Skip to main content
Erschienen in: Brain Structure and Function 6/2018

24.03.2018 | Original Article

Direct and indirect nigrofugal projections to the nucleus reticularis pontis caudalis mediate in the motor execution of the acoustic startle reflex

verfasst von: Sebastian Hormigo, Dolores E. López, Antonio Cardoso, Gladys Zapata, Jacqueline Sepúlveda, Orlando Castellano

Erschienen in: Brain Structure and Function | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

The acoustic startle reflex (ASR) is a short and intense defensive reaction in response to a loud and unexpected acoustic stimulus. In the rat, a primary startle pathway encompasses three serially connected central structures: the cochlear root neurons, the giant neurons of the nucleus reticularis pontis caudalis (PnC), and the spinal motoneurons. As a sensorimotor interface, the PnC has a central role in the ASR circuitry, especially the integration of different sensory stimuli and brain states into initiation of motor responses. Since the basal ganglia circuits control movement and action selection, we hypothesize that their output via the substantia nigra (SN) may interplay with the ASR primary circuit by providing inputs to PnC. Moreover, the pedunculopontine tegmental nucleus (PPTg) has been proposed as a functional and neural extension of the SN, so it is another goal of this study to describe possible anatomical connections from the PPTg to PnC. Here, we made 6-OHDA neurotoxic lesions of the SN pars compacta (SNc) and submitted the rats to a custom-built ASR measurement session to assess amplitude and latency of motor responses. We found that following lesion of the SNc, ASR amplitude decreased and latency increased compared to those values from the sham-surgery and control groups. The number of dopamine neurons remaining in the SNc after lesion was also estimated using a stereological approach, and it correlated with our behavioral results. Moreover, we employed neural tract-tracing techniques to highlight direct projections from the SN to PnC, and indirect projections through the PPTg. Finally, we also measured levels of excitatory amino acid neurotransmitters in the PnC following lesion of the SN, and found that they change following an ipsi/contralateral pattern. Taken together, our results identify nigrofugal efferents onto the primary ASR circuit that may modulate motor responses.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375 (Review) PubMedCrossRef Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12(10):366–375 (Review) PubMedCrossRef
Zurück zum Zitat Borst C, Belal F, Holzgrabe U (2013) Possibilities and limitations of capillary electrophoresis in pharmaceutical analysis. Pharmazie 68(7):526–530PubMed Borst C, Belal F, Holzgrabe U (2013) Possibilities and limitations of capillary electrophoresis in pharmaceutical analysis. Pharmazie 68(7):526–530PubMed
Zurück zum Zitat Bosch D, Schmid S (2006) Activation of muscarinic cholinergic receptors inhibits giant neurones in the caudal pontine reticular nucleus. Eur J Neurosci 24(7):1967–1975 (Epub 2006 Oct 16) PubMedCrossRef Bosch D, Schmid S (2006) Activation of muscarinic cholinergic receptors inhibits giant neurones in the caudal pontine reticular nucleus. Eur J Neurosci 24(7):1967–1975 (Epub 2006 Oct 16) PubMedCrossRef
