Skip to main content
Erschienen in: Medical Oncology 5/2021

01.05.2021 | Original Paper

Diosmetin induces apoptosis in ovarian cancer cells by activating reactive oxygen species and inhibiting the Nrf2 pathway

verfasst von: Feijie Zhao, Xiaoling Hong, Danjie Li, Zhentong Wei, Xinxin Ci, Songling Zhang

Erschienen in: Medical Oncology | Ausgabe 5/2021

Einloggen, um Zugang zu erhalten

Abstract

The fatality rate of ovarian cancer ranks first among gynecological tumors, and the prognosis is poor. Diosmetin (Dio), a natural flavonoid obtained from citrus fruits, has been shown to have anti-tumor effects in lung, liver, and skin cancers. We aimed to investigate the effects of Dio on ovarian cancer A2780 and SKOV3 cells along with the underlying mechanisms. Our data showed that Dio inhibited the proliferation, migration, and invasion of these cells and induced their apoptosis. Moreover, Dio upregulated the levels of Bax and cleaved Caspase-3 and PARP while downregulating the level of Bcl2. Mechanistically, our results revealed that Dio inhibited Nrf2 and induced the production of reactive oxygen species (ROS). The ROS scavenger N-acetyl-L-cysteine (NAC) suppressed the inhibitory effect of Dio on the proliferation of the ovarian cancer cells. Additionally, overexpression of Nrf2 partially suppressed the Dio-induced apoptosis and proliferation inhibition in these cells. These findings indicate that Dio exerts an anti-tumor activity by upregulating ROS levels and inhibiting Nrf2, indicating that Dio is a promising chemotherapeutic candidate for the treatment of ovarian cancer.
Literatur
1.
Zurück zum Zitat Webb PM, Jordan SJ. Epidemiology of epithelial ovarian cancer. Best Practice Res Clin Obstetr Gynaecol. 2017;41. Webb PM, Jordan SJ. Epidemiology of epithelial ovarian cancer. Best Practice Res Clin Obstetr Gynaecol. 2017;41.
2.
Zurück zum Zitat Pignata S, Cecere C, Du A, Bois A, Harter P, Heitz F. Treatment of recurrent ovarian cancer. Ann Oncol. 2017;28(suppl_8):51–6.CrossRef Pignata S, Cecere C, Du A, Bois A, Harter P, Heitz F. Treatment of recurrent ovarian cancer. Ann Oncol. 2017;28(suppl_8):51–6.CrossRef
3.
Zurück zum Zitat Cao P, Xia Y, He W, Zhang T, Hong L, Zheng P, et al. Enhancement of oxaliplatin-induced colon cancer cell apoptosis by alantolactone, a natural product inducer of ROS. Int J Biol Sci. 2019;15(8):1676–84.CrossRef Cao P, Xia Y, He W, Zhang T, Hong L, Zheng P, et al. Enhancement of oxaliplatin-induced colon cancer cell apoptosis by alantolactone, a natural product inducer of ROS. Int J Biol Sci. 2019;15(8):1676–84.CrossRef
4.
Zurück zum Zitat Wang X, Lu X, Zhu R, Zhang K, Li S, Chen Z, et al. Betulinic acid induces apoptosis in differentiated PC12 cells via ROS-mediated mitochondrial pathway. Neurochem Res. 2017;42(4):1130–40.CrossRef Wang X, Lu X, Zhu R, Zhang K, Li S, Chen Z, et al. Betulinic acid induces apoptosis in differentiated PC12 cells via ROS-mediated mitochondrial pathway. Neurochem Res. 2017;42(4):1130–40.CrossRef
5.
Zurück zum Zitat Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol. 2018;80:50–64.CrossRef Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol. 2018;80:50–64.CrossRef
6.
