Skip to main content
Erschienen in: Seminars in Immunopathology 1/2017

28.11.2016 | Review

Discovery and initial characterization of Th9 cells: the early years

verfasst von: Edgar Schmitt, Tobias Bopp

Erschienen in: Seminars in Immunopathology | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

The launch of the Th1/Th2 concept represented a decisive breakthrough concerning our understanding of how very diverse immune reactions can be regulated by functionally different T helper subpopulations via the secretion of different panels of cytokines. In this context, IL-9 was identified to be produced by T helper cell lines in addition to Th2 cytokines IL-4 and IL-5. Detailed analyses revealed that IL-9 production of mouse CD4+ T helper cells was dependent on a combination of IL-2, IL-4, and TGF-β. Roughly a decade later, it was found that TGF-β can also induce the development of CD4+ Treg cells. This finding engendered a series of studies on the central role of TGF-β for cytokine-mediated T helper cell differentiation which elucidated that IL-4 curbed the Treg cell-promoting effect of TGF-β while TGF-β impaired the Th2-promoting capacity of IL-4. Instead, TGF-β in combination with IL-4 induced the development of CD4+ T helper cells that preferentially produced IL-9 and that were different from Th2 cells which originally were thought to be the main source of IL-9. In addition, adoptive transfer of such IL-9-producing CD4+ T helper cells was shown to cause the development of colitis and peripheral neuritis. Hence, the unique cytokine expression pattern in combination with the inflammatory in vivo phenotype led to the designation of Th9 cells as a new CD4+ T helper subpopulation.
Fußnoten
1
ConA is a lectin (carbohydrate-binding protein) obtained from Canavalia ensiformis (Jack Bean) and represents a polyclonal T cell stimulator/T cell mitogen.
 
2
PAGE: Polyacrylamide gel electrophoresis; common analytical technique to determine the molecular weight of an unknown protein.
 