Zurück zum Zitat Buonamici M, Cervini MA, Rossi AC, Sebastiani L, Raffaelli A, Bagnoli P (1990) Injections of 6-hydroxydopamine in the substantia nigra of the rat brain: morphological and biochemical effects. Behav Brain Res 38(1):83–95PubMedCrossRef Buonamici M, Cervini MA, Rossi AC, Sebastiani L, Raffaelli A, Bagnoli P (1990) Injections of 6-hydroxydopamine in the substantia nigra of the rat brain: morphological and biochemical effects. Behav Brain Res 38(1):83–95PubMedCrossRef
Zurück zum Zitat Carey RJ (1986) Relationship of changes in spontaneous motor activity to spontaneous circling in rats with unilateral 6-hydroxydopamine lesions of the substantia nigra. Exp Neurol 92(3):591–600PubMedCrossRef Carey RJ (1986) Relationship of changes in spontaneous motor activity to spontaneous circling in rats with unilateral 6-hydroxydopamine lesions of the substantia nigra. Exp Neurol 92(3):591–600PubMedCrossRef
Zurück zum Zitat Davis M (1990) Animal models of anxiety based on classical conditioning: the conditioned emotional response (CER) and the fear-potentiated startle effect. Pharmacol Ther 47(2):147–165 (Review) PubMedCrossRef Davis M (1990) Animal models of anxiety based on classical conditioning: the conditioned emotional response (CER) and the fear-potentiated startle effect. Pharmacol Ther 47(2):147–165 (Review) PubMedCrossRef
Zurück zum Zitat Davis M (1992) The role of the amygdala in fear-potentiated startle: implications for animal models of anxiety. Trends Pharmacol Sci 13(1):35–41 (Review) PubMedCrossRef Davis M (1992) The role of the amygdala in fear-potentiated startle: implications for animal models of anxiety. Trends Pharmacol Sci 13(1):35–41 (Review) PubMedCrossRef
Zurück zum Zitat Di Chiara G, Morelli M, Porceddu ML, Gessa GL (1979) Role of thalamic gamma-aminobutyrate in motor functions: catalepsy and ipsiversive turning after intrathalamic muscimol. Neuroscience 4(10):1453–1465PubMedCrossRef Di Chiara G, Morelli M, Porceddu ML, Gessa GL (1979) Role of thalamic gamma-aminobutyrate in motor functions: catalepsy and ipsiversive turning after intrathalamic muscimol. Neuroscience 4(10):1453–1465PubMedCrossRef
Zurück zum Zitat Ebert U, Koch M (1992) Glutamate receptors mediate acoustic input to the reticular brain stem. Neuroreport 3(5):429–432PubMedCrossRef Ebert U, Koch M (1992) Glutamate receptors mediate acoustic input to the reticular brain stem. Neuroreport 3(5):429–432PubMedCrossRef
Zurück zum Zitat Fendt M, Koch M (1999) Cholinergic modulation of the acoustic startle response in the caudal pontine reticular nucleus of the rat. Eur J Pharmacol 370(2):101–107PubMedCrossRef Fendt M, Koch M (1999) Cholinergic modulation of the acoustic startle response in the caudal pontine reticular nucleus of the rat. Eur J Pharmacol 370(2):101–107PubMedCrossRef
Zurück zum Zitat Ford B, Holmes CJ, Mainville L, Jones BE (1995) GABAergic neurons in the rat pontomesencephalic tegmentum: codistribution with cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus. J Comp Neurol 363(2):177–196PubMedCrossRef Ford B, Holmes CJ, Mainville L, Jones BE (1995) GABAergic neurons in the rat pontomesencephalic tegmentum: codistribution with cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus. J Comp Neurol 363(2):177–196PubMedCrossRef
Zurück zum Zitat Fujimura H, Umbach I (1987) Role of the involvement of the reticular formation in the dementia of Parkinson’s disease. Rev Neurol (Paris) 143(2):108–114 (French) Fujimura H, Umbach I (1987) Role of the involvement of the reticular formation in the dementia of Parkinson’s disease. Rev Neurol (Paris) 143(2):108–114 (French)
