Skip to main content
Erschienen in: Journal of the International Society of Sports Nutrition 1/2017

Open Access 01.12.2017 | Review

Dietary thiols in exercise: oxidative stress defence, exercise performance, and adaptation

verfasst von: Yanita McLeay, Stephen Stannard, Stuart Houltham, Carlene Starck

Erschienen in: Journal of the International Society of Sports Nutrition | Ausgabe 1/2017

Abstract

Endurance athletes are susceptible to cellular damage initiated by excessive levels of aerobic exercise-produced reactive oxygen species (ROS). Whilst ROS can contribute to the onset of fatigue, there is increasing evidence that they play a crucial role in exercise adaptations. The use of antioxidant supplements such as vitamin C and E in athletes is common; however, their ability to enhance performance and facilitate recovery is controversial, with many studies suggesting a blunting of training adaptations with supplementation. The up-regulation of endogenous antioxidant systems brought about by exercise training allows for greater tolerance to subsequent ROS, thus, athletes may benefit from increasing these systems through dietary thiol donors. Recent work has shown supplementation with a cysteine donor (N-acetylcysteine; NAC) improves antioxidant capacity by augmenting glutathione levels and reducing markers of oxidative stress, as well as ergogenic potential through association with delayed fatigue in numerous experimental models. However, the use of this, and other thiol donors may have adverse physiological effects. A recent discovery for the use of a thiol donor food source, keratin, to potentially enhance endogenous antioxidants may have important implications for endurance athletes hoping to enhance performance and recovery without blunting training adaptations.
Abkürzungen
GPx
Glutathione peroxidase
GSH
Glutathione (reduced)
GSSG
Glutathione (oxidized)
H2O2
Hydrogen peroxide
MAPK
Mitogen-activated protein kinases
NAC
N-acetyl cysteine
RNS
Reactive nitrogen species
ROS
Reactive oxygen species
SOD
Superoxide dismutase
TNF-α
Tumor necrosis factor-alpha

Background

It is well-established that muscular work is associated with oxidative stress and that prolonged or high-intensity exercise results in oxidative damage to macromolecules in both blood and skeletal muscle [13]. This exercise-induced oxidative damage can impair physical performance via various mechanisms relating to compromised myocellular structure and function. Furthermore, chronic oxidative stress in athletes, often brought about by overtraining, has been linked to chronic fatigue [4], longer term performance decrements [5], muscle atrophy [6], and illness [7]. Exogenous and endogenous antioxidants reduce oxidative stress, thus it is not surprising that dietary antioxidants are a popular supplement for athletes in an attempt to enhance recovery, optimise performance, and reduce the oxidant load to maintain long-term health.
The two groups of biologically active molecules that fall under the umbrella term ‘free radicals’ include reactive oxygen species (ROS) and reactive nitrogen species (RNS). During exercise, oxygen consumption can increase as much as 100-fold [8] and is associated with rapid increases in ROS production and accumulation. This constant production of free radicals by skeletal muscle requires the buffering capacity of an endogenous defense system, and a multitude of mechanisms have evolved to detect and respond to elevated oxidant production. The action of these systems determines the overall endogenous antioxidant capacity, and if this capacity is exceeded, oxidative stress ensues, potentially resulting in detrimental oxidation of cell membranes, functional proteins, and DNA [911].
Paradoxically, the redox activities of ROS and RNS play critical roles in cell signaling and exercise adaptation, a phenomenon summarized by the concept of hormesis, where low levels of stress promote adaptation to and thus protection from, subsequent stress [12]. Various exercise studies have observed improved endogenous defence in rodents following training [1317], along with reduced ROS production at the same absolute exercise workload during following training [18]. However, at very high concentrations, ROS can move beyond being advantageous, and have detrimental effects on performance. During heavy endurance training, endogenous antioxidant capacity cannot meet the increasingly high ROS generation, resulting in a state of oxidative stress and subsequent cellular damage [19]. Dietary supplementation with antioxidants in this situation may be beneficial; however, the exact ‘balance’ of (exogenous) antioxidant supplementation to ROS levels that may enhance performance without blunting adaptive pathways is currently unknown. Commonly supplemented antioxidants include the well-known vitamins such as C and E, and in recent times, research concerning the effects of these on exercise performance in humans has grown considerably, producing equivocal results [2024]. While acute administration in humans may potentially enhance performance [25], the majority of studies suggest no benefit [23, 2630]. Furthermore, there is concern that chronic supplementation may blunt the free radical-driven adaptive effects of training by interfering with the essential endogenous antioxidant response to ROS [31, 32]. More recently, the thiol donors’ glutathione, cysteine, and taurine, have generated interest for the improvement of exercise recovery and performance, with their potential to boost endogenous antioxidant defence in a way that generalized antioxidants cannot. However, the use of these is limited by poor supplement bioavailability and several side effects [33, 34]. This has created a niche for the advent of palatable, digestible, and tolerated dietary thiol sources. In this review we focus on the emergence of thiols as antioxidant supplements for the endurance athlete, the current research surrounding their ergogenic potential and benefits, and recent efforts to produce a high-cysteine food source.

Antioxidant supplementation, exercise performance, and adaptation

While research into the effect of common dietary antioxidants on acutely reducing free-radical load is well documented in humans, evidence of any exercise performance or adaptation benefits are equivocal [2023, 30, 31, 3538]. Few studies have observed performance benefits as a result of supplementing with specific dietary antioxidants [37] and many well controlled studies in this area have found no performance benefit [2123, 3942]. It has been suggested that antioxidant supplementation may only improve performance when endogenous levels are already depleted, and after reaching normal concentrations, no further benefit is seen [35]. Similarly, antioxidant supplementation does not appear to benefit recovery time following acute exercise [4346], with only a limited number of studies showing minor recovery benefits [30, 47]. On the other hand, there is an increasing body of work that has shown that ingestion of specific foods, high in antioxidant compounds can accelerate recovery [44, 48, 49]. Both cherries [44, 48] and blueberries [49] seem to expedite the recovery of muscular force following strenuous eccentric work. However, whether this is due to the antioxidant capabilities of the foods, or the polyphenolics is a point of contention. Our previous work [49] seems to infer the latter.
A number of published studies to date indicate that supplementation with common dietary antioxidants may actually be detrimental to athletic performance by blunting the adaptive effect of exercise training [31, 5052]. These adaptations, including upregulated endogenous defense, muscle protein synthesis, and mitochondrial biogenesis, are important for improved exercise capacity and recovery. Dietary antioxidants such as vitamins C and E are generally required in very small amounts, working with endogenous antioxidants to maintain or re-establish redox homeostasis [53]. However, these general antioxidants non-specifically scavenge all free radicals, regardless of their source; hence increased intake may affect various pathways including cellular signaling pathways that are important for exercise adaptation. In contrast, endogenous antioxidant systems are a complex and compartmentalized network that involve controlled and localized production of specific ROS [54]. These ROS are uniquely balanced by endogenous antioxidants to levels where cellular signaling can still be carried out. In athletes, disruption of this system by over-supplementation with generalized exogenous antioxidants can result in blunted signaling pathways [31, 38, 50]. This in turn can compromise recovery and attenuate exercise adaptations, negatively affecting performance.
In addition to their effect on adaptive pathways, at high levels, exogenous antioxidants can promote oxidation, contributing to acute decrements in exercise performance. For example, vitamin C can react with metal ions released from exercise-induced tissue damage, giving rise to harmful hydroxyl radicals [55], and vitamin E can become a free radical itself when it reacts with a free radical [56], damaging lipid membranes if it is not converted back to its reduced form. Following acute eccentric induced muscle injury in young men, Childs et al. [57] found increased oxidative stress and tissue damage supplementation with vitamin C and a cysteine derivative n-acytylcysteine (NAC), compared to a placebo. Similarly, in ultra-endurance (Ironman™) competitors, vitamin C or E supplementation prior to racing significantly elevated markers of oxidative stress and showed significant decreases in antioxidant enzyme activity post- race, compared with no supplementation [58]. For a more comprehensive review on the various dietary antioxidants that can form a pro-oxidant state, please refer to Yordi et al. [59].
In contrast to exogenous antioxidants, high levels of endogenous antioxidants do not appear to contribute to oxidative stress. Rather, it is depleted levels that can give rise to an oxidant state [60]. It could therefore be suggested that consuming dietary sources of endogenous antioxidant precursors, such as thiol donors, may enhance exercise performance and recovery without the negative effects associated with exogenous antioxidant supplementation.

