Skip to main content
Erschienen in: Familial Cancer 2/2018

02.09.2017 | Original Article

Discovery of mutations in homologous recombination genes in African-American women with breast cancer

verfasst von: Yuan Chun Ding, Aaron W. Adamson, Linda Steele, Adam M. Bailis, Esther M. John, Gail Tomlinson, Susan L. Neuhausen

Erschienen in: Familial Cancer | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

African-American women are more likely to develop aggressive breast cancer at younger ages and experience poorer cancer prognoses than non-Hispanic Caucasians. Deficiency in repair of DNA by homologous recombination (HR) is associated with cancer development, suggesting that mutations in genes that affect this process may cause breast cancer. Inherited pathogenic mutations have been identified in genes involved in repairing DNA damage, but few studies have focused on African-Americans. We screened for germline mutations in seven HR repair pathway genes in DNA of 181 African-American women with breast cancer, evaluated the potential effects of identified missense variants using in silico prediction software, and functionally characterized a set of missense variants by yeast two-hybrid assays. We identified five likely-damaging variants, including two PALB2 truncating variants (Q151X and W1038X) and three novel missense variants (RAD51C C135R, and XRCC3 L297P and V337E) that abolish protein–protein interactions in yeast two-hybrid assays. Our results add to evidence that HR gene mutations account for a proportion of the genetic risk for developing breast cancer in African-Americans. Identifying additional mutations that diminish HR may provide a tool for better assessing breast cancer risk and improving approaches for targeted treatment.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat DeSantis C et al (2014) Breast cancer statistics, 2013. Ca-a Cancer Journal for Clinicians 64(1):52–62CrossRefPubMed DeSantis C et al (2014) Breast cancer statistics, 2013. Ca-a Cancer Journal for Clinicians 64(1):52–62CrossRefPubMed
2.
Zurück zum Zitat American Cancer Society (2011–2012). Breast Cancer Facts and Figs. American Cancer Society, Inc, Atlanta American Cancer Society (2011–2012). Breast Cancer Facts and Figs. American Cancer Society, Inc, Atlanta
3.
Zurück zum Zitat Kohler BA et al (2015) Annual report to the nation on the status of cancer, 1975–2011, featuring incidence of breast cancer subtypes by race/ethnicity, poverty, and state. J Nat Cancer Inst 107(7):djv048PubMedPubMedCentral Kohler BA et al (2015) Annual report to the nation on the status of cancer, 1975–2011, featuring incidence of breast cancer subtypes by race/ethnicity, poverty, and state. J Nat Cancer Inst 107(7):djv048PubMedPubMedCentral
4.
Zurück zum Zitat Telli ML et al (2016) Homologous Recombination Deficiency (HRD) Score Predicts Response to Platinum-Containing Neoadjuvant Chemotherapy in Patients with Triple-Negative Breast Cancer. Clin Cancer Res 22(15):3764–3773CrossRefPubMed Telli ML et al (2016) Homologous Recombination Deficiency (HRD) Score Predicts Response to Platinum-Containing Neoadjuvant Chemotherapy in Patients with Triple-Negative Breast Cancer. Clin Cancer Res 22(15):3764–3773CrossRefPubMed
5.
Zurück zum Zitat Prakash R et al., Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harbor Perspect Biol, 2015. 7(4) Prakash R et al., Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harbor Perspect Biol, 2015. 7(4)
6.
Zurück zum Zitat Churpek JE et al (2015) Inherited predisposition to breast cancer among African-American women. Breast Cancer Res Treat 149(1):31–39CrossRefPubMed Churpek JE et al (2015) Inherited predisposition to breast cancer among African-American women. Breast Cancer Res Treat 149(1):31–39CrossRefPubMed
7.
Zurück zum Zitat Park JY, Zhang F, Andreassen PR (2014) PALB2: the hub of a network of tumor suppressors involved in DNA damage responses. Biochimica Et Biophysica Acta 1846(1):263–275PubMedPubMedCentral Park JY, Zhang F, Andreassen PR (2014) PALB2: the hub of a network of tumor suppressors involved in DNA damage responses. Biochimica Et Biophysica Acta 1846(1):263–275PubMedPubMedCentral
8.
