Skip to main content

24.04.2019 | Original Article – Cancer Research | Ausgabe 6/2019

Journal of Cancer Research and Clinical Oncology 6/2019

Different statistical techniques dealing with confounding in observational research: measuring the effect of breast-conserving therapy and mastectomy on survival

Journal of Cancer Research and Clinical Oncology > Ausgabe 6/2019
Marissa C. van Maaren, Saskia le Cessie, Luc J. A. Strobbe, Catharina G. M. Groothuis-Oudshoorn, Philip M. P. Poortmans, Sabine Siesling
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.



Propensity trimming, hierarchical modelling and instrumental variable (IV) analysis are statistical techniques dealing with confounding, cluster-related variation or confounding by severity. This study aimed to explain (dis)advantages of these techniques in estimating the effect of breast-conserving therapy (BCT) and mastectomy on 10-year distant metastasis-free survival (DMFS).


All women diagnosed in 2005 with primary T1-2N0-1 breast cancer treated with BCT or mastectomy were selected from the Netherlands Cancer Registry. We used multivariable Cox regression to correct for confounding. Propensity trimming was used to create a more homogeneous population for which the treatment choice was not self-evident. Hospital of surgery was used as hierarchical level to handle hospital-related variation, and as IV to deal with unmeasured confounding.


Multivariable Cox regression showed higher 10-year DMFS for BCT than mastectomy [HR 0.70 (95% CI 0.60–82)]. Propensity trimming on the 10–90th and the 20–80th percentile of the propensity score distribution and hierarchical modelling showed similar HRs. IV analysis showed no significant difference between BCT and mastectomy.


Unmeasured confounding is very difficult to eliminate in observational research. We cannot conclude that BCT or mastectomy has a causal relationship with 10-year DMFS. It is crucial to critically evaluate all model’s assumptions, and to be careful in drawing firm conclusions.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Jetzt e.Med bestellen und 100 € sparen!

Weitere Produktempfehlungen anzeigen
Über diesen Artikel

Weitere Artikel der Ausgabe 6/2019

Journal of Cancer Research and Clinical Oncology 6/2019 Zur Ausgabe
  1. Sie können e.Med Innere Medizin 14 Tage kostenlos testen (keine Print-Zeitschrift enthalten). Der Test läuft automatisch und formlos aus. Es kann nur einmal getestet werden.

  2. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.

Neu im Fachgebiet Onkologie

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Onkologie und bleiben Sie gut informiert – ganz bequem per eMail.