Skip to main content
Erschienen in: Graefe's Archive for Clinical and Experimental Ophthalmology 6/2005

01.06.2005 | Clinical Investigation

Differential activation of cerebral blood flow by stimulating amblyopic and fellow eye

verfasst von: Shoichi Mizoguchi, Yukihisa Suzuki, Motohiro Kiyosawa, Manabu Mochizuki, Kenji Ishii

Erschienen in: Graefe's Archive for Clinical and Experimental Ophthalmology | Ausgabe 6/2005

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Positron emission tomography (PET), the blood flow response in the primary visual cortex (V1) to two visual stimuli, low temporal frequency (6 Hz) to activate the parvocellular system, and high temporal frequency (25 Hz) to activate the magnocellular system were used to investigate pathophysiologic mechanism of amblyopia.

Methods

Five women and one man who were aged between 26 and 60 years, who were ophthalmologically normal except for amblyopia, and who had corrected visual acuity in the amblyopic eye of 0.6 or worse were examined. An intravenous injection of the H215O was given, and the regional cerebral blood flow was measured by PET during full-field stimulation with either 6 Hz or 25 Hz flicker to the amblyopic or the sound eye.

Result

The activation of blood flow in the contra-lateral area V1 by the 6-Hz stimulation of the sound eye was greater than that during the stimulation of the amblyopic eye (P<0.05, small volume correction, n=6). With 25-Hz stimulation of the sound and amblyopic eyes, the blood flow in the contra-lateral and ipsi-lateral areas V1 was not significantly different.