Zurück zum Zitat Somyajit K et al (2013) ATM- and ATR-mediated phosphorylation of XRCC3 regulates DNA double-strand break-induced checkpoint activation and repair. Mol Cell Biol 33(9):1830–1844CrossRefPubMedPubMedCentral Somyajit K et al (2013) ATM- and ATR-mediated phosphorylation of XRCC3 regulates DNA double-strand break-induced checkpoint activation and repair. Mol Cell Biol 33(9):1830–1844CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Somyajit K, Subramanya S, Nagaraju G (2010) RAD51C: a novel cancer susceptibility gene is linked to Fanconi anemia and breast cancer. Carcinogenesis 31(12):2031–2038CrossRefPubMedPubMedCentral Somyajit K, Subramanya S, Nagaraju G (2010) RAD51C: a novel cancer susceptibility gene is linked to Fanconi anemia and breast cancer. Carcinogenesis 31(12):2031–2038CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Somyajit K, Subramanya S, Nagaraju G (2012) Distinct roles of FANCO/RAD51C protein in DNA damage signaling and repair implications for Fanconi anemia and breast cancer susceptibility. J Biol Chem 287(5):3366–3380CrossRefPubMed Somyajit K, Subramanya S, Nagaraju G (2012) Distinct roles of FANCO/RAD51C protein in DNA damage signaling and repair implications for Fanconi anemia and breast cancer susceptibility. J Biol Chem 287(5):3366–3380CrossRefPubMed
11.
Zurück zum Zitat Nagaraju G et al (2009) XRCC2 and XRCC3 regulate the balance between short- and long-tract gene conversions between sister chromatids. Mol Cell Biol 29(15):4283–4294CrossRefPubMedPubMedCentral Nagaraju G et al (2009) XRCC2 and XRCC3 regulate the balance between short- and long-tract gene conversions between sister chromatids. Mol Cell Biol 29(15):4283–4294CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Nagaraju G et al (2006) Differential regulation of short- and long-tract gene conversion between sister chromatids by Rad51C. Mol Cell Biol 26(21):8075–8086CrossRefPubMedPubMedCentral Nagaraju G et al (2006) Differential regulation of short- and long-tract gene conversion between sister chromatids by Rad51C. Mol Cell Biol 26(21):8075–8086CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11(3):220–228CrossRefPubMed Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11(3):220–228CrossRefPubMed
14.
Zurück zum Zitat Ding YC et al (2011) Germline mutations in PALB2 in African-American breast cancer cases. Breast Cancer Res Treat 126(1):227–230CrossRefPubMed Ding YC et al (2011) Germline mutations in PALB2 in African-American breast cancer cases. Breast Cancer Res Treat 126(1):227–230CrossRefPubMed
15.
Zurück zum Zitat Zheng Y et al (2012) Novel germline PALB2 truncating mutations in African-American breast cancer patients. Cancer 118(5):1362–1370CrossRefPubMed Zheng Y et al (2012) Novel germline PALB2 truncating mutations in African-American breast cancer patients. Cancer 118(5):1362–1370CrossRefPubMed
16.
Zurück zum Zitat Churpek JE et al (2013) Inherited mutations in breast cancer genes in African-American breast cancer patients revealed by targeted genomic capture and next-generation sequencing. J Clin Oncol, 31(18):CRA1501CrossRef Churpek JE et al (2013) Inherited mutations in breast cancer genes in African-American breast cancer patients revealed by targeted genomic capture and next-generation sequencing. J Clin Oncol, 31(18):CRA1501CrossRef
17.
Zurück zum Zitat Shah A, Seedhouse C (2012) Frequency of TP53 mutations and its impact on drug sensitivity in acute myeloid leukemia? Indian J Clin Biochem 27(2):121–126CrossRefPubMedPubMedCentral Shah A, Seedhouse C (2012) Frequency of TP53 mutations and its impact on drug sensitivity in acute myeloid leukemia? Indian J Clin Biochem 27(2):121–126CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Wang K, Li MY, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. doi:10.1093/nar/gkq603 Wang K, Li MY, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. doi:10.​1093/​nar/​gkq603
22.
Zurück zum Zitat Siepel A, Pollard KS, Haussler D (2006) New methods for detecting lineage-specific selection, in research in computational molecular biology, proceedings. Apostolico A et al (ed). Springer, Berlin, pp 190–205 Siepel A, Pollard KS, Haussler D (2006) New methods for detecting lineage-specific selection, in research in computational molecular biology, proceedings. Apostolico A et al (ed). Springer, Berlin, pp 190–205
23.
Zurück zum Zitat Schwarz JM et al (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7(8):575–576CrossRefPubMed Schwarz JM et al (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7(8):575–576CrossRefPubMed
24.
25.
Zurück zum Zitat Aihara H et al (1999) The N-terminal domain of the human Rad51 protein binds DNA: structure and a DNA binding surface as revealed by NMR. J Mol Biol 290(2):495–504CrossRefPubMed Aihara H et al (1999) The N-terminal domain of the human Rad51 protein binds DNA: structure and a DNA binding surface as revealed by NMR. J Mol Biol 290(2):495–504CrossRefPubMed
26.
Zurück zum Zitat Powell M (1964) An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput J 7(2):8CrossRef Powell M (1964) An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput J 7(2):8CrossRef
27.
Zurück zum Zitat Shen Z et al (1996) Specific interactions between the human RAD51 and RAD52 proteins. J Biol Chem 271(1):148–152CrossRefPubMed Shen Z et al (1996) Specific interactions between the human RAD51 and RAD52 proteins. J Biol Chem 271(1):148–152CrossRefPubMed
28.