Zurück zum Zitat Prasad S, Gupta SC, Tyagi AK. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 2017;387 Prasad S, Gupta SC, Tyagi AK. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 2017;387
7.
Zurück zum Zitat Taguchi K, Yamamoto M. The KEAP1-NRF2 system in cancer. Front Oncol. 2017;7:85.CrossRef Taguchi K, Yamamoto M. The KEAP1-NRF2 system in cancer. Front Oncol. 2017;7:85.CrossRef
8.
Zurück zum Zitat Choi J, Lee D-H, Park S-Y, Seol J-W. Diosmetin inhibits tumor development and block tumor angiogenesis in skin cancer. Biomed Pharmacother. 2019;117:109091.CrossRef Choi J, Lee D-H, Park S-Y, Seol J-W. Diosmetin inhibits tumor development and block tumor angiogenesis in skin cancer. Biomed Pharmacother. 2019;117:109091.CrossRef
9.
Zurück zum Zitat Chen X, Wu Q, Chen Y, Zhang J, Li H, Yang Z, et al. Diosmetin induces apoptosis and enhances the chemotherapeutic efficacy of paclitaxel in non-small cell lung cancer cells via Nrf2 inhibition. Br J Pharmacol. 2019;176(12):2079–94.CrossRef Chen X, Wu Q, Chen Y, Zhang J, Li H, Yang Z, et al. Diosmetin induces apoptosis and enhances the chemotherapeutic efficacy of paclitaxel in non-small cell lung cancer cells via Nrf2 inhibition. Br J Pharmacol. 2019;176(12):2079–94.CrossRef
10.
Zurück zum Zitat Qiao J, Liu J, Jia K, Li N, Liu B, Zhang Q, et al. Diosmetin triggers cell apoptosis by activation of the p53/Bcl-2 pathway and inactivation of the Notch3/NF-κB pathway in HepG2 cells. Oncol Lett. 2016;12(6):5122–8.CrossRef Qiao J, Liu J, Jia K, Li N, Liu B, Zhang Q, et al. Diosmetin triggers cell apoptosis by activation of the p53/Bcl-2 pathway and inactivation of the Notch3/NF-κB pathway in HepG2 cells. Oncol Lett. 2016;12(6):5122–8.CrossRef
11.
Zurück zum Zitat Oak C, Khalifa AO, Isali I, Bhaskaran N, Walker E, Shukla S. Diosmetin suppresses human prostate cancer cell proliferation through the induction of apoptosis and cell cycle arrest. Int J Oncol. 2018;53(2):835–43.PubMedPubMedCentral Oak C, Khalifa AO, Isali I, Bhaskaran N, Walker E, Shukla S. Diosmetin suppresses human prostate cancer cell proliferation through the induction of apoptosis and cell cycle arrest. Int J Oncol. 2018;53(2):835–43.PubMedPubMedCentral
12.
Zurück zum Zitat Roma A, Rota SG, Spagnuolo PA. Diosmetin induces apoptosis of acute myeloid leukemia cells. Mol Pharm. 2018;15(3):1353–60.CrossRef Roma A, Rota SG, Spagnuolo PA. Diosmetin induces apoptosis of acute myeloid leukemia cells. Mol Pharm. 2018;15(3):1353–60.CrossRef
13.
Zurück zum Zitat Qiu M, Liu J, Su Y, Guo R, Zhao B, Liu J. Diosmetin induces apoptosis by downregulating AKT phosphorylation via P53 activation in human renal carcinoma ACHN cells. Protein Pept Lett. 2020;27(10):1022–8.CrossRef Qiu M, Liu J, Su Y, Guo R, Zhao B, Liu J. Diosmetin induces apoptosis by downregulating AKT phosphorylation via P53 activation in human renal carcinoma ACHN cells. Protein Pept Lett. 2020;27(10):1022–8.CrossRef
14.
Zurück zum Zitat Iida K, Naiki T, Naiki-Ito A, Suzuki S, Kato H, Nozaki S, et al. Luteolin suppresses bladder cancer growth via regulation of mechanistic target of rapamycin pathway. Cancer Sci. 2020;111(4):1165–79.CrossRef Iida K, Naiki T, Naiki-Ito A, Suzuki S, Kato H, Nozaki S, et al. Luteolin suppresses bladder cancer growth via regulation of mechanistic target of rapamycin pathway. Cancer Sci. 2020;111(4):1165–79.CrossRef
