Skip to main content
Erschienen in: European Radiology 8/2019

06.12.2018 | Computer Applications

Differentiation of clear cell and non-clear cell renal cell carcinomas by all-relevant radiomics features from multiphase CT: a VHL mutation perspective

verfasst von: Zhi-Cheng Li, Guangtao Zhai, Jinheng Zhang, Zhongqiu Wang, Guiqin Liu, Guang-yu Wu, Dong Liang, Hairong Zheng

Erschienen in: European Radiology | Ausgabe 8/2019

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To develop a radiomics model with all-relevant imaging features from multiphasic computed tomography (CT) for differentiating clear cell renal cell carcinoma (ccRCC) from non-ccRCC and to investigate the possible radiogenomics link between the imaging features and a key ccRCC driver gene—the von Hippel-Lindau (VHL) gene mutation.

Methods

In this retrospective two-center study, two radiomics models were built using random forest from a training cohort (170 patients), where one model was built with all-relevant features and the other with minimum redundancy maximum relevance (mRMR) features. A model combining all-relevant features and clinical factors (sex, age) was also built. The radiogenomics association between selected features and VHL mutation was investigated by Wilcoxon rank-sum test. All models were tested on an independent validation cohort (85 patients) with ROC curves analysis.

Results

The model with eight all-relevant features from corticomedullary phase CT achieved an AUC of 0.949 and an accuracy of 92.9% in the validation cohort, which significantly outperformed the model with eight mRMR features (seven from nephrographic phase and one from corticomedullary phase) with an AUC of 0.851 and an accuracy of 81.2%. Combining age and sex did not benefit the performance. Five out of eight all-relevant features were significantly associated with VHL mutation, while all eight mRMR features were significantly associated with VHL mutation (false discovery rate-adjusted p < 0.05).

Conclusions

All-relevant features in corticomedullary phase CT can be used to differentiate ccRCC from non-ccRCC. Most subtype-discriminative imaging features were found to be significantly associated with VHL mutation, which may underlie the molecular basis of the radiomics features.