Thiols

Antioxidant capacity

Thiols, molecules that contain a sulfhydyl (SH) side chain group, act as antioxidants, stabilizing free radicals by accepting their unpaired electron. Methionine and cysteine are two key dietary thiol amino acids that metabolize to the powerful and arguably most important endogenous antioxidant, glutathione (GSH). Adequate levels of GSH are crucial in maintaining reduction-oxidation (redox) balance within body tissues with the ratio of reduced to oxidized glutathione (GSH/GSSG) being a primary indicator of redox state. A higher ratio of GSH to GSSG suggests a reductive environment where ROS levels are kept at homeostatic levels, whereas a low GSH to GSSG ratio is indicative of oxidative stress [61]. It is cysteine that gives GSH its antioxidant activity; as cysteine is also rate limiting to its formation, dietary cysteine, or its precursor amino acid methionine, is crucial for maintaining endogenous antioxidant defense. In addition to GSH, dietary thiols have the ability to increase levels of taurine, another powerful thiol antioxidant, via the cysteine sulfinic acid pathway (Fig. 1).
Various studies using thiol donor supplementation have shown positive effects on the up-regulation of endogenous antioxidants and antioxidant enzyme activity. For example, administration of the cysteine-donor N-acetyl cysteine (NAC) in humans significantly increases blood [6264] and muscle [65, 66] GSH levels, and in vitro studies show methionine supplementation to have beneficial effects on GSH hepatocyte concentrations [67]. Furthermore, NAC has been shown to increase taurine levels in skeletal muscle [68].

Exercise performance

While it appears that excessive intakes of common dietary antioxidants may contribute to oxidative stress [56, 69], there is no published literature to suggest high levels of endogenous thiol antioxidants to have the same effect. Exercise appears to significantly alter GSH and taurine tissue levels, and supplementing with thiol donors has been shown to attenuate this [70]. Reduced markers of oxidative damage have been seen post-exercise with thiol supplementation [71], suggestive of reduced ROS levels. Thus, in contrast to the well-researched vitamins C and E, several human studies have suggested that the observed ergogenic effect of thiol donors such as NAC is due to improved endogenous defense systems [72, 73].
Perhaps due to potential toxicity associated with methionine supplementation, to our knowledge no published studies have looked into the use of methionine on exercise performance in either humans or animals. Similarly, as an isolated supplement, L-cysteine has been shown to elicit toxic effects in several animal studies [7476]. Because of this, the majority of studies looking at cysteine supplementation on endogenous antioxidant up-regulation use NAC, which endogenously cleaves cystine into two cysteine molecules [77]. Additionally, studies that use exogenous forms of GSH are not common as it is primarily degraded to its constituent amino acids [78]. Exogenous taurine supplementation however, has shown some promising results on increasing time to fatigue during exhaustive exercise by up to 50% in rodents, and time to VO2max in men [7981]. Therefore, increasing GSH and taurine levels within the body via thiol donors may benefit athletes.
In rats, NAC infusion at 150 mg.kg−1 was found to increase tolerance to respiratory loading, while also attenuating a decrease in diaphragm GSH [82]. Similarly in humans, the same infusion rate of NAC during electrical stimulation of the ankle dorsiflexors was shown to increase force output by 15% compared to placebo [83]. Furthermore, Medved and colleagues [65] found that infusing NAC (150 mg.kg−1) into endurance trained men prior to a fatiguing cycling protocol gave rise to a 26.3% increase in time to exhaustion at 92% VO2max compared to placebo; although in other research from the same group [73], cycling time to fatigue was not affected by an infusion of 125 mg.kg−1, despite an attenuation in the reduction of GSH. In contrast to these studies, Matuszaczak et al. [84] found an infusion of 150 mg.kg−1 to have no effect on force production during sustained maximal handgrip contractions compared to placebo. It did however inhibit GSH oxidation.
A role for taurine has been implicated in virtually every body tissue, with the highest concentrations found within skeletal and cardiac muscle [85]. Maintaining adequate taurine is important for endurance athletes, as taurine also plays crucial roles in muscle contraction and relaxation [86], lipid metabolism [87], and potentially muscle protein synthesis [88]. Furthermore, a possible ‘sparing’ of GSH has been observed with taurine supplementation [89], suggesting indirect redox-balancing roles. While several earlier studies, using taurine-containing energy drinks, observed a combination of taurine and caffeine to enhance exercise performance above that of caffeine alone [90, 91], it is only more recently that isolated taurine has been used in exercise research. Several studies have shown that two weeks of taurine supplementation in rats elicits 50% [81, 92] and 34% [79] greater time to exhaustion during treadmill running compared to non-supplemented (control) animals. The impact of taurine supplementation on human exercise performance is less clear. In recreationally trained men, taurine supplementation prior to cycling to VO2max reduced oxidative stress markers in plasma post-cycle, and also significantly increased time to exhaustion at VO2max, and maximal workload [80]. Similarly, in trained runners taurine ingestion prior to a 3-km time trial significantly improved performance [93]. In contrast however, Rutherford et al. [94] found acute ingestion of taurine to have no effect on time-trial performance in well-trained cyclists, although it did appear to significantly increase fat oxidation during submaximal cycling at the same absolute work rate.
Overall, the effect of thiol donors on human performance appear to vary, probably due to vast methodological differences including exercise protocol, dosage amount, length of time, and subject training status. However, if the provision of precursors for endogenous antioxidants, such as NAC for GSH and/or taurine, enables the body to regulate to optimal levels its own antioxidant defence mechanism, this may be preferable to the use of general exogenous antioxidants such as vitamins C and E.

Exercise and adaptation

In addition to performance, the ability to improve physical capacity over time is of utmost importance for athletes. The human body has the ability to adapt to exercise stressors, allowing for a greater tolerance to a subsequent similar workload, and relies on various ROS-mediated signaling pathways to do so. At low levels, exercise-induced ROS play a critical role in skeletal muscle adaptation [95] by up-regulating various cytokines and protein kinases such as tumor necrosis factor alpha (TNF-α) [96] and mitogen-activated protein kinases (MAPK) [97] that work to signal increases in mitochondrial density and number, endogenous antioxidants, and assist in muscle protein synthesis [98, 99]. Certain studies have observed up-regulated endogenous antioxidants and antioxidant enzymes, specifically superoxide dismutase (SOD) and glutathione peroxidase (GPx) following endurance training [18, 100], and well trained athletes appear to have higher base-line levels of these enzymes, as well as GSH [101]. Additionally, while muscle protein breakdown is stimulated during exercise, protein synthesis is increased during recovery through ROS signaling [102]. The use of common antioxidants vitamins C and E prior to exercise have been shown to mitigate ROS signaling pathways, resulting in the blunting of such adaptations [31, 36, 5052].
While exogenous antioxidants may attenuate training adaptations, there is no literature to suggest that increasing endogenous antioxidants has this effect. Rather, a recent study [103] in cyclists undergoing strenuous physical training observed improved physiological adaptation with a week of oral NAC while several other studies [72, 104] have found increased signaling cytokines such as TNF-α with NAC supplementation compared to a placebo, despite improved performance. This suggests that NAC may contribute to exercise adaptation by increasing levels of the various signaling molecules. As opposed to oral supplementation however, studies using direct infusion of NAC appear to attenuate the increase in these signaling molecules [105, 106]. Thus it is important to consider the method of administration when analyzing effect. Whilst NAC appears to upregulate endogenous antioxidants in those who have depleted levels, in healthy individuals, high doses may have pro-oxidant effects [107109]. Furthermore, in some individuals, oral [110] and systemically administered [83] NAC can be poorly tolerated. Little research exists on taurine’s effect on exercise adaptions; however, taurine appears to have potent cytoprotective roles in skeletal muscle [88, 111]. Various studies have shown taurine depletion or attenuation of its transport to reduce muscle function and increase atrophy [112]. In addition, several studies have observed a reduction in eccentric-induced muscle damage [113] and oxidative stress [113, 114] following taurine supplementation, suggesting its potential role in recovery via reducing initial tissue damage.
Additional research into the effects of long term use of thiol donors is necessary; however, early observations suggest that they may be useful as ergogenic aids for endurance athletes without attenuating useful adaptations.