Zurück zum Zitat Fukushima K (1991) The interstitial nucleus of Cajal in the midbrain reticular formation and vertical eye movement. Neurosci Res 10(3):159–187 (Review) PubMedCrossRef Fukushima K (1991) The interstitial nucleus of Cajal in the midbrain reticular formation and vertical eye movement. Neurosci Res 10(3):159–187 (Review) PubMedCrossRef
Zurück zum Zitat Granata AR, Kitai ST (1991) Inhibitory substantia nigra inputs to the pedunculopontine neurons. Exp Brain Res 86(3):459–466PubMedCrossRef Granata AR, Kitai ST (1991) Inhibitory substantia nigra inputs to the pedunculopontine neurons. Exp Brain Res 86(3):459–466PubMedCrossRef
Zurück zum Zitat Gundersen HJ (1986) Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J Microsc 143(Pt 1):3–45PubMedCrossRef Gundersen HJ (1986) Stereology of arbitrary particles. A review of unbiased number and size estimators and the presentation of some new ones, in memory of William R. Thompson. J Microsc 143(Pt 1):3–45PubMedCrossRef
Zurück zum Zitat Gurney K, Prescott TJ, Redgrave P (2001) A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. Biol Cybern 84(6):411–423PubMedCrossRef Gurney K, Prescott TJ, Redgrave P (2001) A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. Biol Cybern 84(6):411–423PubMedCrossRef
Zurück zum Zitat Hirsch EC, Höglinger G, Rousselet E, Breidert T, Parain K, Feger J, Ruberg M, Prigent A, Cohen-Salmon C, Launay JM (2003) Animal models of Parkinson’s disease in rodents induced by toxins: an update. J Neural Transm Suppl 65:89–100 (Review) CrossRef Hirsch EC, Höglinger G, Rousselet E, Breidert T, Parain K, Feger J, Ruberg M, Prigent A, Cohen-Salmon C, Launay JM (2003) Animal models of Parkinson’s disease in rodents induced by toxins: an update. J Neural Transm Suppl 65:89–100 (Review) CrossRef
Zurück zum Zitat Höglinger GU, Carrard G, Michel PP, Medja F, Lombès A, Ruberg M, Friguet B, Hirsch EC (2003) Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson’s disease. J Neurochem 86(5):1297–1307PubMedCrossRef Höglinger GU, Carrard G, Michel PP, Medja F, Lombès A, Ruberg M, Friguet B, Hirsch EC (2003) Dysfunction of mitochondrial complex I and the proteasome: interactions between two biochemical deficits in a cellular model of Parkinson’s disease. J Neurochem 86(5):1297–1307PubMedCrossRef
Zurück zum Zitat Hökfelt T, Ungerstedt U (1973) Specificity of 6-hydroxydopamine induced degeneration of central monoamine neurones: an electron and fluorescence microscopic study with special reference to intracerebral injection on the nigro-striatal dopamine system. Brain Res 60(2):269–297PubMedCrossRef Hökfelt T, Ungerstedt U (1973) Specificity of 6-hydroxydopamine induced degeneration of central monoamine neurones: an electron and fluorescence microscopic study with special reference to intracerebral injection on the nigro-striatal dopamine system. Brain Res 60(2):269–297PubMedCrossRef
Zurück zum Zitat Honda T, Semba K (1995) An ultrastructural study of cholinergic and non-cholinergic neurons in the laterodorsal and pedunculopontine tegmental nuclei in the rat. Neuroscience 68(3):837–853PubMedCrossRef Honda T, Semba K (1995) An ultrastructural study of cholinergic and non-cholinergic neurons in the laterodorsal and pedunculopontine tegmental nuclei in the rat. Neuroscience 68(3):837–853PubMedCrossRef
Zurück zum Zitat Hoover JE, Strick PL (1993) Multiple output channels in the basal ganglia. Science 259(5096):819–821PubMedCrossRef Hoover JE, Strick PL (1993) Multiple output channels in the basal ganglia. Science 259(5096):819–821PubMedCrossRef