Key Points

• All-relevant features in corticomedullary phase CT can be used to differentiate ccRCC from non-ccRCC with high accuracy.
• Most RCC-subtype-discriminative CT features were associated with the key RCC-driven gene—the VHL gene mutation.
• Radiomics model can be more accurate and interpretable when the imaging features could reflect underlying molecular basis of RCC.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ferlay J, Soerjomataram I, Ervik M et al (2013) Cancer incidence and mortality worldwide: IARC cancer base No. 11. Available via: http://globocan.iarc.fr. Accessed 22 July 2018 Ferlay J, Soerjomataram I, Ervik M et al (2013) Cancer incidence and mortality worldwide: IARC cancer base No. 11. Available via: http://​globocan.​iarc.​fr. Accessed 22 July 2018
3.
Zurück zum Zitat Durinck S, Stawiski EW, Pavía-Jiménez A et al (2015) Spectrum of diverse genomic alterations define non-clear cell renal carcinoma subtypes. Nat Genet 47:13–21CrossRefPubMed Durinck S, Stawiski EW, Pavía-Jiménez A et al (2015) Spectrum of diverse genomic alterations define non-clear cell renal carcinoma subtypes. Nat Genet 47:13–21CrossRefPubMed
4.
Zurück zum Zitat Bellmunt J, Dutcher J (2013) Targeted therapies and the treatment of non-clear cell renal cell carcinoma. Ann Oncol 24:1730–1740CrossRefPubMed Bellmunt J, Dutcher J (2013) Targeted therapies and the treatment of non-clear cell renal cell carcinoma. Ann Oncol 24:1730–1740CrossRefPubMed
5.
Zurück zum Zitat Cheville JC, Lohse CM, Zincke H, Weaver AL, Blute ML (2003) Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Am J Surg Pathol 27:612–624CrossRefPubMed Cheville JC, Lohse CM, Zincke H, Weaver AL, Blute ML (2003) Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Am J Surg Pathol 27:612–624CrossRefPubMed
6.
Zurück zum Zitat Young JR, Margolis D, Sauk S, Pantuck AJ, Sayre J, Raman SS (2013) Clear cell renal cell carcinoma: discrimination from other renal cell carcinoma subtypes and oncocytoma at multiphasic multidetector CT. Radiology 267:444–453CrossRefPubMed Young JR, Margolis D, Sauk S, Pantuck AJ, Sayre J, Raman SS (2013) Clear cell renal cell carcinoma: discrimination from other renal cell carcinoma subtypes and oncocytoma at multiphasic multidetector CT. Radiology 267:444–453CrossRefPubMed
7.
Zurück zum Zitat Cancer Genome Atlas Research Network (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499:43–49CrossRef Cancer Genome Atlas Research Network (2013) Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499:43–49CrossRef
8.
Zurück zum Zitat Hakimi AA, Pham CG, Hsieh JJ (2013) A clear picture of renal cell carcinoma. Nat Genet 45:849–850CrossRefPubMed Hakimi AA, Pham CG, Hsieh JJ (2013) A clear picture of renal cell carcinoma. Nat Genet 45:849–850CrossRefPubMed
9.
Zurück zum Zitat Gossage L, Eisen T, Maher ER (2015) VHL, the story of a tumour suppressor gene. Nat Rev Cancer 15:55–64CrossRefPubMed Gossage L, Eisen T, Maher ER (2015) VHL, the story of a tumour suppressor gene. Nat Rev Cancer 15:55–64CrossRefPubMed
10.
Zurück zum Zitat Hsieh JJ, Le V, Cao D, Cheng EH, Creighton CJ (2018) Genomic classifications of renal cell carcinoma: a critical step towards the future application of personalized kidney cancer care with pan-omics precision. J Pathol 244:525–537CrossRefPubMed Hsieh JJ, Le V, Cao D, Cheng EH, Creighton CJ (2018) Genomic classifications of renal cell carcinoma: a critical step towards the future application of personalized kidney cancer care with pan-omics precision. J Pathol 244:525–537CrossRefPubMed
11.
Zurück zum Zitat Armstrong AJ, Halabi S, Eisen T et al (2016) Everolimus versus sunitinib for patients with metastatic non-clear-cell renal cell carcinoma (ASPEN): a multicentre, open-label, randomised phase 2 trial. Lancet Oncol 17:378–388CrossRefPubMedPubMedCentral Armstrong AJ, Halabi S, Eisen T et al (2016) Everolimus versus sunitinib for patients with metastatic non-clear-cell renal cell carcinoma (ASPEN): a multicentre, open-label, randomised phase 2 trial. Lancet Oncol 17:378–388CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Fernández-Pello S, Hofmann F, Tahbaz R et al (2017) A systematic review and meta-analysis comparing the effectiveness and adverse effects of different systemic treatments for non-clear cell renal cell carcinoma. Eur Urol 71:426–436CrossRefPubMed Fernández-Pello S, Hofmann F, Tahbaz R et al (2017) A systematic review and meta-analysis comparing the effectiveness and adverse effects of different systemic treatments for non-clear cell renal cell carcinoma. Eur Urol 71:426–436CrossRefPubMed
13.
Zurück zum Zitat Leveridge MJ, Finelli A, Kachura JR et al (2011) Outcomes of small renal mass needle core biopsy, nondiagnostic percutaneous biopsy, and the role of repeat biopsy. Eur Urol 60:578–584CrossRefPubMed Leveridge MJ, Finelli A, Kachura JR et al (2011) Outcomes of small renal mass needle core biopsy, nondiagnostic percutaneous biopsy, and the role of repeat biopsy. Eur Urol 60:578–584CrossRefPubMed
14.