A future of thiols as ergogenic aids

Despite their potential benefits, the use of supplementary thiol donors to improve endogenous antioxidant status may not necessarily be the ideal way to enhance performance and recovery. As previously mentioned, high intakes of NAC in healthy individuals may have pro-oxidant effects [107109], and both oral [110] and systemically administered [83] NAC can be poorly tolerated. Similarly, while methionine supplementation has been shown to increase GSH levels in those with sub-optimal levels [115, 116], excess intakes in healthy individuals may increase homocysteine levels which has been shown to contribute to cardiovascular disease and several mental health disorders [117, 118]. Therefore, alternative dietary sources of thiols may provide a safer option for athletes and others.

Food-based thiol donors

Keratin is found in tissues including hair, skin, nails, and feathers, and is comprised of cysteine-based disulfide bonds. While necessary for structural purposes, these strong linkages between cysteine residues render keratin indigestible to humans and thus unavailable for absorption. However, hydrolysed keratin, through either acid or alkaline hydrolysis vastly improves digestibility [119] and sets this protein up as a potential thiol source. High in cysteic acid, a metabolite of cysteine, keratin hydrolysate may directly increase taurine levels; indeed, a recent study in rats [120] observed increased liver taurine following four weeks of keratin supplementation, along with the maintenance of GSH levels, suggestive of a sparing effect. A later study tested the same keratin protein in humans over two weeks using a ramped dose protocol. Starting at 10 g of keratin/day (10.g.d−1) for three days, the supplementation period finished with an intake of 40 g.d−1; a level at which there were still no adverse physiological effects reported [119]. These two studies may have implications for the use of keratin-based thiol supplementation in athletes; however, research into this area is scarce.

Conclusions

Endurance athletes are susceptible to cellular damage initiated by excessive levels of aerobic exercise-produced ROS. Whilst ROS can contribute to the onset of fatigue, there is increasing evidence that they play a crucial role in exercise adaptations. The use of general antioxidant supplements such as vitamin C and E in athletes is common; however, their ability to enhance performance and facilitate recovery is controversial, with many studies suggesting a blunting of training adaptations with chronic supplementation. However, as the up-regulation of endogenous antioxidant systems are brought about by exercise training, athletes may benefit from increasing these systems through dietary thiol donors. While the thiol donors methionine and NAC may increase endogenous antioxidants and antioxidant enzymes, there can be adverse effects associated with their use. Thus, the discovery for the use of hydrolysed keratin to potentially enhance endogenous GSH and taurine may have important implications for athletes hoping to enhance performance and recovery without blunting training adaptation.

Acknowledgements

Not applicable.

Funding

Not applicable.