Zurück zum Zitat Hormigo S, Gómez-Nieto R, Sancho C, Herrero-Turrión J, Carro J, López DE, Horta-Júnior JA (2017) Morphological correlates of sex differences in acoustic startle response and prepulse inhibition through projections from locus coeruleus to cochlear root neurons. Brain Struct Funct. https://doi.org/10.1007/s00429-017-1415-1 (Epub ahead of print) PubMedCrossRef Hormigo S, Gómez-Nieto R, Sancho C, Herrero-Turrión J, Carro J, López DE, Horta-Júnior JA (2017) Morphological correlates of sex differences in acoustic startle response and prepulse inhibition through projections from locus coeruleus to cochlear root neurons. Brain Struct Funct. https://​doi.​org/​10.​1007/​s00429-017-1415-1 (Epub ahead of print) PubMedCrossRef
Zurück zum Zitat Hossain MA, Weiner N (1995) Interactions of dopaminergic and GABAergic neurotransmission: impact of 6-hydroxydopamine lesions into the substantia nigra of rats. J Pharmacol Exp Ther 275(1):237–244PubMed Hossain MA, Weiner N (1995) Interactions of dopaminergic and GABAergic neurotransmission: impact of 6-hydroxydopamine lesions into the substantia nigra of rats. J Pharmacol Exp Ther 275(1):237–244PubMed
Zurück zum Zitat Jeon BS, Jackson-Lewis V, Burke RE (1995) 6-Hydroxydopamine lesion of the rat substantia nigra: time course and morphology of cell death. Neurodegeneration 4(2):131–137PubMedCrossRef Jeon BS, Jackson-Lewis V, Burke RE (1995) 6-Hydroxydopamine lesion of the rat substantia nigra: time course and morphology of cell death. Neurodegeneration 4(2):131–137PubMedCrossRef
Zurück zum Zitat Kang Y, Kitai ST (1990) Electrophysiological properties of pedunculopontine neurons and their postsynaptic responses following stimulation of substantia nigra reticulata. Brain Res 535(1):79–95PubMedCrossRef Kang Y, Kitai ST (1990) Electrophysiological properties of pedunculopontine neurons and their postsynaptic responses following stimulation of substantia nigra reticulata. Brain Res 535(1):79–95PubMedCrossRef
Zurück zum Zitat Keay KA, Redgrave P, Dean P (1988) Cardiovascular and respiratory changes elicited by stimulation of rat superior colliculus. Brain Res Bull 20(1):13–26PubMedCrossRef Keay KA, Redgrave P, Dean P (1988) Cardiovascular and respiratory changes elicited by stimulation of rat superior colliculus. Brain Res Bull 20(1):13–26PubMedCrossRef
Zurück zum Zitat Koch M, Ebert U (1993) Enhancement of the acoustic startle response by stimulation of an excitatory pathway from the central amygdala/basal nucleus of Meynert to the pontine reticular formation. Exp Brain Res 93(2):231–241PubMedCrossRef Koch M, Ebert U (1993) Enhancement of the acoustic startle response by stimulation of an excitatory pathway from the central amygdala/basal nucleus of Meynert to the pontine reticular formation. Exp Brain Res 93(2):231–241PubMedCrossRef
Zurück zum Zitat Koch M, Schnitzler HU (1997) The acoustic startle response in rats-circuits mediating evocation, inhibition and potentiation. Behav Brain Res 89(1–2):35–49 (Review) PubMedCrossRef Koch M, Schnitzler HU (1997) The acoustic startle response in rats-circuits mediating evocation, inhibition and potentiation. Behav Brain Res 89(1–2):35–49 (Review) PubMedCrossRef
Zurück zum Zitat Koch M, Kungel M, Herbert H (1993) Cholinergic neurons in the pedunculopontine tegmental nucleus are involved in the mediation of prepulse inhibition of the acoustic startle response in the rat. Exp Brain Res 97(1):71–82PubMedCrossRef Koch M, Kungel M, Herbert H (1993) Cholinergic neurons in the pedunculopontine tegmental nucleus are involved in the mediation of prepulse inhibition of the acoustic startle response in the rat. Exp Brain Res 97(1):71–82PubMedCrossRef