15.
Zurück zum Zitat Reyes-Farias M, Carrasco-Pozo C. The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism. Int J Mol Sci. 2019;20(13). Reyes-Farias M, Carrasco-Pozo C. The Anti-Cancer Effect of Quercetin: Molecular Implications in Cancer Metabolism. Int J Mol Sci. 2019;20(13).
16.
Zurück zum Zitat Lin T-H, Hsu W-H, Tsai P-H, Huang Y-T, Lin C-W, Chen K-C, et al. Dietary flavonoids, luteolin and quercetin, inhibit invasion of cervical cancer by reduction of UBE2S through epithelial-mesenchymal transition signaling. Food Funct. 2017;8(4):1558–68.CrossRef Lin T-H, Hsu W-H, Tsai P-H, Huang Y-T, Lin C-W, Chen K-C, et al. Dietary flavonoids, luteolin and quercetin, inhibit invasion of cervical cancer by reduction of UBE2S through epithelial-mesenchymal transition signaling. Food Funct. 2017;8(4):1558–68.CrossRef
17.
Zurück zum Zitat Zang M-d, Hu L, Fan Z-Y, Wang H-X, Zhu Z-L, Cao S, et al. Luteolin suppresses gastric cancer progression by reversing epithelial-mesenchymal transition via suppression of the Notch signaling pathway. J Transl Med. 2017;15(1):52.CrossRef Zang M-d, Hu L, Fan Z-Y, Wang H-X, Zhu Z-L, Cao S, et al. Luteolin suppresses gastric cancer progression by reversing epithelial-mesenchymal transition via suppression of the Notch signaling pathway. J Transl Med. 2017;15(1):52.CrossRef
18.
Zurück zum Zitat Hashemzaei M, Delarami Far A, Yari A, Heravi RE, Tabrizian K, Taghdisi SM, et al. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncol Rep. 2017;38(2):819–28.CrossRef Hashemzaei M, Delarami Far A, Yari A, Heravi RE, Tabrizian K, Taghdisi SM, et al. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncol Rep. 2017;38(2):819–28.CrossRef
19.
Zurück zum Zitat Wang C, Li S, Ren H, Sheng Y, Wang T, Li M, et al. Anti-proliferation and pro-apoptotic effects of diosmetin via modulating cell cycle arrest and mitochondria-mediated intrinsic apoptotic pathway in MDA-MB-231 cells. Med Sci Monit. 2019;25:4639–47.CrossRef Wang C, Li S, Ren H, Sheng Y, Wang T, Li M, et al. Anti-proliferation and pro-apoptotic effects of diosmetin via modulating cell cycle arrest and mitochondria-mediated intrinsic apoptotic pathway in MDA-MB-231 cells. Med Sci Monit. 2019;25:4639–47.CrossRef
20.
Zurück zum Zitat Wong RSY. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30:87.CrossRef Wong RSY. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30:87.CrossRef
21.
Zurück zum Zitat Wang Z, Yu K, Hu Y, Su F, Gao Z, Hu T, et al. Schisantherin A induces cell apoptosis through ROS/JNK signaling pathway in human gastric cancer cells. Biochem Pharmacol. 2020;173:113673.CrossRef Wang Z, Yu K, Hu Y, Su F, Gao Z, Hu T, et al. Schisantherin A induces cell apoptosis through ROS/JNK signaling pathway in human gastric cancer cells. Biochem Pharmacol. 2020;173:113673.CrossRef
22.
Zurück zum Zitat Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Reactive oxygen species and cancer paradox: to promote or to suppress? Free Radic Biol Med. 2017;104:144–64.CrossRef Galadari S, Rahman A, Pallichankandy S, Thayyullathil F. Reactive oxygen species and cancer paradox: to promote or to suppress? Free Radic Biol Med. 2017;104:144–64.CrossRef
23.