Availability of data and materials

Not applicable

Authors’ contributions

YM, SS, SH & CS contributed to this review. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Not applicable.
Not applicable.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Powers S, Nelson W, Hudson M. Exercise-induced oxidative stress in humans: cause and consequences. Free Radic Biol Med. 2011;51(5):942–50.PubMedCrossRef Powers S, Nelson W, Hudson M. Exercise-induced oxidative stress in humans: cause and consequences. Free Radic Biol Med. 2011;51(5):942–50.PubMedCrossRef
2.
3.
Zurück zum Zitat Liu J, et al. Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. J Appl Physiol. 2000;89(1):21–8.PubMed Liu J, et al. Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. J Appl Physiol. 2000;89(1):21–8.PubMed
4.
Zurück zum Zitat Kennedy G, et al. Oxidative stress levels are raised in chronic fatigue syndrome and are associated with clinical symptoms. Free Radic Biol Med. 2005;39(5):584–9.PubMedCrossRef Kennedy G, et al. Oxidative stress levels are raised in chronic fatigue syndrome and are associated with clinical symptoms. Free Radic Biol Med. 2005;39(5):584–9.PubMedCrossRef
5.
Zurück zum Zitat Lehmann M, et al. Training-overtraining: influence of a defined increase in training volume vs training intensity on performance, catecholamines and some metabolic parameters in experienced middle-and long-distance runners. Eur J Appl Physiol Occup Physiol. 1992;64(2):169–77.PubMedCrossRef Lehmann M, et al. Training-overtraining: influence of a defined increase in training volume vs training intensity on performance, catecholamines and some metabolic parameters in experienced middle-and long-distance runners. Eur J Appl Physiol Occup Physiol. 1992;64(2):169–77.PubMedCrossRef
6.
Zurück zum Zitat Xiao W, Chen P, Dong J. Effects of overtraining on skeletal muscle growth and gene expression. Int J Sports Med. 2012;33(10):846–53.PubMedCrossRef Xiao W, Chen P, Dong J. Effects of overtraining on skeletal muscle growth and gene expression. Int J Sports Med. 2012;33(10):846–53.PubMedCrossRef
7.
Zurück zum Zitat Vider J, et al. Acute immune response in respect to exercise-induced oxidative stress. Pathophysiology. 2001;7(4):263–70.PubMedCrossRef Vider J, et al. Acute immune response in respect to exercise-induced oxidative stress. Pathophysiology. 2001;7(4):263–70.PubMedCrossRef
8.
Zurück zum Zitat Gibala M, et al. Tricarboxylic acid cycle intermediate pool size and estimated cycle flux in human muscle during exercise. Am J Physiol Endocrinol Metab. 1998;275(2):235–42. Gibala M, et al. Tricarboxylic acid cycle intermediate pool size and estimated cycle flux in human muscle during exercise. Am J Physiol Endocrinol Metab. 1998;275(2):235–42.
9.
Zurück zum Zitat Dalle-Donne I, et al. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta. 2003;329(1):23–38.PubMedCrossRef Dalle-Donne I, et al. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta. 2003;329(1):23–38.PubMedCrossRef
10.
Zurück zum Zitat Tsai K, et al. Oxidative DNA damage in human peripheral leukocytes induced by massive aerobic exercise. Free Radic Biol Med. 2001;31(11):1465–72.PubMedCrossRef Tsai K, et al. Oxidative DNA damage in human peripheral leukocytes induced by massive aerobic exercise. Free Radic Biol Med. 2001;31(11):1465–72.PubMedCrossRef
11.
Zurück zum Zitat Mateos R, et al. Determination of malondialdehyde (MDA) by high-performance liquid chromatography in serum and liver as a biomarker for oxidative stress: application to a rat model for hypercholesterolemia and evaluation of the effect of diets rich in phenolic antioxidants from fruits. J Chromatogr B. 2005;827(1):76–82.CrossRef Mateos R, et al. Determination of malondialdehyde (MDA) by high-performance liquid chromatography in serum and liver as a biomarker for oxidative stress: application to a rat model for hypercholesterolemia and evaluation of the effect of diets rich in phenolic antioxidants from fruits. J Chromatogr B. 2005;827(1):76–82.CrossRef
13.
Zurück zum Zitat Criswell D, et al. High intensity training-induced changes in skeletal muscle antioxidant enzyme activity. Med Sci Sports Exerc. 1993;25(10):1135–40.PubMedCrossRef Criswell D, et al. High intensity training-induced changes in skeletal muscle antioxidant enzyme activity. Med Sci Sports Exerc. 1993;25(10):1135–40.PubMedCrossRef
14.
Zurück zum Zitat Hollander J, et al. Superoxide dismutase gene expression is activated by a single bout of exercise in rat skeletal muscle. Pfluegers Archiv. 2001;442(3):426–34.PubMedCrossRef Hollander J, et al. Superoxide dismutase gene expression is activated by a single bout of exercise in rat skeletal muscle. Pfluegers Archiv. 2001;442(3):426–34.PubMedCrossRef
15.
Zurück zum Zitat Higuchi M, et al. Superoxide dismutase and catalase in skeletal muscle: adaptive response to exercise. J Gerontol. 1985;40(3):281–6.PubMedCrossRef Higuchi M, et al. Superoxide dismutase and catalase in skeletal muscle: adaptive response to exercise. J Gerontol. 1985;40(3):281–6.PubMedCrossRef
16.
Zurück zum Zitat Powers S, et al. Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle. Am J Phys Regul Integr Comp Phys. 1994;266(2):375–80. Powers S, et al. Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle. Am J Phys Regul Integr Comp Phys. 1994;266(2):375–80.
17.
Zurück zum Zitat Leeuwenburgh C, et al. Aging and exercise training in skeletal muscle: responses of glutathione and antioxidant enzyme systems. Am J Phys Regul Integr Comp Phys. 1994;267(2):439–45. Leeuwenburgh C, et al. Aging and exercise training in skeletal muscle: responses of glutathione and antioxidant enzyme systems. Am J Phys Regul Integr Comp Phys. 1994;267(2):439–45.
18.
Zurück zum Zitat Miyazaki H, et al. Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. Eur J Appl Physiol. 2001;84(1-2):1–6.PubMedCrossRef Miyazaki H, et al. Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. Eur J Appl Physiol. 2001;84(1-2):1–6.PubMedCrossRef
20.
Zurück zum Zitat Hoogerwerf A, Hoitink A. The influence of vitamin C administration on the mechanical efficiency of the human organism. Int Z Angew Physiol. 1963;20(2):164–72.PubMed Hoogerwerf A, Hoitink A. The influence of vitamin C administration on the mechanical efficiency of the human organism. Int Z Angew Physiol. 1963;20(2):164–72.PubMed
21.
Zurück zum Zitat Keren G, Epstein Y. The effect of high dosage vitamin C intake on aerobic and anaerobic capacity. J Sports Med Phys Fitness. 1980;20(2):145–8.PubMed Keren G, Epstein Y. The effect of high dosage vitamin C intake on aerobic and anaerobic capacity. J Sports Med Phys Fitness. 1980;20(2):145–8.PubMed
22.
Zurück zum Zitat Keith R, Merrill E. The effects of vitamin C on maximum grip strength and muscular endurance. J Sports Med Phys Fitness. 1983;23(3):253–6.PubMed Keith R, Merrill E. The effects of vitamin C on maximum grip strength and muscular endurance. J Sports Med Phys Fitness. 1983;23(3):253–6.PubMed
23.
Zurück zum Zitat Sharman I, Down M, Sen R. The effects of vitamin E and training on physiological function and athletic performance in adolescent swimmers. Br J Nutr. 1971;26(02):265–76.PubMedCrossRef Sharman I, Down M, Sen R. The effects of vitamin E and training on physiological function and athletic performance in adolescent swimmers. Br J Nutr. 1971;26(02):265–76.PubMedCrossRef
24.
Zurück zum Zitat Roberts L, et al. Vitamin C consumption does not impair training-induced improvements in exercise performance. Int J Sports Physiol Perform. 2011;6(1):58–69.PubMedCrossRef Roberts L, et al. Vitamin C consumption does not impair training-induced improvements in exercise performance. Int J Sports Physiol Perform. 2011;6(1):58–69.PubMedCrossRef
25.
Zurück zum Zitat Romano-Ely B, et al. Effect of an isocaloric carbohydrate-protein-antioxidant drink on cycling performance. Med Sci Sports Exerc. 2006;38(9):1608–16.PubMedCrossRef Romano-Ely B, et al. Effect of an isocaloric carbohydrate-protein-antioxidant drink on cycling performance. Med Sci Sports Exerc. 2006;38(9):1608–16.PubMedCrossRef