3
PPD: Glycerol extract of Mycobacterium tuberculosis [22].
 
4
LNC.4: lymph node cells expanded in the presence of IL-4 that exhibited a Th2 phenotype.
 
5
Accessory cells: irradiated spleen cells or bone marrow-derived macrophages.
 
Literatur
2.
Zurück zum Zitat Mosmann TR, Cherwinski H, Bond MW et al (1986) Two types of murine helper T cell clone I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357PubMed Mosmann TR, Cherwinski H, Bond MW et al (1986) Two types of murine helper T cell clone I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357PubMed
3.
Zurück zum Zitat Cherwinski H, Schumacher J, Brown K, Mosmann T (1987) Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J Exp Med 166:1229–1244CrossRefPubMed Cherwinski H, Schumacher J, Brown K, Mosmann T (1987) Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J Exp Med 166:1229–1244CrossRefPubMed
4.
Zurück zum Zitat Cher DJ, Mosmann TR (1987) Two types of murine helper T cell clone. II. Delayed-type hypersensitivity is mediated by TH1 clones. J Immunol 138:3688–3694PubMed Cher DJ, Mosmann TR (1987) Two types of murine helper T cell clone. II. Delayed-type hypersensitivity is mediated by TH1 clones. J Immunol 138:3688–3694PubMed
5.
Zurück zum Zitat Uyttenhove C, Simpson RJ, Van Snick J (1988) Functional and structural characterization of P40, a mouse glycoprotein with T-cell growth factor activity. Proceedings of the National Academy of Sciences of the United States of America 85:6934–6938. Uyttenhove C, Simpson RJ, Van Snick J (1988) Functional and structural characterization of P40, a mouse glycoprotein with T-cell growth factor activity. Proceedings of the National Academy of Sciences of the United States of America 85:6934–6938.
6.
Zurück zum Zitat Van Snick J, Goethals A, Renauld JC et al (1989) Cloning and characterization of a cDNA for a new mouse T cell growth factor (P40). J Exp Med 169:363–368CrossRefPubMed Van Snick J, Goethals A, Renauld JC et al (1989) Cloning and characterization of a cDNA for a new mouse T cell growth factor (P40). J Exp Med 169:363–368CrossRefPubMed
8.
Zurück zum Zitat Schmitt E, van Brandwijk R, Van Snick J et al (1989) TCGF III/P40 is produced by naive murine CD4+ T cells but is not a general T cell growth factor. Eur J Immunol 19:2167–2170CrossRefPubMed Schmitt E, van Brandwijk R, Van Snick J et al (1989) TCGF III/P40 is produced by naive murine CD4+ T cells but is not a general T cell growth factor. Eur J Immunol 19:2167–2170CrossRefPubMed
9.
Zurück zum Zitat Hultner L, Moeller J, Schmitt E et al (1989) Thiol-sensitive mast cell lines derived from mouse bone marrow respond to a mast cell growth-enhancing activity different from both IL-3 and IL-4. J Immunol 142:3440–3446PubMed Hultner L, Moeller J, Schmitt E et al (1989) Thiol-sensitive mast cell lines derived from mouse bone marrow respond to a mast cell growth-enhancing activity different from both IL-3 and IL-4. J Immunol 142:3440–3446PubMed
10.
Zurück zum Zitat Moeller J, Hultner L, Schmitt E, Dormer P (1989) Partial purification of a mast cell growth-enhancing activity and its separation from IL-3 and IL-4. J Immunol 142:3447–3451PubMed Moeller J, Hultner L, Schmitt E, Dormer P (1989) Partial purification of a mast cell growth-enhancing activity and its separation from IL-3 and IL-4. J Immunol 142:3447–3451PubMed
11.
Zurück zum Zitat Hultner L, Druez C, Moeller J et al (1990) Mast cell growth-enhancing activity (MEA) is structurally related and functionally identical to the novel mouse T cell growth factor P40/TCGFIII (interleukin 9). Eur J Immunol 20:1413–1416CrossRefPubMed Hultner L, Druez C, Moeller J et al (1990) Mast cell growth-enhancing activity (MEA) is structurally related and functionally identical to the novel mouse T cell growth factor P40/TCGFIII (interleukin 9). Eur J Immunol 20:1413–1416CrossRefPubMed
12.
Zurück zum Zitat Yang YC, Ricciardi S, Ciarletta A et al (1989) Expression cloning of cDNA encoding a novel human hematopoietic growth factor: human homologue of murine T-cell growth factor P40. Blood 74:1880–1884PubMed Yang YC, Ricciardi S, Ciarletta A et al (1989) Expression cloning of cDNA encoding a novel human hematopoietic growth factor: human homologue of murine T-cell growth factor P40. Blood 74:1880–1884PubMed
13.
Zurück zum Zitat Druez C, Coulie P, Uyttenhove C, Van Snick J (1990) Functional and biochemical characterization of mouse P40/IL-9 receptors. J Immunol 145:2494–2499PubMed Druez C, Coulie P, Uyttenhove C, Van Snick J (1990) Functional and biochemical characterization of mouse P40/IL-9 receptors. J Immunol 145:2494–2499PubMed
14.
Zurück zum Zitat Renauld JC, Druez C, Kermouni A, et al. (1992) Expression cloning of the murine and human interleukin 9 receptor cDNAs. Proceedings of the National Academy of Sciences of the United States of America 89:5690–5694 Renauld JC, Druez C, Kermouni A, et al. (1992) Expression cloning of the murine and human interleukin 9 receptor cDNAs. Proceedings of the National Academy of Sciences of the United States of America 89:5690–5694
15.
Zurück zum Zitat Kimura Y, Takeshita T, Kondo M et al (1995) Sharing of the IL-2 receptor gamma chain with the functional IL-9 receptor complex. Int Immunol 7:115–120CrossRefPubMed Kimura Y, Takeshita T, Kondo M et al (1995) Sharing of the IL-2 receptor gamma chain with the functional IL-9 receptor complex. Int Immunol 7:115–120CrossRefPubMed
17.
Zurück zum Zitat Demoulin JB, Uyttenhove C, Van Roost E et al (1996) A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9. Mol Cell Biol 16:4710–4716CrossRefPubMedPubMedCentral Demoulin JB, Uyttenhove C, Van Roost E et al (1996) A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9. Mol Cell Biol 16:4710–4716CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Renauld JC, Goethals A, Houssiau F et al (1990) Human P40/IL-9. Expression in activated CD4+ T cells, genomic organization, and comparison with the mouse gene. J Immunol 144:4235–4241PubMed Renauld JC, Goethals A, Houssiau F et al (1990) Human P40/IL-9. Expression in activated CD4+ T cells, genomic organization, and comparison with the mouse gene. J Immunol 144:4235–4241PubMed