Zurück zum Zitat Pandharipande PV, Gervais DA, Hartman RI et al (2010) Renal mass biopsy to guide treatment decisions for small incidental renal tumors: a cost-effectiveness analysis. Radiology 256:836–846CrossRefPubMedPubMedCentral Pandharipande PV, Gervais DA, Hartman RI et al (2010) Renal mass biopsy to guide treatment decisions for small incidental renal tumors: a cost-effectiveness analysis. Radiology 256:836–846CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Mileto A, Marin D, Alfarocordoba M et al (2014) Iodine quantification to distinguish clear cell from papillary renal cell carcinoma at dual-energy multidetector CT: a multireader diagnostic performance study. Radiology 273:813–820CrossRefPubMed Mileto A, Marin D, Alfarocordoba M et al (2014) Iodine quantification to distinguish clear cell from papillary renal cell carcinoma at dual-energy multidetector CT: a multireader diagnostic performance study. Radiology 273:813–820CrossRefPubMed
16.
Zurück zum Zitat Raman SP, Chen Y, Schroeder JL, Huang P, Fishman EK (2014) CT texture analysis of renal masses: pilot study using random forest classification for prediction of pathology. Acad Radiol 21:1587–1596CrossRefPubMedPubMedCentral Raman SP, Chen Y, Schroeder JL, Huang P, Fishman EK (2014) CT texture analysis of renal masses: pilot study using random forest classification for prediction of pathology. Acad Radiol 21:1587–1596CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Hodgdon T, McInnes MD, Schieda N, Flood TA, Lamb L, Thornhill RE (2017) Can quantitative CT texture analysis be used to differentiate fat-poor renal angiomyolipoma from renal cell carcinoma on unenhanced CT images? Radiology 276:787–796 Hodgdon T, McInnes MD, Schieda N, Flood TA, Lamb L, Thornhill RE (2017) Can quantitative CT texture analysis be used to differentiate fat-poor renal angiomyolipoma from renal cell carcinoma on unenhanced CT images? Radiology 276:787–796
18.
Zurück zum Zitat Feng Z, Rong P, Cao P et al (2018) Machine learning-based quantitative texture analysis of CT images of small renal masses: differentiation of angiomyolipoma without visible fat from renal cell carcinoma. Eur Radiol 28:1625–1633CrossRefPubMed Feng Z, Rong P, Cao P et al (2018) Machine learning-based quantitative texture analysis of CT images of small renal masses: differentiation of angiomyolipoma without visible fat from renal cell carcinoma. Eur Radiol 28:1625–1633CrossRefPubMed
19.
Zurück zum Zitat Hötker AM, Mazaheri Y, Wibmer A et al (2017) Differentiation of clear cell renal cell carcinoma from other renal cortical tumors by use of a quantitative multiparametric MRI approach. AJR Am J Roentgenol 208:W85–W91CrossRefPubMedPubMedCentral Hötker AM, Mazaheri Y, Wibmer A et al (2017) Differentiation of clear cell renal cell carcinoma from other renal cortical tumors by use of a quantitative multiparametric MRI approach. AJR Am J Roentgenol 208:W85–W91CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749CrossRefPubMed Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749CrossRefPubMed
21.
Zurück zum Zitat Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577CrossRefPubMed Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577CrossRefPubMed
22.
Zurück zum Zitat Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006CrossRefPubMed Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006CrossRefPubMed
23.
Zurück zum Zitat Huang YQ, Liang CH, He L et al (2016) Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin Oncol 34:2157–2164CrossRefPubMed Huang YQ, Liang CH, He L et al (2016) Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin Oncol 34:2157–2164CrossRefPubMed
24.
Zurück zum Zitat Yu HS, Scalera J, Khalid M et al (2017) Texture analysis as a radiomic marker for differentiating renal tumors. Abdom Radiol (NY) (10):2470–2478 Yu HS, Scalera J, Khalid M et al (2017) Texture analysis as a radiomic marker for differentiating renal tumors. Abdom Radiol (NY) (10):2470–2478
25.
Zurück zum Zitat Kiessling F (2018) The changing face of cancer diagnosis: from computational image analysis to systems biology. Eur Radiol 28:3160–3164CrossRefPubMed Kiessling F (2018) The changing face of cancer diagnosis: from computational image analysis to systems biology. Eur Radiol 28:3160–3164CrossRefPubMed
27.
Zurück zum Zitat Nilsson R, Peña JM, Björkegren J, Tegnér J (2007) Consistent feature selection for pattern recognition in polynomial time. J Mach Learn Res 8:589–612 Nilsson R, Peña JM, Björkegren J, Tegnér J (2007) Consistent feature selection for pattern recognition in polynomial time. J Mach Learn Res 8:589–612
28.
Zurück zum Zitat Rudnicki WR, Wrzesień M, Paja W (2015) All relevant feature selection methods and applications. In: Stańczyk U, Jain LC (Eds.) Feature selection for data and pattern recognition. Springer, Berlin, pp 11–28 Rudnicki WR, Wrzesień M, Paja W (2015) All relevant feature selection methods and applications. In: Stańczyk U, Jain LC (Eds.) Feature selection for data and pattern recognition. Springer, Berlin, pp 11–28
29.
Zurück zum Zitat Guo P, Luo Y, Mai G et al (2014) Gene expression profile based classification models of psoriasis. Genomics 103:48–55CrossRefPubMed Guo P, Luo Y, Mai G et al (2014) Gene expression profile based classification models of psoriasis. Genomics 103:48–55CrossRefPubMed
30.
Zurück zum Zitat Hakimi AA, Chen YB, Wren J et al (2013) Clinical and pathologic impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma. Eur Urol 63:848–854CrossRefPubMed Hakimi AA, Chen YB, Wren J et al (2013) Clinical and pathologic impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma. Eur Urol 63:848–854CrossRefPubMed