26.
Zurück zum Zitat Yfanti C, et al. Antioxidant supplementation does not alter endurance training adaptation. Med Sci Sports Exerc. 2010;42(7):1388–95.PubMedCrossRef Yfanti C, et al. Antioxidant supplementation does not alter endurance training adaptation. Med Sci Sports Exerc. 2010;42(7):1388–95.PubMedCrossRef
27.
Zurück zum Zitat Akova B, et al. Exercise-induced oxidative stress and muscle performance in healthy women: role of vitamin E supplementation and endogenous oestradiol. Eur J Appl Physiol. 2001;84(1-2):141–7.PubMedCrossRef Akova B, et al. Exercise-induced oxidative stress and muscle performance in healthy women: role of vitamin E supplementation and endogenous oestradiol. Eur J Appl Physiol. 2001;84(1-2):141–7.PubMedCrossRef
28.
Zurück zum Zitat Shephard R, et al. Vitamin E, exercise, and the recovery from physical activity. Eur J Appl Physiol Occup Physiol. 1974;33(2):119–26.PubMedCrossRef Shephard R, et al. Vitamin E, exercise, and the recovery from physical activity. Eur J Appl Physiol Occup Physiol. 1974;33(2):119–26.PubMedCrossRef
29.
Zurück zum Zitat Bryer S, Goldfarb A. Effect of high dose vitamin C supplementation on muscle soreness, damage, function, and oxidative stress to eccentric exercise. Int J Sport Nutr Exerc Metab. 2006;16(3):270–80.PubMedCrossRef Bryer S, Goldfarb A. Effect of high dose vitamin C supplementation on muscle soreness, damage, function, and oxidative stress to eccentric exercise. Int J Sport Nutr Exerc Metab. 2006;16(3):270–80.PubMedCrossRef
30.
Zurück zum Zitat Thompson D, et al. Prolonged vitamin C supplementation and recovery from demanding exercise. Int J Sport Nutr Exerc Metab. 2001;11(4):466–81.PubMedCrossRef Thompson D, et al. Prolonged vitamin C supplementation and recovery from demanding exercise. Int J Sport Nutr Exerc Metab. 2001;11(4):466–81.PubMedCrossRef
31.
Zurück zum Zitat Gomez-Cabrera M, et al. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr. 2008;87(1):142–9.PubMed Gomez-Cabrera M, et al. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr. 2008;87(1):142–9.PubMed
32.
33.
Zurück zum Zitat Zhang H, Forman H, Choi J. Gamma-glutamyl transpeptidase in glutathione biosynthesis. Methods Enzymol. 2005;401:468–83.PubMedCrossRef Zhang H, Forman H, Choi J. Gamma-glutamyl transpeptidase in glutathione biosynthesis. Methods Enzymol. 2005;401:468–83.PubMedCrossRef
34.
Zurück zum Zitat Go Y-M, Jones D. Cysteine/cystine redox signaling in cardiovascular disease. Free Radic Biol Med. 2011;50(4):495–509.PubMedCrossRef Go Y-M, Jones D. Cysteine/cystine redox signaling in cardiovascular disease. Free Radic Biol Med. 2011;50(4):495–509.PubMedCrossRef
35.
Zurück zum Zitat Buzina R, Suboticanec K. Vitamin C and physical working capacity. Int J Vitam Nutr Res. 1985;27:157. Buzina R, Suboticanec K. Vitamin C and physical working capacity. Int J Vitam Nutr Res. 1985;27:157.
36.
Zurück zum Zitat Fischer C, et al. Supplementation with vitamins C and E inhibits the release of interleukin-6 from contracting human skeletal muscle. J Physiol. 2004;558(2):633–45.PubMedPubMedCentralCrossRef Fischer C, et al. Supplementation with vitamins C and E inhibits the release of interleukin-6 from contracting human skeletal muscle. J Physiol. 2004;558(2):633–45.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Simon-Schnass I, Pabst H. Influence of vitamin E on physical performance. Int J Vitam Nutr Res. 1987;58(1):49–54. Simon-Schnass I, Pabst H. Influence of vitamin E on physical performance. Int J Vitam Nutr Res. 1987;58(1):49–54.
38.
Zurück zum Zitat Wadley G, McConell G. High-dose antioxidant vitamin C supplementation does not prevent acute exercise-induced increases in markers of skeletal muscle mitochondrial biogenesis in rats. J Appl Physiol. 2010;108(6):1719–26.PubMedCrossRef Wadley G, McConell G. High-dose antioxidant vitamin C supplementation does not prevent acute exercise-induced increases in markers of skeletal muscle mitochondrial biogenesis in rats. J Appl Physiol. 2010;108(6):1719–26.PubMedCrossRef
39.
Zurück zum Zitat Satoshi S, et al. Exercise-induced lipid peroxidation and leakage of enzymes before and after vitamin E supplementation. Int J Biochem. 1989;21(8):835–8.CrossRef Satoshi S, et al. Exercise-induced lipid peroxidation and leakage of enzymes before and after vitamin E supplementation. Int J Biochem. 1989;21(8):835–8.CrossRef
40.
Zurück zum Zitat Lawrence J, et al. Effects of alpha-tocopherol acetate on the swimming endurance of trained swimmers. Am J Clin Nutr. 1975;28(3):205–8.PubMed Lawrence J, et al. Effects of alpha-tocopherol acetate on the swimming endurance of trained swimmers. Am J Clin Nutr. 1975;28(3):205–8.PubMed
41.
Zurück zum Zitat Nieman D, et al. Influence of vitamin C supplementation on oxidative and immune changes after an ultramarathon. J Appl Physiol. 2002;92(5):1970–7.PubMedCrossRef Nieman D, et al. Influence of vitamin C supplementation on oxidative and immune changes after an ultramarathon. J Appl Physiol. 2002;92(5):1970–7.PubMedCrossRef
42.
Zurück zum Zitat Gomes E, et al. Effect of vitamin supplementation on lung injury and running performance in a hot, humid, and ozone-polluted environment. Scand J Med Sci Sports. 2011;21(6):452–60.CrossRef Gomes E, et al. Effect of vitamin supplementation on lung injury and running performance in a hot, humid, and ozone-polluted environment. Scand J Med Sci Sports. 2011;21(6):452–60.CrossRef
43.
Zurück zum Zitat Close G, et al. Ascorbic acid supplementation does not attenuate post-exercise muscle soreness following muscle-damaging exercise but may delay the recovery process. Br J Nutr. 2006;95(5):976–81.PubMedCrossRef Close G, et al. Ascorbic acid supplementation does not attenuate post-exercise muscle soreness following muscle-damaging exercise but may delay the recovery process. Br J Nutr. 2006;95(5):976–81.PubMedCrossRef
44.
Zurück zum Zitat Howatson G, et al. Influence of tart cherry juice on indices of recovery following marathon running. Scand J Med Sci Sports. 2010;20(6):843–52.PubMedCrossRef Howatson G, et al. Influence of tart cherry juice on indices of recovery following marathon running. Scand J Med Sci Sports. 2010;20(6):843–52.PubMedCrossRef
45.
Zurück zum Zitat Bailey D, et al. Oxidative stress, inflammation and recovery of muscle function after damaging exercise: effect of 6-week mixed antioxidant supplementation. Eur J Appl Physiol. 2011;111(6):925–36.PubMedCrossRef Bailey D, et al. Oxidative stress, inflammation and recovery of muscle function after damaging exercise: effect of 6-week mixed antioxidant supplementation. Eur J Appl Physiol. 2011;111(6):925–36.PubMedCrossRef
46.
Zurück zum Zitat Avery N, et al. Effects of vitamin E supplementation on recovery from repeated bouts of resistance exercise. J Strength Cond Res. 2003;17(4):801–9.PubMed Avery N, et al. Effects of vitamin E supplementation on recovery from repeated bouts of resistance exercise. J Strength Cond Res. 2003;17(4):801–9.PubMed
47.
Zurück zum Zitat Jakemanl P, Maxwell S. Effect of antioxidant vitamin supplementation on muscle function after eccentric exercise. Eur J Appl Physiol Occup Physiol. 1993;67(5):426–30.CrossRef Jakemanl P, Maxwell S. Effect of antioxidant vitamin supplementation on muscle function after eccentric exercise. Eur J Appl Physiol Occup Physiol. 1993;67(5):426–30.CrossRef
48.
Zurück zum Zitat Connolly D, McHugh M, Padilla-Zakour O. Efficacy of a tart cherry juice blend in preventing the symptoms of muscle damage. Br J Sports Med. 2006;40(8):679–83.PubMedPubMedCentralCrossRef Connolly D, McHugh M, Padilla-Zakour O. Efficacy of a tart cherry juice blend in preventing the symptoms of muscle damage. Br J Sports Med. 2006;40(8):679–83.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat McLeay Y, et al. Effect of New Zealand blueberry consumption on recovery from eccentric exercise-induced muscle damage. J Int Soc Sports Nutr. 2012;9(1):19.PubMedPubMedCentralCrossRef McLeay Y, et al. Effect of New Zealand blueberry consumption on recovery from eccentric exercise-induced muscle damage. J Int Soc Sports Nutr. 2012;9(1):19.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Paulsen G, et al. Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double‐blind, randomised, controlled trial. J Physiology. 2014;592(8):1887–901.CrossRef Paulsen G, et al. Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double‐blind, randomised, controlled trial. J Physiology. 2014;592(8):1887–901.CrossRef
