanding spontaneous vs. ventilator breaths: impact and monitoring. Intensive Care Med 44(12):2235–2238PubMedCrossRef
40.
Zurück zum Zitat Morais CCA et al (2018) High positive end-expiratory pressure renders spontaneous effort noninjurious. Am J Respir Crit Care Med 197(10):1285–1296PubMedPubMedCentralCrossRef Morais CCA et al (2018) High positive end-expiratory pressure renders spontaneous effort noninjurious. Am J Respir Crit Care Med 197(10):1285–1296PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Dianti J, Bertoni M, Goligher EC (2020) Monitoring patient-ventilator interaction by an end-expiratory occlusion maneuver. Intensive Care Med 46(12):2338–2341PubMedCrossRef Dianti J, Bertoni M, Goligher EC (2020) Monitoring patient-ventilator interaction by an end-expiratory occlusion maneuver. Intensive Care Med 46(12):2338–2341PubMedCrossRef
42.
Zurück zum Zitat Marini JJ, Gattinoni L (2020) Time course of evolving ventilator-induced lung injury: the “shrinking baby lung”. Crit Care Med 48(8):1203–1209PubMedPubMedCentralCrossRef Marini JJ, Gattinoni L (2020) Time course of evolving ventilator-induced lung injury: the “shrinking baby lung”. Crit Care Med 48(8):1203–1209PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Iotti GA et al (1995) Respiratory mechanics by least squares fitting in mechanically ventilated patients: applications during paralysis and during pressure support ventilation. Intensive Care Med 21(5):406–413PubMedCrossRef Iotti GA et al (1995) Respiratory mechanics by least squares fitting in mechanically ventilated patients: applications during paralysis and during pressure support ventilation. Intensive Care Med 21(5):406–413PubMedCrossRef
44.
Zurück zum Zitat Cereda M et al (2019) Imaging the injured lung: mechanisms of action and clinical use. Anesthesiology 131(3):716–749PubMedCrossRef Cereda M et al (2019) Imaging the injured lung: mechanisms of action and clinical use. Anesthesiology 131(3):716–749PubMedCrossRef
46.
Zurück zum Zitat Van de Graaff WB et al (1991) Pressure support. Changes in ventilatory pattern and components of the work of breathing. Chest 100(4):1082–1089PubMedCrossRef Van de Graaff WB et al (1991) Pressure support. Changes in ventilatory pattern and components of the work of breathing. Chest 100(4):1082–1089PubMedCrossRef
47.
Zurück zum Zitat Alberti A et al (1995) P0.1 is a useful parameter in setting the level of pressure support ventilation. Intensive Care Med 21(7):547–553PubMedCrossRef Alberti A et al (1995) P0.1 is a useful parameter in setting the level of pressure support ventilation. Intensive Care Med 21(7):547–553PubMedCrossRef
48.
Zurück zum Zitat Chiumello D et al (2003) Effect of different inspiratory rise time and cycling off criteria during pressure support ventilation in patients recovering from acute lung injury. Crit Care Med 31(11):2604–2610PubMedCrossRef Chiumello D et al (2003) Effect of different inspiratory rise time and cycling off criteria during pressure support ventilation in patients recovering from acute lung injury. Crit Care Med 31(11):2604–2610PubMedCrossRef
49.
Zurück zum Zitat Doorduin J et al (2017) Partial neuromuscular blockade during partial ventilatory support in sedated patients with high tidal volumes. Am J Respir Crit Care Med 195(8):1033–1042PubMedCrossRef Doorduin J et al (2017) Partial neuromuscular blockade during partial ventilatory support in sedated patients with high tidal volumes. Am J Respir Crit Care Med 195(8):1033–1042PubMedCrossRef
50.
Zurück zum Zitat Somhorst P, Groot MW, Gommers D (2018) Partial neuromuscular blockage to promote weaning from mechanical ventilation in severe ARDS: a case report. Respir Med Case Rep 25:225–227PubMedPubMedCentral Somhorst P, Groot MW, Gommers D (2018) Partial neuromuscular blockage to promote weaning from mechanical ventilation in severe ARDS: a case report. Respir Med Case Rep 25:225–227PubMedPubMedCentral
51.
Zurück zum Zitat Mauri T et al (2016) Control of respiratory drive and effort in extracorporeal membrane oxygenation patients recovering from severe acute respiratory distress syndrome. Anesthesiology 125(1):159–167PubMedCrossRef Mauri T et al (2016) Control of respiratory drive and effort in extracorporeal membrane oxygenation patients recovering from severe acute respiratory distress syndrome. Anesthesiology 125(1):159–167PubMedCrossRef
52.
Zurück zum Zitat Crotti S et al (2017) Spontaneous breathing during extracorporeal membrane oxygenation in acute respiratory failure. Anesthesiology 126(4):678–687CrossRefPubMed Crotti S et al (2017) Spontaneous breathing during extracorporeal membrane oxygenation in acute respiratory failure. Anesthesiology 126(4):678–687CrossRefPubMed
Metadaten
Titel
„Patient self-inflicted lung injury“ (P-SILI)
Von der Pathophysiologie zur klinischen Evaluation mit differenziertem Management
verfasst von
Benjamin Neetz
Thomas Flohr
Felix J. F. Herth
Michael M. Müller
Publikationsdatum
07.05.2021
Verlag
Springer Medizin
Erschienen in
Medizinische Klinik - Intensivmedizin und Notfallmedizin / Ausgabe 7/2021
Print ISSN: 2193-6218
Elektronische ISSN: 2193-6226
DOI
https://doi.org/10.1007/s00063-021-00823-2

Weitere Artikel der Ausgabe 7/2021

Medizinische Klinik - Intensivmedizin und Notfallmedizin 7/2021 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.