Conclusion

The decreased activation of blood flow in the contra-lateral V1 by low temporal frequency stimuli supports the hypothesis that the parvocellular pathway in amblyopic eyes is depressed.
Literatur
1.
Zurück zum Zitat Barnes GR, Hess RF, Dumoulin SO, et al (2001) The cortical deficit in humans with strabismic amblyopia. J Physiol (Lond) 533:281–297CrossRef Barnes GR, Hess RF, Dumoulin SO, et al (2001) The cortical deficit in humans with strabismic amblyopia. J Physiol (Lond) 533:281–297CrossRef
3.
Zurück zum Zitat Choi MY, Lee KM, Hwang JM, et al (2001) Comparison between anisometropic and strabismic amblyopia using functional magnetic resonance imaging. Br J Ophthalmol 85:1052–1056CrossRef Choi MY, Lee KM, Hwang JM, et al (2001) Comparison between anisometropic and strabismic amblyopia using functional magnetic resonance imaging. Br J Ophthalmol 85:1052–1056CrossRef
4.
Zurück zum Zitat Choi MY, Lee DS, Hwang JM, et al (2002) Characteristics of glucose metabolism in the visual cortex of amblyopes using positron-emission tomography and statistical parametric mapping. J Pediatr Ophthalmol Strabismus 39:11–19 Choi MY, Lee DS, Hwang JM, et al (2002) Characteristics of glucose metabolism in the visual cortex of amblyopes using positron-emission tomography and statistical parametric mapping. J Pediatr Ophthalmol Strabismus 39:11–19
5.
Zurück zum Zitat Daw NW (1995) Visual development. Plenum, New York Daw NW (1995) Visual development. Plenum, New York
6.
Zurück zum Zitat Demer JL (1993) Positron emission tomographic studies of cortical function in human amblyopia. Neurosci Biobehav Rev 17:469–476 Demer JL (1993) Positron emission tomographic studies of cortical function in human amblyopia. Neurosci Biobehav Rev 17:469–476
7.
Zurück zum Zitat Demer JL, Noorden GK von, Volkow ND, et al (1988) Imaging of cerebral blood flow and metabolism in amblyopia by positron emission tomography. Am J Ophthalmol 105:337–347 Demer JL, Noorden GK von, Volkow ND, et al (1988) Imaging of cerebral blood flow and metabolism in amblyopia by positron emission tomography. Am J Ophthalmol 105:337–347
8.
Zurück zum Zitat Demer JL, Grafton S, Marg E (1997) Positron-emission tomographic study of human amblyopia with use of defined visual stimuli. J AAPOS 1:158–171 Demer JL, Grafton S, Marg E (1997) Positron-emission tomographic study of human amblyopia with use of defined visual stimuli. J AAPOS 1:158–171
9.
Zurück zum Zitat Demirci H, Gezer A, Sezen F, et al (2002) Evaluation of the functions of the parvocellular and magnocellular pathways in strabismic amblyopia. J Pediatr Ophthalmol Strabismus 39:215–221 Demirci H, Gezer A, Sezen F, et al (2002) Evaluation of the functions of the parvocellular and magnocellular pathways in strabismic amblyopia. J Pediatr Ophthalmol Strabismus 39:215–221
10.
Zurück zum Zitat Friston KJ, Frith CD, Liddle PF, et al (1990) The relationship between global and local changes in PET scans. J Cereb Blood Flow Metab 10:458–466PubMed Friston KJ, Frith CD, Liddle PF, et al (1990) The relationship between global and local changes in PET scans. J Cereb Blood Flow Metab 10:458–466PubMed
11.
Zurück zum Zitat Goodyear BG, Nicolle DA, Humphrey GK, et al (2000) BOLD fMRI response of early visual areas to perceived contrast in human amblyopia. J Neurophysiol 84:1907–1913 Goodyear BG, Nicolle DA, Humphrey GK, et al (2000) BOLD fMRI response of early visual areas to perceived contrast in human amblyopia. J Neurophysiol 84:1907–1913
12.
Zurück zum Zitat Grigg J, Thomas R, Billson F (1996) Neuronal basis of amblyopia: a review. Ind J Ophthalmol 44:69–76 Grigg J, Thomas R, Billson F (1996) Neuronal basis of amblyopia: a review. Ind J Ophthalmol 44:69–76
13.
Zurück zum Zitat Herscovitch P, Raichle ME, Kilbourn MR, et al (1987) Positron emission tomographic measurement of cerebral blood flow and permeability-surface area product of water using [15O]water and [11C]butanol. J Cereb Blood Flow Metab 7:527–542 Herscovitch P, Raichle ME, Kilbourn MR, et al (1987) Positron emission tomographic measurement of cerebral blood flow and permeability-surface area product of water using [15O]water and [11C]butanol. J Cereb Blood Flow Metab 7:527–542
14.
Zurück zum Zitat Horton JC, Hoyt WF (1991) The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Arch Ophthalmol 6:816–824 Horton JC, Hoyt WF (1991) The representation of the visual field in human striate cortex. A revision of the classic Holmes map. Arch Ophthalmol 6:816–824
15.
Zurück zum Zitat Hubel DH, Wiesel TN (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol (Lond) 206:419–436 Hubel DH, Wiesel TN (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol (Lond) 206:419–436
16.
Zurück zum Zitat Hubel DH, Wiesel TN, LeVay S (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond Biol 278:377–409 Hubel DH, Wiesel TN, LeVay S (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond Biol 278:377–409
17.