51.
Zurück zum Zitat Paulsen G, et al. Vitamin C and E supplementation alters protein signalling after a strength training session, but not muscle growth during 10 weeks of training. J Physiol. 2014;592(24):5391–408.PubMedPubMedCentralCrossRef Paulsen G, et al. Vitamin C and E supplementation alters protein signalling after a strength training session, but not muscle growth during 10 weeks of training. J Physiol. 2014;592(24):5391–408.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Gomez-Cabrera M, Ristow M, Viña J. Antioxidant supplements in exercise: worse than useless? Am J Physiol Endocrinol Metab. 2012;302(4):476–7.CrossRef Gomez-Cabrera M, Ristow M, Viña J. Antioxidant supplements in exercise: worse than useless? Am J Physiol Endocrinol Metab. 2012;302(4):476–7.CrossRef
53.
Zurück zum Zitat Fang Y, Yang S, Wu G. Free radicals, antioxidants, and nutrition. Nutrition. 2002;18(10):872–9.PubMedCrossRef Fang Y, Yang S, Wu G. Free radicals, antioxidants, and nutrition. Nutrition. 2002;18(10):872–9.PubMedCrossRef
54.
Zurück zum Zitat Powers S, Jackson M. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88(4):1243–76.PubMedPubMedCentralCrossRef Powers S, Jackson M. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev. 2008;88(4):1243–76.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Halliwell B. Commentary: vitamin C: antioxidant or pro-oxidant in vivo? Free Radic Res. 1996;25(5):439–54.PubMedCrossRef Halliwell B. Commentary: vitamin C: antioxidant or pro-oxidant in vivo? Free Radic Res. 1996;25(5):439–54.PubMedCrossRef
56.
Zurück zum Zitat Cillard J, et al. α-Tocopherol prooxidant effect in aqueous media: increased autoxidation rate of linoleic acid. J Am Oil Chem Soc. 1980;57(8):252–5.CrossRef Cillard J, et al. α-Tocopherol prooxidant effect in aqueous media: increased autoxidation rate of linoleic acid. J Am Oil Chem Soc. 1980;57(8):252–5.CrossRef
57.
Zurück zum Zitat Childs A, et al. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic Biol Med. 2001;31(6):745–53.PubMedCrossRef Childs A, et al. Supplementation with vitamin C and N-acetyl-cysteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radic Biol Med. 2001;31(6):745–53.PubMedCrossRef
58.
Zurück zum Zitat Knez W, Jenkins D, Coombes J. Oxidative stress in half and full Ironman triathletes. Med Sci Sports Exerc Sci. 2007;39(2):283–8.CrossRef Knez W, Jenkins D, Coombes J. Oxidative stress in half and full Ironman triathletes. Med Sci Sports Exerc Sci. 2007;39(2):283–8.CrossRef
59.
Zurück zum Zitat Yordi E et al. Antioxidant and pro-oxidant effects of polyphenolic compounds and structure-activity relationship evidence. Nutrition, Well-Being and Health. Croatia: InTech; 2012: p. 23-48. Yordi E et al. Antioxidant and pro-oxidant effects of polyphenolic compounds and structure-activity relationship evidence. Nutrition, Well-Being and Health. Croatia: InTech; 2012: p. 23-48.
60.
Zurück zum Zitat Hayes J, Mclellan L. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res. 1999;31(4):273–300.PubMedCrossRef Hayes J, Mclellan L. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res. 1999;31(4):273–300.PubMedCrossRef
61.
Zurück zum Zitat Jones D. Redox potential of GSH/GSSG couple: Assay and biological significance. Methods Enzymol. 2002;348:93–112.PubMedCrossRef Jones D. Redox potential of GSH/GSSG couple: Assay and biological significance. Methods Enzymol. 2002;348:93–112.PubMedCrossRef
62.
63.
Zurück zum Zitat Holmay M, et al. N-acetylcysteine boosts brain and blood glutathione in gaucher and Parkinson’s diseases. Clin Neuropharmacol. 2013;36(4):103–6.PubMedPubMedCentralCrossRef Holmay M, et al. N-acetylcysteine boosts brain and blood glutathione in gaucher and Parkinson’s diseases. Clin Neuropharmacol. 2013;36(4):103–6.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Bridgeman M, et al. Cysteine and glutathione concentrations in plasma and bronchoalveolar lavage fluid after treatment with N-acetylcysteine. Thorax. 1991;46(1):39–42.PubMedPubMedCentralCrossRef Bridgeman M, et al. Cysteine and glutathione concentrations in plasma and bronchoalveolar lavage fluid after treatment with N-acetylcysteine. Thorax. 1991;46(1):39–42.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Medved I, et al. N-acetylcysteine enhances muscle cysteine and glutathione availability and attenuates fatigue during prolonged exercise in endurance-trained individuals. J Appl Physiol. 2004;97(4):1477–85.PubMedCrossRef Medved I, et al. N-acetylcysteine enhances muscle cysteine and glutathione availability and attenuates fatigue during prolonged exercise in endurance-trained individuals. J Appl Physiol. 2004;97(4):1477–85.PubMedCrossRef
66.
Zurück zum Zitat Michailidis Y, et al. Thiol-based antioxidant supplementation alters human skeletal muscle signaling and attenuates its inflammatory response and recovery after intense eccentric exercise. Am J Clin Nutr. 2013;98(1):233–45.PubMedCrossRef Michailidis Y, et al. Thiol-based antioxidant supplementation alters human skeletal muscle signaling and attenuates its inflammatory response and recovery after intense eccentric exercise. Am J Clin Nutr. 2013;98(1):233–45.PubMedCrossRef
67.
Zurück zum Zitat Wang S, et al. Methionine and cysteine affect glutathione level, glutathione-related enzyme activities and the expression of glutathione S-transferase isozymes in rat hepatocytes. J Nutr. 1997;127(11):2135–41.PubMed Wang S, et al. Methionine and cysteine affect glutathione level, glutathione-related enzyme activities and the expression of glutathione S-transferase isozymes in rat hepatocytes. J Nutr. 1997;127(11):2135–41.PubMed
68.
Zurück zum Zitat Terrill J, et al. Increasing taurine intake and taurine synthesis improves skeletal muscle function in the mdx mouse model for Duchenne Muscular Dystrophy. J Physiol. 2016;594(11):3095–110.PubMedCrossRef Terrill J, et al. Increasing taurine intake and taurine synthesis improves skeletal muscle function in the mdx mouse model for Duchenne Muscular Dystrophy. J Physiol. 2016;594(11):3095–110.PubMedCrossRef
69.
Zurück zum Zitat Duarte T, Lunec J. Review: when is an antioxidant not an antioxidant? a review of novel actions and reactions of vitamin C. Free Radic Res. 2005;39(7):671–86.PubMedCrossRef Duarte T, Lunec J. Review: when is an antioxidant not an antioxidant? a review of novel actions and reactions of vitamin C. Free Radic Res. 2005;39(7):671–86.PubMedCrossRef
70.
Zurück zum Zitat Kerksick C, Willoughby D. The antioxidant role of glutathione and N-acetyl-cysteine supplements and exercise-induced oxidative stress. J Int Soc Sports Nutr. 2005;2(2):1.CrossRef Kerksick C, Willoughby D. The antioxidant role of glutathione and N-acetyl-cysteine supplements and exercise-induced oxidative stress. J Int Soc Sports Nutr. 2005;2(2):1.CrossRef
71.
Zurück zum Zitat Silva L, et al. N-acetylcysteine supplementation and oxidative damage and inflammatory response after eccentric exercise. Int J Sport Nutr. 2008;18(4):379–88. Silva L, et al. N-acetylcysteine supplementation and oxidative damage and inflammatory response after eccentric exercise. Int J Sport Nutr. 2008;18(4):379–88.
72.
Zurück zum Zitat Cobley J, et al. N-Acetylcysteine’s attenuation of fatigue after repeated bouts of intermittent exercise: practical implications for tournament situations. Int J Sport Nutr Exerc Metab. 2011;21(6):451–61.PubMedCrossRef Cobley J, et al. N-Acetylcysteine’s attenuation of fatigue after repeated bouts of intermittent exercise: practical implications for tournament situations. Int J Sport Nutr Exerc Metab. 2011;21(6):451–61.PubMedCrossRef