Zurück zum Zitat Krase W, Koch M, Schnitzler HU (1993) Glutamate antagonists in the reticular formation reduce the acoustic startle response. Neuroreport 4(1):13–16PubMedCrossRef Krase W, Koch M, Schnitzler HU (1993) Glutamate antagonists in the reticular formation reduce the acoustic startle response. Neuroreport 4(1):13–16PubMedCrossRef
Zurück zum Zitat Lavoie B, Parent A (1994a) Pedunculopontine nucleus in the squirrel monkey: cholinergic and glutamatergic projections to the substantia nigra. J Comp Neurol 344(2):232–241PubMedCrossRef Lavoie B, Parent A (1994a) Pedunculopontine nucleus in the squirrel monkey: cholinergic and glutamatergic projections to the substantia nigra. J Comp Neurol 344(2):232–241PubMedCrossRef
Zurück zum Zitat Lavoie B, Parent A (1994b) Pedunculopontine nucleus in the squirrel monkey: distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons. J Comp Neurol 344(2):190–209PubMedCrossRef Lavoie B, Parent A (1994b) Pedunculopontine nucleus in the squirrel monkey: distribution of cholinergic and monoaminergic neurons in the mesopontine tegmentum with evidence for the presence of glutamate in cholinergic neurons. J Comp Neurol 344(2):190–209PubMedCrossRef
Zurück zum Zitat Lee Y, López DE, Meloni EG, Davis M (1996) A primary acoustic startle pathway: obligatory role of cochlear root neurons and the nucleus reticularis pontis caudalis. J Neurosci 16(11):3775–3789PubMedCrossRef Lee Y, López DE, Meloni EG, Davis M (1996) A primary acoustic startle pathway: obligatory role of cochlear root neurons and the nucleus reticularis pontis caudalis. J Neurosci 16(11):3775–3789PubMedCrossRef
Zurück zum Zitat Mandel S, Grünblatt E, Riederer P, Youdim MB (2003) Genes and oxidative stress in parkinsonism: cDNA microarray studies. Adv Neurol 91:123–132 (Review) Mandel S, Grünblatt E, Riederer P, Youdim MB (2003) Genes and oxidative stress in parkinsonism: cDNA microarray studies. Adv Neurol 91:123–132 (Review)
Zurück zum Zitat Meesarapee B, Thampithak A, Jaisin Y, Sanvarinda P, Suksamrarn A, Tuchinda P, Morales NP, Sanvarinda Y (2014) Curcumin I mediates neuroprotective effect through attenuation of quinoprotein formation, p-p38 MAPK expression, and caspase-3 activation in 6-hydroxydopamine treated SH-SY5Y cells. Phytother Res 28(4):611–616. https://doi.org/10.1002/ptr.5036 (Epub 2013 Jul 16) PubMedCrossRef Meesarapee B, Thampithak A, Jaisin Y, Sanvarinda P, Suksamrarn A, Tuchinda P, Morales NP, Sanvarinda Y (2014) Curcumin I mediates neuroprotective effect through attenuation of quinoprotein formation, p-p38 MAPK expression, and caspase-3 activation in 6-hydroxydopamine treated SH-SY5Y cells. Phytother Res 28(4):611–616. https://​doi.​org/​10.​1002/​ptr.​5036 (Epub 2013 Jul 16) PubMedCrossRef
Zurück zum Zitat Mendez JS, Finn BW (1975) Use of 6-hydroxydopamine to create lesions in catecholamine neurons in rats. J Neurosurg 42(2):166–173PubMedCrossRef Mendez JS, Finn BW (1975) Use of 6-hydroxydopamine to create lesions in catecholamine neurons in rats. J Neurosurg 42(2):166–173PubMedCrossRef
Zurück zum Zitat Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214(2):170–197PubMedCrossRef Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214(2):170–197PubMedCrossRef