Zurück zum Zitat Imamura K, Richter H, Fischer H, et al (1997) Reduced activity in the extrastriate visual cortex of individuals with strabismic amblyopia. Neurosci Lett 225:173–176CrossRef Imamura K, Richter H, Fischer H, et al (1997) Reduced activity in the extrastriate visual cortex of individuals with strabismic amblyopia. Neurosci Lett 225:173–176CrossRef
18.
Zurück zum Zitat Kabasakal L, Devranoglu K, Arslan O, et al (1995) Brain SPECT evaluation of the visual cortex in amblyopia. J Nucl Med 36:1170–1174 Kabasakal L, Devranoglu K, Arslan O, et al (1995) Brain SPECT evaluation of the visual cortex in amblyopia. J Nucl Med 36:1170–1174
19.
Zurück zum Zitat Kawasaki T, Kiyosawa M, Ishii K, et al (1998) Regional cerebral blood flow response to visual stimulation measured quantitatively with PET. Neuro-Ophthalmology 20:79–89CrossRef Kawasaki T, Kiyosawa M, Ishii K, et al (1998) Regional cerebral blood flow response to visual stimulation measured quantitatively with PET. Neuro-Ophthalmology 20:79–89CrossRef
20.
Zurück zum Zitat Lee KM, Lee SH, Kim NY, et al (2001) Binocularity and spatial frequency dependence of calcarine activation in two types of amblyopia. Neurosci Res 40:147–153CrossRef Lee KM, Lee SH, Kim NY, et al (2001) Binocularity and spatial frequency dependence of calcarine activation in two types of amblyopia. Neurosci Res 40:147–153CrossRef
21.
Zurück zum Zitat Miki A, Liu GT, Raz J, et al (2000) Contralateral monocular dominance in anterior visual cortex confirmed by functional magnetic resonance imaging. Am J Ophthalmol 130:821–824CrossRef Miki A, Liu GT, Raz J, et al (2000) Contralateral monocular dominance in anterior visual cortex confirmed by functional magnetic resonance imaging. Am J Ophthalmol 130:821–824CrossRef
22.
Zurück zum Zitat Miki A, Liu GT, Englander SA, et al (2001) Functional magnetic resonance imaging of eye dominance at 4 Tesla. Ophthalmic Res 33:276–282CrossRef Miki A, Liu GT, Englander SA, et al (2001) Functional magnetic resonance imaging of eye dominance at 4 Tesla. Ophthalmic Res 33:276–282CrossRef
23.
Zurück zum Zitat Noorden GK von, Middleditch PR (1975) Histology of the monkey lateral geniculate nucleus after unilateral lid closure and experimental strabismus: further observations. Invest Ophthalmol 14:674–683 Noorden GK von, Middleditch PR (1975) Histology of the monkey lateral geniculate nucleus after unilateral lid closure and experimental strabismus: further observations. Invest Ophthalmol 14:674–683
24.
Zurück zum Zitat Noorden GK von, Crawford ML, Levacy RA (1983) The lateral geniculate nucleus in human anisometropic amblyopia. Invest Ophthalmol Vis Sci 24:788–790 Noorden GK von, Crawford ML, Levacy RA (1983) The lateral geniculate nucleus in human anisometropic amblyopia. Invest Ophthalmol Vis Sci 24:788–790
25.
Zurück zum Zitat Mizoguchi S, Suzuki Y, Kiyosawa M, et al (2003) Detection of visual activation of lateral geniculate nucleus by positron emission tomography. Graefes Arch Clin Exp Ophthalmol 241:8–12 Mizoguchi S, Suzuki Y, Kiyosawa M, et al (2003) Detection of visual activation of lateral geniculate nucleus by positron emission tomography. Graefes Arch Clin Exp Ophthalmol 241:8–12
26.
Zurück zum Zitat Schiller PH, Logothetis NK (1990) The color-opponent and broad-band channels of the primate visual system. Trends Neurosci 13:392–398CrossRef Schiller PH, Logothetis NK (1990) The color-opponent and broad-band channels of the primate visual system. Trends Neurosci 13:392–398CrossRef
27.
Zurück zum Zitat Shan Y, Moster ML, Roemer RA, et al (2000) Abnormal function of the parvocellular visual system in anisometropic amblyopia. J Pediatr Ophthalmol Strabismus 37:73–78 Shan Y, Moster ML, Roemer RA, et al (2000) Abnormal function of the parvocellular visual system in anisometropic amblyopia. J Pediatr Ophthalmol Strabismus 37:73–78
28.
Zurück zum Zitat Worsley KJ, Marrett S, Neelin P, et al (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4:58–73 Worsley KJ, Marrett S, Neelin P, et al (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp 4:58–73
29.
Zurück zum Zitat Worsley KJ, Andermann M, Koulis T, et al (1999) Detecting changes in nonisotropic images. Hum Brain Mapp 8:98–101CrossRefPubMed Worsley KJ, Andermann M, Koulis T, et al (1999) Detecting changes in nonisotropic images. Hum Brain Mapp 8:98–101CrossRefPubMed
Metadaten
Titel
Differential activation of cerebral blood flow by stimulating amblyopic and fellow eye
verfasst von
Shoichi Mizoguchi
Yukihisa Suzuki
Motohiro Kiyosawa
Manabu Mochizuki
Kenji Ishii
Publikationsdatum
01.06.2005
Erschienen in
Graefe's Archive for Clinical and Experimental Ophthalmology / Ausgabe 6/2005
Print ISSN: 0721-832X
Elektronische ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-004-1009-5

Weitere Artikel der Ausgabe 6/2005

Graefe's Archive for Clinical and Experimental Ophthalmology 6/2005 Zur Ausgabe

Laboratory Investigation

Cystatin C uptake in the eye

Neu im Fachgebiet Augenheilkunde

Open Access 22.02.2024 | Peeling | Originalien

Selektive Vitalfarbstoffe in der Makulachirurgie

Erhöhen sie die Wahrscheinlichkeit der intraoperativen ILM-Identifizierung auch bei einem erfahrenen Operateur?

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.