73.
Zurück zum Zitat McKenna MJ, et al. N-acetylcysteine attenuates the decline in muscle Na+, K + -pump activity and delays fatigue during prolonged exercise in humans. J Physiol. 2006;576(1):279–88.PubMedPubMedCentralCrossRef McKenna MJ, et al. N-acetylcysteine attenuates the decline in muscle Na+, K + -pump activity and delays fatigue during prolonged exercise in humans. J Physiol. 2006;576(1):279–88.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Hayden P, Stevens J. Cysteine conjugate toxicity, metabolism, and binding to macromolecules in isolated rat kidney mitochondria. Mol Pharmacol. 1990;37(3):468–76.PubMed Hayden P, Stevens J. Cysteine conjugate toxicity, metabolism, and binding to macromolecules in isolated rat kidney mitochondria. Mol Pharmacol. 1990;37(3):468–76.PubMed
75.
Zurück zum Zitat Karlsen R, et al. Morphological changes in rat brain induced byl-cysteine injection in newborn animals. Brain Res. 1981;208(1):167–80.PubMedCrossRef Karlsen R, et al. Morphological changes in rat brain induced byl-cysteine injection in newborn animals. Brain Res. 1981;208(1):167–80.PubMedCrossRef
76.
Zurück zum Zitat Dilger R, et al. Excess dietary L-cysteine, but not L-cystine, is lethal for chicks but not for rats or pigs. J Nutr. 2007;137(2):331–8.PubMed Dilger R, et al. Excess dietary L-cysteine, but not L-cystine, is lethal for chicks but not for rats or pigs. J Nutr. 2007;137(2):331–8.PubMed
77.
Zurück zum Zitat Whillier S, et al. Role of N-acetylcysteine and cystine in glutathione synthesis in human erythrocytes. Redox Rep. 2009;14(3):115–24.PubMedCrossRef Whillier S, et al. Role of N-acetylcysteine and cystine in glutathione synthesis in human erythrocytes. Redox Rep. 2009;14(3):115–24.PubMedCrossRef
78.
Zurück zum Zitat Meister A. Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy. Pharmacol Ther. 1991;51(2):155–94.PubMedCrossRef Meister A. Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy. Pharmacol Ther. 1991;51(2):155–94.PubMedCrossRef
79.
Zurück zum Zitat Yatabe Y, et al. Effects of taurine administration in rat skeletal muscles on exercise. J Orthop Sci. 2003;8(3):415–9.PubMedCrossRef Yatabe Y, et al. Effects of taurine administration in rat skeletal muscles on exercise. J Orthop Sci. 2003;8(3):415–9.PubMedCrossRef
80.
Zurück zum Zitat Zhang M, et al. Role of taurine supplementation to prevent exercise-induced oxidative stress in healthy young men. Amino Acids. 2004;26(2):203–7.PubMedCrossRef Zhang M, et al. Role of taurine supplementation to prevent exercise-induced oxidative stress in healthy young men. Amino Acids. 2004;26(2):203–7.PubMedCrossRef
81.
Zurück zum Zitat Miyazaki T, et al. Optimal and effective oral dose of taurine to prolong exercise performance in rat. Amino Acids. 2004;27(3-4):291–8.PubMedCrossRef Miyazaki T, et al. Optimal and effective oral dose of taurine to prolong exercise performance in rat. Amino Acids. 2004;27(3-4):291–8.PubMedCrossRef
82.
Zurück zum Zitat Supinski G, et al. N-acetylcysteine administration alters the response to inspiratory loading in oxygen-supplemented rats. J Appl Physiol. 1997;82(4):1119–25.PubMed Supinski G, et al. N-acetylcysteine administration alters the response to inspiratory loading in oxygen-supplemented rats. J Appl Physiol. 1997;82(4):1119–25.PubMed
84.
Zurück zum Zitat Matuszczak Y, et al. Effects of N-acetylcysteine on glutathione oxidation and fatigue during handgrip exercise. Muscle Nerve. 2005;32(5):633–8.PubMedCrossRef Matuszczak Y, et al. Effects of N-acetylcysteine on glutathione oxidation and fatigue during handgrip exercise. Muscle Nerve. 2005;32(5):633–8.PubMedCrossRef
86.
Zurück zum Zitat Goodman C, et al. Taurine supplementation increases skeletal muscle force production and protects muscle function during and after high-frequency in vitro stimulation. J Appl Physiol. 2009;107(1):144–54.PubMedPubMedCentralCrossRef Goodman C, et al. Taurine supplementation increases skeletal muscle force production and protects muscle function during and after high-frequency in vitro stimulation. J Appl Physiol. 2009;107(1):144–54.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Hardison W. Hepatic taurine concentration and dietary taurine as regulators of bile acid conjugation with taurine. Gastroenterology. 1978;75(1):71–5. Hardison W. Hepatic taurine concentration and dietary taurine as regulators of bile acid conjugation with taurine. Gastroenterology. 1978;75(1):71–5.
88.
Zurück zum Zitat Uozumi Y, et al. Myogenic differentiation induces taurine transporter in association with taurine-mediated cytoprotection in skeletal muscles. Biochem J. 2006;394(3):699–706.PubMedPubMedCentralCrossRef Uozumi Y, et al. Myogenic differentiation induces taurine transporter in association with taurine-mediated cytoprotection in skeletal muscles. Biochem J. 2006;394(3):699–706.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Balkan J, et al. Taurine has a protective effect against thioacetamide-induced liver cirrhosis by decreasing oxidative stress. Hum Exp Toxicol. 2001;20(5):251–4.PubMedCrossRef Balkan J, et al. Taurine has a protective effect against thioacetamide-induced liver cirrhosis by decreasing oxidative stress. Hum Exp Toxicol. 2001;20(5):251–4.PubMedCrossRef
90.
Zurück zum Zitat Geiss K, et al. The effect of a taurine-containing drink on performance in 10 endurance-athletes. Amino Acids. 1994;7(1):45–56.PubMedCrossRef Geiss K, et al. The effect of a taurine-containing drink on performance in 10 endurance-athletes. Amino Acids. 1994;7(1):45–56.PubMedCrossRef
91.
Zurück zum Zitat Alford C, Cox H, Wescott R. The effects of red bull energy drink on human performance and mood. Amino Acids. 2001;21(2):139–50.PubMedCrossRef Alford C, Cox H, Wescott R. The effects of red bull energy drink on human performance and mood. Amino Acids. 2001;21(2):139–50.PubMedCrossRef
92.
Zurück zum Zitat Imagawa T, et al. Caffeine and taurine enhance endurance performance. Int J Sports Med. 2009;30(07):485–8.PubMedCrossRef Imagawa T, et al. Caffeine and taurine enhance endurance performance. Int J Sports Med. 2009;30(07):485–8.PubMedCrossRef
93.
Zurück zum Zitat Balshaw T, et al. The effect of acute taurine ingestion on 3-km running performance in trained middle-distance runners. Amino Acids. 2013;44(2):555–61.PubMedCrossRef Balshaw T, et al. The effect of acute taurine ingestion on 3-km running performance in trained middle-distance runners. Amino Acids. 2013;44(2):555–61.PubMedCrossRef
94.
Zurück zum Zitat Rutherford J, Spriet L, Stellingwerff T. The effect of acute taurine ingestion on endurance performance and metabolism in well-trained cyclists. Int J Sport Nutr. 2010;20(4):322–9. Rutherford J, Spriet L, Stellingwerff T. The effect of acute taurine ingestion on endurance performance and metabolism in well-trained cyclists. Int J Sport Nutr. 2010;20(4):322–9.
95.
Zurück zum Zitat Powers S, et al. Reactive oxygen species are signalling molecules for skeletal muscle adaptation. Exp Physiol. 2010;95(1):1–9.PubMedCrossRef Powers S, et al. Reactive oxygen species are signalling molecules for skeletal muscle adaptation. Exp Physiol. 2010;95(1):1–9.PubMedCrossRef
96.
Zurück zum Zitat Akimoto T, et al. Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem. 2005;280(20):19587–93.PubMedCrossRef Akimoto T, et al. Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem. 2005;280(20):19587–93.PubMedCrossRef
97.
Zurück zum Zitat Li Y-P, Reid MB. Effect of tumor necrosis factor-α on skeletal muscle metabolism. Curr Opin Rheumatol. 2001;13(6):483–7.PubMedCrossRef Li Y-P, Reid MB. Effect of tumor necrosis factor-α on skeletal muscle metabolism. Curr Opin Rheumatol. 2001;13(6):483–7.PubMedCrossRef
98.
Zurück zum Zitat Irrcher I, et al. Regulation of mitochondrial biogenesis in muscle by endurance exercise. Sports Med. 2003;33(11):783–93.PubMedCrossRef Irrcher I, et al. Regulation of mitochondrial biogenesis in muscle by endurance exercise. Sports Med. 2003;33(11):783–93.PubMedCrossRef