Zurück zum Zitat Mesulam MM, Geula C, Bothwell MA, Hersh LB (1989) Human reticular formation: cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei and some cytochemical comparisons to forebrain cholinergic neurons. J Comp Neurol 283(4):611–633PubMedCrossRef Mesulam MM, Geula C, Bothwell MA, Hersh LB (1989) Human reticular formation: cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei and some cytochemical comparisons to forebrain cholinergic neurons. J Comp Neurol 283(4):611–633PubMedCrossRef
Zurück zum Zitat Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50(4):381–425 (Review)PubMedCrossRef Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50(4):381–425 (Review)PubMedCrossRef
Zurück zum Zitat Naoi M, Maruyama W (2001) Future of neuroprotection in Parkinson’s disease. Parkinsonism Relat Disord 8(2):139–145PubMedCrossRef Naoi M, Maruyama W (2001) Future of neuroprotection in Parkinson’s disease. Parkinsonism Relat Disord 8(2):139–145PubMedCrossRef
Zurück zum Zitat Noda T, Oka H (1986) Distribution and morphology of tegmental neurons receiving nigral inhibitory inputs in the cat: an intracellular HRP study. J Comp Neurol 244(2):254–266PubMedCrossRef Noda T, Oka H (1986) Distribution and morphology of tegmental neurons receiving nigral inhibitory inputs in the cat: an intracellular HRP study. J Comp Neurol 244(2):254–266PubMedCrossRef
Zurück zum Zitat Nodal FR, López DE (2003) Direct input from cochlear root neurons to pontine reticulospinal neurons in albino rat. J Comp Neurol 460(1):80–93PubMedCrossRef Nodal FR, López DE (2003) Direct input from cochlear root neurons to pontine reticulospinal neurons in albino rat. J Comp Neurol 460(1):80–93PubMedCrossRef
Zurück zum Zitat Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123(Pt 9):1767–1783 (Review) Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123(Pt 9):1767–1783 (Review)
Zurück zum Zitat Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates: the new coronal set—161 diagrams, 5th edn. Academic, San Diego Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates: the new coronal set—161 diagrams, 5th edn. Academic, San Diego
Zurück zum Zitat Redgrave P, Prescott TJ, Gurney K (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89(4):1009–1023 (Review) PubMedCrossRef Redgrave P, Prescott TJ, Gurney K (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89(4):1009–1023 (Review) PubMedCrossRef
Zurück zum Zitat Romanelli P, Esposito V, Schaal DW, Heit G (2005) Somatotopy in the basal ganglia: experimental and clinical evidence for segregated sensorimotor channels. Brain Res Brain Res Rev 48(1):112–128 (Review) PubMedCrossRef Romanelli P, Esposito V, Schaal DW, Heit G (2005) Somatotopy in the basal ganglia: experimental and clinical evidence for segregated sensorimotor channels. Brain Res Brain Res Rev 48(1):112–128 (Review) PubMedCrossRef
Zurück zum Zitat Rye DB, Saper CB, Lee HJ, Wainer BH (1987) Pedunculopontine tegmental nucleus of the rat: cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum. J Comp Neurol 259(4):483–528PubMedCrossRef Rye DB, Saper CB, Lee HJ, Wainer BH (1987) Pedunculopontine tegmental nucleus of the rat: cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum. J Comp Neurol 259(4):483–528PubMedCrossRef
Zurück zum Zitat Saint-Cyr JA (2003) Frontal-striatal circuit functions: context, sequence, and consequence. J Int Neuropsychol Soc 9(1):103–127 (Review Erratum in: J Int Neuropsychol Soc. 2003 Mar;9(3):502) PubMedCrossRef Saint-Cyr JA (2003) Frontal-striatal circuit functions: context, sequence, and consequence. J Int Neuropsychol Soc 9(1):103–127 (Review Erratum in: J Int Neuropsychol Soc. 2003 Mar;9(3):502) PubMedCrossRef