20.
Zurück zum Zitat Houssiau FA, Renauld JC, Fibbe WE, Van Snick J (1992) IL-2 dependence of IL-9 expression in human T lymphocytes. J Immunol 148:3147–3151PubMed Houssiau FA, Renauld JC, Fibbe WE, Van Snick J (1992) IL-2 dependence of IL-9 expression in human T lymphocytes. J Immunol 148:3147–3151PubMed
21.
Zurück zum Zitat Houssiau FA, Schandene L, Stevens M et al (1995) A cascade of cytokines is responsible for IL-9 expression in human T cells. Involvement of IL-2, IL-4, and IL-10. J Immunol 154:2624–2630PubMed Houssiau FA, Schandene L, Stevens M et al (1995) A cascade of cytokines is responsible for IL-9 expression in human T cells. Involvement of IL-2, IL-4, and IL-10. J Immunol 154:2624–2630PubMed
23.
Zurück zum Zitat Schmitt E, van Brandwijk R, Fischer HG, Rude E (1990) Establishment of different T cell sublines using either interleukin 2 or interleukin 4 as growth factors. Eur J Immunol 20:1709–1715CrossRefPubMed Schmitt E, van Brandwijk R, Fischer HG, Rude E (1990) Establishment of different T cell sublines using either interleukin 2 or interleukin 4 as growth factors. Eur J Immunol 20:1709–1715CrossRefPubMed
24.
Zurück zum Zitat Schmitt E, Beuscher HU, Huels C et al (1991) IL-1 serves as a secondary signal for IL-9 expression. J Immunol 147:3848–3854PubMed Schmitt E, Beuscher HU, Huels C et al (1991) IL-1 serves as a secondary signal for IL-9 expression. J Immunol 147:3848–3854PubMed
25.
Zurück zum Zitat Brabletz T, Pfeuffer I, Schorr E et al (1993) Transforming growth factor beta and cyclosporin A inhibit the inducible activity of the interleukin-2 gene in T cells through a noncanonical octamer-binding site. Mol Cell Biol 13:1155–1162CrossRefPubMedPubMedCentral Brabletz T, Pfeuffer I, Schorr E et al (1993) Transforming growth factor beta and cyclosporin A inhibit the inducible activity of the interleukin-2 gene in T cells through a noncanonical octamer-binding site. Mol Cell Biol 13:1155–1162CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Siepl C, Bodmer S, Frei K et al (1988) The glioblastoma-derived T cell suppressor factor/transforming growth factor-beta 2 inhibits T cell growth without affecting the interaction of interleukin 2 with its receptor. Eur J Immunol 18:593–600. doi:10.1002/eji.1830180416 CrossRefPubMed Siepl C, Bodmer S, Frei K et al (1988) The glioblastoma-derived T cell suppressor factor/transforming growth factor-beta 2 inhibits T cell growth without affecting the interaction of interleukin 2 with its receptor. Eur J Immunol 18:593–600. doi:10.​1002/​eji.​1830180416 CrossRefPubMed
27.
Zurück zum Zitat Schmitt E, Germann T, Goedert S et al (1994) IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF-beta and IL-4, and is inhibited by IFN-gamma. J Immunol 153:3989–3996PubMed Schmitt E, Germann T, Goedert S et al (1994) IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF-beta and IL-4, and is inhibited by IFN-gamma. J Immunol 153:3989–3996PubMed
29.
Zurück zum Zitat Sad S, Mosmann TR (1994) Single IL-2-secreting precursor CD4 T cell can develop into either Th1 or Th2 cytokine secretion phenotype. J Immunol 153:3514–3522PubMed Sad S, Mosmann TR (1994) Single IL-2-secreting precursor CD4 T cell can develop into either Th1 or Th2 cytokine secretion phenotype. J Immunol 153:3514–3522PubMed
30.
Zurück zum Zitat Chen W, Jin W, Hardegen N et al (2003) Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875–1886CrossRefPubMedPubMedCentral Chen W, Jin W, Hardegen N et al (2003) Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 198:1875–1886CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Lu L-F, Lind EF, Gondek DC et al (2006) Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442:997–1002CrossRefPubMed Lu L-F, Lind EF, Gondek DC et al (2006) Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442:997–1002CrossRefPubMed
33.
Zurück zum Zitat Awasthi A, Carrier Y, Peron JPS et al (2007) A dominant function for interleukin 27 in generating interleukin 10–producing anti-inflammatory T cells. Nat Immunol 8:1380–1389. doi:10.1038/ni1541 CrossRefPubMed Awasthi A, Carrier Y, Peron JPS et al (2007) A dominant function for interleukin 27 in generating interleukin 10–producing anti-inflammatory T cells. Nat Immunol 8:1380–1389. doi:10.​1038/​ni1541 CrossRefPubMed
34.
Zurück zum Zitat Stumhofer JS, Silver JS, Laurence A et al (2007) Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat Immunol 8:1363–1371. doi:10.1038/ni1537 CrossRefPubMed Stumhofer JS, Silver JS, Laurence A et al (2007) Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat Immunol 8:1363–1371. doi:10.​1038/​ni1537 CrossRefPubMed
35.
37.
Zurück zum Zitat Veldhoen M, Uyttenhove C, Van Snick J et al (2008) Transforming growth factor-beta “reprograms” the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9:1341–1346. doi:10.1038/ni.1659 CrossRefPubMed Veldhoen M, Uyttenhove C, Van Snick J et al (2008) Transforming growth factor-beta “reprograms” the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9:1341–1346. doi:10.​1038/​ni.​1659 CrossRefPubMed
Metadaten
Titel
Discovery and initial characterization of Th9 cells: the early years
verfasst von
Edgar Schmitt
Tobias Bopp
Publikationsdatum
28.11.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Seminars in Immunopathology / Ausgabe 1/2017
Print ISSN: 1863-2297
Elektronische ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-016-0610-0

Weitere Artikel der Ausgabe 1/2017

Seminars in Immunopathology 1/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.