99.
Zurück zum Zitat Wilkinson SB, et al. Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol. 2008;586(15):3701–17.PubMedPubMedCentralCrossRef Wilkinson SB, et al. Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol. 2008;586(15):3701–17.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Evelo C, et al. Changes in blood glutathione concentrations, and in erythrocyte glutathione reductase and glutathione S-transferase activity after running training and after participation in contests. Eur J Appl Physiol Occup Physiol. 1992;64(4):354–8.PubMedCrossRef Evelo C, et al. Changes in blood glutathione concentrations, and in erythrocyte glutathione reductase and glutathione S-transferase activity after running training and after participation in contests. Eur J Appl Physiol Occup Physiol. 1992;64(4):354–8.PubMedCrossRef
101.
Zurück zum Zitat Marzatico F, et al. Blood free radical antioxidant enzymes and lipid peroxides following long-distance and lactacidemic performances in highly trained aerobic and sprint athletes. J Sports Med Phys Fitness. 1997;37(4):235–9.PubMed Marzatico F, et al. Blood free radical antioxidant enzymes and lipid peroxides following long-distance and lactacidemic performances in highly trained aerobic and sprint athletes. J Sports Med Phys Fitness. 1997;37(4):235–9.PubMed
103.
Zurück zum Zitat Slattery KM, et al. Effect of N-acetylcysteine on cycling performance after intensified training. Med Sci Sports Exerc. 2014;46(6):1114–23.PubMedCrossRef Slattery KM, et al. Effect of N-acetylcysteine on cycling performance after intensified training. Med Sci Sports Exerc. 2014;46(6):1114–23.PubMedCrossRef
104.
Zurück zum Zitat Leelarungrayub D, et al. N-acetylcysteine supplementation controls total antioxidant capacity, creatine kinase, lactate, and tumor necrotic factor-alpha against oxidative stress induced by graded exercise in sedentary men. Oxidative Med Cell Longev. 2011;2011:329643.CrossRef Leelarungrayub D, et al. N-acetylcysteine supplementation controls total antioxidant capacity, creatine kinase, lactate, and tumor necrotic factor-alpha against oxidative stress induced by graded exercise in sedentary men. Oxidative Med Cell Longev. 2011;2011:329643.CrossRef
105.
Zurück zum Zitat Trewin AJ, et al. Effect of N-acetylcysteine infusion on exercise-induced modulation of insulin sensitivity and signaling pathways in human skeletal muscle. Am J Physiol Endocrinol Metab. 2015;309(4):E388–97.PubMedCrossRef Trewin AJ, et al. Effect of N-acetylcysteine infusion on exercise-induced modulation of insulin sensitivity and signaling pathways in human skeletal muscle. Am J Physiol Endocrinol Metab. 2015;309(4):E388–97.PubMedCrossRef
106.
Zurück zum Zitat Petersen A, et al. Infusion with the antioxidant N‐acetylcysteine attenuates early adaptive responses to exercise in human skeletal muscle. Acta Physiol. 2012;204(3):382–92.CrossRef Petersen A, et al. Infusion with the antioxidant N‐acetylcysteine attenuates early adaptive responses to exercise in human skeletal muscle. Acta Physiol. 2012;204(3):382–92.CrossRef
107.
Zurück zum Zitat Özkan Y, Özkan E, Şimşek B. Plasma total homocysteine and cysteine levels as cardiovascular risk factors in coronary heart disease. Int J Cardiol. 2002;82(3):269–77.PubMedCrossRef Özkan Y, Özkan E, Şimşek B. Plasma total homocysteine and cysteine levels as cardiovascular risk factors in coronary heart disease. Int J Cardiol. 2002;82(3):269–77.PubMedCrossRef
108.
Zurück zum Zitat Kleinveld H, Demacker P, Stalenhoef A. Failure of N-acetylcysteine to reduce low-density lipoprotein oxidizability in healthy subjects. Eur J Clin Pharmacol. 1992;43(6):639–42.PubMedCrossRef Kleinveld H, Demacker P, Stalenhoef A. Failure of N-acetylcysteine to reduce low-density lipoprotein oxidizability in healthy subjects. Eur J Clin Pharmacol. 1992;43(6):639–42.PubMedCrossRef
109.
Zurück zum Zitat Oikawa S, et al. N-acetylcysteine, a cancer chemopreventive agent, causes oxidative damage to cellular and isolated DNA. Carcinogenesis. 1999;20(8):1485–90.PubMedCrossRef Oikawa S, et al. N-acetylcysteine, a cancer chemopreventive agent, causes oxidative damage to cellular and isolated DNA. Carcinogenesis. 1999;20(8):1485–90.PubMedCrossRef
110.
Zurück zum Zitat Stey C, et al. The effect of oral N-acetylcysteine in chronic bronchitis: a quantitative systematic review. Eur Respir J. 2000;16(2):253–62.PubMedCrossRef Stey C, et al. The effect of oral N-acetylcysteine in chronic bronchitis: a quantitative systematic review. Eur Respir J. 2000;16(2):253–62.PubMedCrossRef
111.
Zurück zum Zitat Dawson Jr R, et al. The cytoprotective role of taurine in exercise-induced muscle injury. Amino Acids. 2002;22(4):309–24.PubMedCrossRef Dawson Jr R, et al. The cytoprotective role of taurine in exercise-induced muscle injury. Amino Acids. 2002;22(4):309–24.PubMedCrossRef
112.
113.
Zurück zum Zitat da Silva L, et al. Effects of taurine supplementation following eccentric exercise in young adults. Appl Physiol Nutr Metab. 2013;39(1):101–4.PubMedCrossRef da Silva L, et al. Effects of taurine supplementation following eccentric exercise in young adults. Appl Physiol Nutr Metab. 2013;39(1):101–4.PubMedCrossRef
114.
Zurück zum Zitat Silva LA, et al. Taurine supplementation decreases oxidative stress in skeletal muscle after eccentric exercise. Cell Biochem Funct. 2011;29(1):43–9.PubMedCrossRef Silva LA, et al. Taurine supplementation decreases oxidative stress in skeletal muscle after eccentric exercise. Cell Biochem Funct. 2011;29(1):43–9.PubMedCrossRef
115.
Zurück zum Zitat Badaloo A, et al. Cysteine supplementation improves the erythrocyte glutathione synthesis rate in children with severe edematous malnutrition. Am J Clin Nutr. 2002;76(3):646–52.PubMed Badaloo A, et al. Cysteine supplementation improves the erythrocyte glutathione synthesis rate in children with severe edematous malnutrition. Am J Clin Nutr. 2002;76(3):646–52.PubMed
116.
Zurück zum Zitat Atkuri K, Mantovani J, Herzenberg L. N-Acetylcysteine—a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol. 2007;7(4):355–9.PubMedPubMedCentralCrossRef Atkuri K, Mantovani J, Herzenberg L. N-Acetylcysteine—a safe antidote for cysteine/glutathione deficiency. Curr Opin Pharmacol. 2007;7(4):355–9.PubMedPubMedCentralCrossRef
117.
118.
Zurück zum Zitat Nestoros J, Ban T, Lehmann H. Transmethylation hypothesis of schizophrenia: methionine and nicotinic acid. Int Pharmacopsychiatry. 1976;12(4):215–46. Nestoros J, Ban T, Lehmann H. Transmethylation hypothesis of schizophrenia: methionine and nicotinic acid. Int Pharmacopsychiatry. 1976;12(4):215–46.
119.
Zurück zum Zitat Houltham S, Stark C, Stannard S. Two week Keratin-based protein supplementation is comparable in gastrointestinal milk handling to a milk-based equivalent. J Hum Nutr Food Sci. 2014;2(5):1047. Houltham S, Stark C, Stannard S. Two week Keratin-based protein supplementation is comparable in gastrointestinal milk handling to a milk-based equivalent. J Hum Nutr Food Sci. 2014;2(5):1047.
120.
Zurück zum Zitat Wolber FM, et al. Cysteic acid in dietary keratin is metabolized to glutathione and liver taurine in a rat model of human digestion. Nutrients. 2016;8(2):104.PubMedPubMedCentralCrossRef Wolber FM, et al. Cysteic acid in dietary keratin is metabolized to glutathione and liver taurine in a rat model of human digestion. Nutrients. 2016;8(2):104.PubMedPubMedCentralCrossRef
Metadaten
Titel
Dietary thiols in exercise: oxidative stress defence, exercise performance, and adaptation
verfasst von
Yanita McLeay
Stephen Stannard
Stuart Houltham
Carlene Starck
Publikationsdatum
01.12.2017
Verlag
BioMed Central
DOI
https://doi.org/10.1186/s12970-017-0168-9

Weitere Artikel der Ausgabe 1/2017

Journal of the International Society of Sports Nutrition 1/2017 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.