Zurück zum Zitat Dharmaraja AT. Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria. J Med Chem. 2017;60(8):3221–40.CrossRef Dharmaraja AT. Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria. J Med Chem. 2017;60(8):3221–40.CrossRef
24.
Zurück zum Zitat Sajadimajd S, Khazaei M. Oxidative stress and cancer: the role of Nrf2. Curr Cancer Drug Targets. 2018;18(6):538–57.CrossRef Sajadimajd S, Khazaei M. Oxidative stress and cancer: the role of Nrf2. Curr Cancer Drug Targets. 2018;18(6):538–57.CrossRef
25.
Zurück zum Zitat Tian W, Rojo de la Vega M, Schmidlin CJ, Ooi A, Zhang DD. Kelch-like ECH-associated protein 1 (KEAP1) differentially regulates nuclear factor erythroid-2-related factors 1 and 2 (NRF1 and NRF2). J Biol Chem. 2018;293(6):2029–40.CrossRef Tian W, Rojo de la Vega M, Schmidlin CJ, Ooi A, Zhang DD. Kelch-like ECH-associated protein 1 (KEAP1) differentially regulates nuclear factor erythroid-2-related factors 1 and 2 (NRF1 and NRF2). J Biol Chem. 2018;293(6):2029–40.CrossRef
26.
Zurück zum Zitat Huang Y, Li W, Su Z-y, Kong A-NT. The complexity of the Nrf2 pathway: beyond the antioxidant response. J Nutr Biochem. 2015;26(12):1401–13.CrossRef Huang Y, Li W, Su Z-y, Kong A-NT. The complexity of the Nrf2 pathway: beyond the antioxidant response. J Nutr Biochem. 2015;26(12):1401–13.CrossRef
27.
Zurück zum Zitat Kumar H, Kim I-S, More SV, Kim B-W, Choi D-K. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat Prod Rep. 2014;31(1):109–39.CrossRef Kumar H, Kim I-S, More SV, Kim B-W, Choi D-K. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat Prod Rep. 2014;31(1):109–39.CrossRef
28.
Zurück zum Zitat Menegon S, Columbano A, Giordano S. The dual roles of NRF2 in cancer. Trends Mol Med. 2016;22(7):578–93.CrossRef Menegon S, Columbano A, Giordano S. The dual roles of NRF2 in cancer. Trends Mol Med. 2016;22(7):578–93.CrossRef
29.
Zurück zum Zitat Kim EH, Baek S, Shin D, Lee J, Roh J-L. Hederagenin induces apoptosis in cisplatin-resistant head and neck cancer cells by inhibiting the Nrf2-ARE antioxidant pathway. Oxid Med Cell Longev. 2017;2017:5498908.PubMedPubMedCentral Kim EH, Baek S, Shin D, Lee J, Roh J-L. Hederagenin induces apoptosis in cisplatin-resistant head and neck cancer cells by inhibiting the Nrf2-ARE antioxidant pathway. Oxid Med Cell Longev. 2017;2017:5498908.PubMedPubMedCentral
30.
Zurück zum Zitat Tsuchida K, Tsujita T, Hayashi M, Ojima A, Keleku-Lukwete N, Katsuoka F, et al. Halofuginone enhances the chemo-sensitivity of cancer cells by suppressing NRF2 accumulation. Free Radic Biol Med. 2017;103:236–47.CrossRef Tsuchida K, Tsujita T, Hayashi M, Ojima A, Keleku-Lukwete N, Katsuoka F, et al. Halofuginone enhances the chemo-sensitivity of cancer cells by suppressing NRF2 accumulation. Free Radic Biol Med. 2017;103:236–47.CrossRef
Metadaten
Titel
Diosmetin induces apoptosis in ovarian cancer cells by activating reactive oxygen species and inhibiting the Nrf2 pathway
verfasst von
Feijie Zhao
Xiaoling Hong
Danjie Li
Zhentong Wei
Xinxin Ci
Songling Zhang
Publikationsdatum
01.05.2021
Verlag
Springer US
Erschienen in
Medical Oncology / Ausgabe 5/2021
Print ISSN: 1357-0560
Elektronische ISSN: 1559-131X
DOI
https://doi.org/10.1007/s12032-021-01501-1

Weitere Artikel der Ausgabe 5/2021

Medical Oncology 5/2021 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.