Zurück zum Zitat Saitoh K, Hattori S, Song WJ, Isa T, Takakusaki K (2003) Nigral GABAergic inhibition upon cholinergic neurons in the rat pedunculopontine tegmental nucleus. Eur J Neurosci 18(4):879–886PubMedCrossRef Saitoh K, Hattori S, Song WJ, Isa T, Takakusaki K (2003) Nigral GABAergic inhibition upon cholinergic neurons in the rat pedunculopontine tegmental nucleus. Eur J Neurosci 18(4):879–886PubMedCrossRef
Zurück zum Zitat Sakai K, Gash DM (1994) Effect of bilateral 6-OHDA lesions of the substantia nigra on locomotor activity in the rat. Brain Res 633(1–2):144–150PubMedCrossRef Sakai K, Gash DM (1994) Effect of bilateral 6-OHDA lesions of the substantia nigra on locomotor activity in the rat. Brain Res 633(1–2):144–150PubMedCrossRef
Zurück zum Zitat Sepúlveda J, Oliva P, Contreras E (2004) Neurochemical changes of the extracellular concentrations of glutamate and aspartate in the nucleus accumbens of rats after chronic administration of morphine. Eur J Pharmacol 483(2–3):249–258PubMedCrossRef Sepúlveda J, Oliva P, Contreras E (2004) Neurochemical changes of the extracellular concentrations of glutamate and aspartate in the nucleus accumbens of rats after chronic administration of morphine. Eur J Pharmacol 483(2–3):249–258PubMedCrossRef
Zurück zum Zitat Silkis I (2001) The cortico-basal ganglia-thalamocortical circuit with synaptic plasticity. II. Mechanism of synergistic modulation of thalamic activity via the direct and indirect pathways through the basal ganglia. Biosystems 59(1):7–14 (Review) PubMedCrossRef Silkis I (2001) The cortico-basal ganglia-thalamocortical circuit with synaptic plasticity. II. Mechanism of synergistic modulation of thalamic activity via the direct and indirect pathways through the basal ganglia. Biosystems 59(1):7–14 (Review) PubMedCrossRef
Zurück zum Zitat Smith Y, Bolam JP (1990) The output neurones and the dopaminergic neurones of the substantia nigra receive a GABA-containing input from the globus pallidus in the rat. J Comp Neurol 296(1):47–64PubMedCrossRef Smith Y, Bolam JP (1990) The output neurones and the dopaminergic neurones of the substantia nigra receive a GABA-containing input from the globus pallidus in the rat. J Comp Neurol 296(1):47–64PubMedCrossRef
Zurück zum Zitat Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86(2):353–387 (Review) PubMedCrossRef Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86(2):353–387 (Review) PubMedCrossRef
Zurück zum Zitat Swerdlow NR, Geyer MA (1998) Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia. Schizophr Bull 24(2):285–301 (Review) PubMedCrossRef Swerdlow NR, Geyer MA (1998) Using an animal model of deficient sensorimotor gating to study the pathophysiology and new treatments of schizophrenia. Schizophr Bull 24(2):285–301 (Review) PubMedCrossRef
Zurück zum Zitat Takakusaki K, Shiroyama T, Yamamoto T, Kitai ST (1996) Cholinergic and noncholinergic tegmental pedunculopontine projection neurons in rats revealed by intracellular labeling. J Comp Neurol 371(3):345–361PubMedCrossRef Takakusaki K, Shiroyama T, Yamamoto T, Kitai ST (1996) Cholinergic and noncholinergic tegmental pedunculopontine projection neurons in rats revealed by intracellular labeling. J Comp Neurol 371(3):345–361PubMedCrossRef
Zurück zum Zitat Ungerstedt U (1971) Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour. Acta Physiol Scand Suppl 367:49–68PubMedCrossRef Ungerstedt U (1971) Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour. Acta Physiol Scand Suppl 367:49–68PubMedCrossRef
