Skip to main content

01.12.2018 | Research | Ausgabe 1/2018 Open Access

European Journal of Medical Research 1/2018

Direct comparison of coronary bare metal vs. drug-eluting stents: same platform, different mechanics?

European Journal of Medical Research > Ausgabe 1/2018
Wolfram Schmidt, Peter Lanzer, Peter Behrens, Christoph Brandt-Wunderlich, Alper Öner, Hüseyin Ince, Klaus-Peter Schmitz, Niels Grabow



Drug-eluting stents (DES) compared to bare metal stents (BMS) have shown superior clinical performance, but are considered less suitable in complex cases. Most studies do not distinguish between DES and BMS with respect to their mechanical performance. The objective was to obtain mechanical parameters for direct comparison of BMS and DES.


In vitro bench tests evaluated crimped stent profiles, crossability in stenosis models, elastic recoil, bending stiffness (crimped and expanded), and scaffolding properties. The study included five pairs of BMS and DES each with the same stent platforms (all n = 5; PRO-Kinetic Energy, Orsiro: BIOTRONIK AG, Bülach, Switzerland; MULTI-LINK 8, XIENCE Xpedition: Abbott Vascular, Temecula, CA; REBEL Monorail, Promus PREMIER, Boston Scientific, Marlborough, MA; Integrity, Resolute Integrity, Medtronic, Minneapolis, MN; Kaname, Ultimaster: Terumo Corporation, Tokyo, Japan). Statistical analysis used pooled variance t tests for pairwise comparison of BMS with DES.


Crimped profiles in BMS groups ranged from 0.97 ± 0.01 mm (PRO-Kinetic Energy) to 1.13 ± 0.01 mm (Kaname) and in DES groups from 1.02 ± 0.01 mm (Orsiro) to 1.13 ± 0.01 mm (Ultimaster). Crossability was best for low profile stent systems. Elastic recoil ranged from 4.07 ± 0.22% (Orsiro) to 5.87 ± 0.54% (REBEL Monorail) including both BMS and DES. The bending stiffness of crimped and expanded stents showed no systematic differences between BMS and DES neither did the scaffolding.


Based on in vitro measurements BMS appear superior to DES in some aspects of mechanical performance, yet the differences are small and not class uniform. The data provide assistance in selecting the optimal system for treatment and assessment of new generations of bioresorbable scaffolds.
Trial registration: not applicable
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2018

European Journal of Medical Research 1/2018 Zur Ausgabe