31.
Zurück zum Zitat Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97:273–324CrossRef Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97:273–324CrossRef
32.
Zurück zum Zitat Díaz-Uriarte R, Alvarez de Andrés S (2006) Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7(3) Díaz-Uriarte R, Alvarez de Andrés S (2006) Gene selection and classification of microarray data using random forest. BMC Bioinformatics 7(3)
33.
Zurück zum Zitat Kursa MB, Rudnicki WR (2010) Feature selection with the Boruta package. J Stat Softw 36:1–13CrossRef Kursa MB, Rudnicki WR (2010) Feature selection with the Boruta package. J Stat Softw 36:1–13CrossRef
34.
Zurück zum Zitat De Jay N, Papillon-Cavanagh S, Olsen C, El-Hachem N, Bontempi G, Haibe-Kains B (2015) mRMRe: an R package for parallelized mRMR ensemble feature selection. Bioinformatics 29:2365–2368 De Jay N, Papillon-Cavanagh S, Olsen C, El-Hachem N, Bontempi G, Haibe-Kains B (2015) mRMRe: an R package for parallelized mRMR ensemble feature selection. Bioinformatics 29:2365–2368
35.
Zurück zum Zitat Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27:1226–1238CrossRefPubMed Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27:1226–1238CrossRefPubMed
36.
Zurück zum Zitat Louppe G, Wehenkel L, Sutera A, Geurts P (2013) Understanding variable importances in forests of randomized trees. Adv Neural Inf Process Syst:431–439 Louppe G, Wehenkel L, Sutera A, Geurts P (2013) Understanding variable importances in forests of randomized trees. Adv Neural Inf Process Syst:431–439
37.
Zurück zum Zitat DeLong ER, DeLong DM, Clarke-Pearson DL (1998) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics:837–845 DeLong ER, DeLong DM, Clarke-Pearson DL (1998) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics:837–845
38.
Zurück zum Zitat Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57:289–300 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57:289–300
39.
Zurück zum Zitat Gaing B, Sigmund EE, Huang WC et al (2015) Subtype differentiation of renal tumors using voxel-based histogram analysis of intravoxel incoherent motion parameters. Invest Radiol 50:144–152CrossRefPubMed Gaing B, Sigmund EE, Huang WC et al (2015) Subtype differentiation of renal tumors using voxel-based histogram analysis of intravoxel incoherent motion parameters. Invest Radiol 50:144–152CrossRefPubMed
41.
Zurück zum Zitat Baessler B, Mannil M, Oebel S, Maintz D, Alkadhi H, Manka R (2017) Subacute and chronic left ventricular myocardial scar: accuracy of texture analysis on nonenhanced cine MR images. Radiology 286:103–112 Baessler B, Mannil M, Oebel S, Maintz D, Alkadhi H, Manka R (2017) Subacute and chronic left ventricular myocardial scar: accuracy of texture analysis on nonenhanced cine MR images. Radiology 286:103–112
42.
Zurück zum Zitat Li ZC, Bai H, Sun Q et al (2018) Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: a multicentre study. Eur Radiol 28:3640–3650CrossRefPubMed Li ZC, Bai H, Sun Q et al (2018) Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: a multicentre study. Eur Radiol 28:3640–3650CrossRefPubMed
43.
Zurück zum Zitat Yamamoto S, Korn RL, Oklu R et al (2014) ALK molecular phenotype in non-small cell lung cancer: CT radiogenomic characterization. Radiology 272:568–576CrossRefPubMed Yamamoto S, Korn RL, Oklu R et al (2014) ALK molecular phenotype in non-small cell lung cancer: CT radiogenomic characterization. Radiology 272:568–576CrossRefPubMed
44.
Zurück zum Zitat Karlo CA, Di Paolo PL, Chaim J et al (2014) Radiogenomics of clear cell renal cell carcinoma: associations between CT imaging features and mutations. Radiology 270:464–471CrossRefPubMed Karlo CA, Di Paolo PL, Chaim J et al (2014) Radiogenomics of clear cell renal cell carcinoma: associations between CT imaging features and mutations. Radiology 270:464–471CrossRefPubMed
45.
Zurück zum Zitat Shinagare AB, Vikram R, Jaffe C et al (2015) Radiogenomics of clear cell renal cell carcinoma: preliminary findings of The Cancer Genome Atlas-Renal Cell Carcinoma (TCGA-RCC) Imaging Research Group. Abdom Imaging 40:1684–1692CrossRefPubMedPubMedCentral Shinagare AB, Vikram R, Jaffe C et al (2015) Radiogenomics of clear cell renal cell carcinoma: preliminary findings of The Cancer Genome Atlas-Renal Cell Carcinoma (TCGA-RCC) Imaging Research Group. Abdom Imaging 40:1684–1692CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Zhang L, Fried DV, Fave XJ, Hunter LA, Yang J, Court LE (2015) IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics. Med Phys 42:1341–1353 Zhang L, Fried DV, Fave XJ, Hunter LA, Yang J, Court LE (2015) IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics. Med Phys 42:1341–1353
Metadaten
Titel
Differentiation of clear cell and non-clear cell renal cell carcinomas by all-relevant radiomics features from multiphase CT: a VHL mutation perspective
verfasst von
Zhi-Cheng Li
Guangtao Zhai
Jinheng Zhang
Zhongqiu Wang
Guiqin Liu
Guang-yu Wu
Dong Liang
Hairong Zheng
Publikationsdatum
06.12.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 8/2019
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-018-5872-6

Weitere Artikel der Ausgabe 8/2019

European Radiology 8/2019 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.