Zurück zum Zitat Ungerstedt U, Ljungberg T, Steg G (1974) Behavioral, physiological, and neurochemical changes after 6-hydroxydopamine-induced degeneration of the nigro-striatal dopamine neurons. Adv Neurol 5:421–426PubMed Ungerstedt U, Ljungberg T, Steg G (1974) Behavioral, physiological, and neurochemical changes after 6-hydroxydopamine-induced degeneration of the nigro-striatal dopamine neurons. Adv Neurol 5:421–426PubMed
Zurück zum Zitat West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231(4):482–497PubMedCrossRef West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231(4):482–497PubMedCrossRef
Zurück zum Zitat Willis GL, Kennedy GA (2004) The implementation of acute versus chronic animal models for treatment discovery in Parkinson’s disease. Rev Neurosci 15(1):75–87 (Review) PubMedCrossRef Willis GL, Kennedy GA (2004) The implementation of acute versus chronic animal models for treatment discovery in Parkinson’s disease. Rev Neurosci 15(1):75–87 (Review) PubMedCrossRef
Zurück zum Zitat Wilson VJ (1993) Vestibulospinal reflexes and the reticular formation. Prog Brain Res 97:211–217 (Review) PubMedCrossRef Wilson VJ (1993) Vestibulospinal reflexes and the reticular formation. Prog Brain Res 97:211–217 (Review) PubMedCrossRef
Zurück zum Zitat Yeomans JS, Frankland PW (1995) The acoustic startle reflex: neurons and connections. Brain Res Brain Res Rev 21(3):301–314 (Review) PubMedCrossRef Yeomans JS, Frankland PW (1995) The acoustic startle reflex: neurons and connections. Brain Res Brain Res Rev 21(3):301–314 (Review) PubMedCrossRef
Zurück zum Zitat Yeomans JS, Li L, Scott BW, Frankland PW (2002) Tactile, acoustic and vestibular systems sum to elicit the startle reflex. Neurosci Biobehav Rev 26(1):1–11 (Review) PubMedCrossRef Yeomans JS, Li L, Scott BW, Frankland PW (2002) Tactile, acoustic and vestibular systems sum to elicit the startle reflex. Neurosci Biobehav Rev 26(1):1–11 (Review) PubMedCrossRef
Zurück zum Zitat Young HM, Furness JB, Shuttleworth CW, Bredt DS, Snyder SH (1992) Co-localization of nitric oxide synthase immunoreactivity and NADPH diaphorase staining in neurons of the guinea-pig intestine. Histochemistry 97(4):375–378PubMedCrossRef Young HM, Furness JB, Shuttleworth CW, Bredt DS, Snyder SH (1992) Co-localization of nitric oxide synthase immunoreactivity and NADPH diaphorase staining in neurons of the guinea-pig intestine. Histochemistry 97(4):375–378PubMedCrossRef
Zurück zum Zitat Zhao Z, Davis M (2004) Fear-potentiated startle in rats is mediated by neurons in the deep layers of the superior colliculus/deep mesencephalic nucleus of the rostral midbrain through the glutamate non-NMDA receptors. J Neurosci 24(46):10326–10334PubMedCrossRef Zhao Z, Davis M (2004) Fear-potentiated startle in rats is mediated by neurons in the deep layers of the superior colliculus/deep mesencephalic nucleus of the rostral midbrain through the glutamate non-NMDA receptors. J Neurosci 24(46):10326–10334PubMedCrossRef
Metadaten
Titel
Direct and indirect nigrofugal projections to the nucleus reticularis pontis caudalis mediate in the motor execution of the acoustic startle reflex
verfasst von
Sebastian Hormigo
Dolores E. López
Antonio Cardoso
Gladys Zapata
Jacqueline Sepúlveda
Orlando Castellano
Publikationsdatum
24.03.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 6/2018
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-018-1654-9

Weitere Artikel der Ausgabe 6/2018

Brain Structure and Function 6/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.