Zurück zum Zitat Dosanjh MK et al (1998) Isolation and characterization of RAD51C, a new human member of the RAD51 family of related genes. Nucleic Acids Res 26(5):1179–1184CrossRefPubMedPubMedCentral Dosanjh MK et al (1998) Isolation and characterization of RAD51C, a new human member of the RAD51 family of related genes. Nucleic Acids Res 26(5):1179–1184CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Liu N et al (1998) XRCC2 and XRCC3, new human Rad51-family members, promote chromosome stability and protect against DNA cross-links and other damages. Mol Cell 1(6):783–793CrossRefPubMed Liu N et al (1998) XRCC2 and XRCC3, new human Rad51-family members, promote chromosome stability and protect against DNA cross-links and other damages. Mol Cell 1(6):783–793CrossRefPubMed
31.
Zurück zum Zitat Schild D, Collins LY, Tsomondo DW, Chen DJ (2000) Evidence for simultaneous protein interactions in Human Rad51 paralogs. J Biol Chem 275:7CrossRef Schild D, Collins LY, Tsomondo DW, Chen DJ (2000) Evidence for simultaneous protein interactions in Human Rad51 paralogs. J Biol Chem 275:7CrossRef
32.
Zurück zum Zitat Park JY et al (2014) Breast cancer-associated missense mutants of the PALB2 WD40 domain, which directly binds RAD51C, RAD51 and BRCA2, disrupt DNA repair. Oncogene 33(40):4803–4812CrossRefPubMed Park JY et al (2014) Breast cancer-associated missense mutants of the PALB2 WD40 domain, which directly binds RAD51C, RAD51 and BRCA2, disrupt DNA repair. Oncogene 33(40):4803–4812CrossRefPubMed
34.
Zurück zum Zitat Le Calvez-Kelm F et al (2011) Rare, evolutionarily unlikely missense substitutions in CHEK2 contribute to breast cancer susceptibility: results from a breast cancer family registry case-control mutation-screening study. Breast Cancer Res 13(1):R6CrossRefPubMedPubMedCentral Le Calvez-Kelm F et al (2011) Rare, evolutionarily unlikely missense substitutions in CHEK2 contribute to breast cancer susceptibility: results from a breast cancer family registry case-control mutation-screening study. Breast Cancer Res 13(1):R6CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Tavtigian SV et al (2009) Rare, evolutionarily unlikely missense substitutions in ATM confer increased risk of breast cancer. Am J Hum Genet 85(4):427–446CrossRefPubMedPubMedCentral Tavtigian SV et al (2009) Rare, evolutionarily unlikely missense substitutions in ATM confer increased risk of breast cancer. Am J Hum Genet 85(4):427–446CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Osorio A et al (2012) Predominance of pathogenic missense variants in the RAD51C gene occurring in breast and ovarian cancer families. Hum Mol Genet 21(13):2889–2898CrossRefPubMed Osorio A et al (2012) Predominance of pathogenic missense variants in the RAD51C gene occurring in breast and ovarian cancer families. Hum Mol Genet 21(13):2889–2898CrossRefPubMed
37.
Zurück zum Zitat Shin DS et al (2003) Full-length archaeal Rad51 structure and mutants: mechanisms for RAD51 assembly and control by BRCA2. EMBO J 22(17):4566–4576CrossRefPubMedPubMedCentral Shin DS et al (2003) Full-length archaeal Rad51 structure and mutants: mechanisms for RAD51 assembly and control by BRCA2. EMBO J 22(17):4566–4576CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Ishida T et al (2007) Altered DNA binding by the human Rad51-R150Q mutant found in breast cancer patients. Biol Pharm Bull 30(8):1374–1378CrossRefPubMed Ishida T et al (2007) Altered DNA binding by the human Rad51-R150Q mutant found in breast cancer patients. Biol Pharm Bull 30(8):1374–1378CrossRefPubMed
39.
Zurück zum Zitat Chen JH et al (2015) Tumor-associated mutations in a conserved structural motif alter physical and biochemical properties of human RAD51 recombinase. Nucleic Acids Res 43(2):1098–1111CrossRefPubMed Chen JH et al (2015) Tumor-associated mutations in a conserved structural motif alter physical and biochemical properties of human RAD51 recombinase. Nucleic Acids Res 43(2):1098–1111CrossRefPubMed
40.
Zurück zum Zitat Miller KA et al (2002) RAD51C interacts with RAD51B and is central to a larger protein complex in vivo exclusive of RAD51. J Biol Chem 277(10):8406–8411CrossRefPubMed Miller KA et al (2002) RAD51C interacts with RAD51B and is central to a larger protein complex in vivo exclusive of RAD51. J Biol Chem 277(10):8406–8411CrossRefPubMed
41.
42.
Zurück zum Zitat Masson JY et al (2001) Identification and purification of two distinct complexes containing the five RAD51 paralogs. Genes Dev 15(24):3296–3307CrossRefPubMedPubMedCentral Masson JY et al (2001) Identification and purification of two distinct complexes containing the five RAD51 paralogs. Genes Dev 15(24):3296–3307CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Pellegrini L et al (2002) Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature 420(6913):287–293CrossRefPubMed Pellegrini L et al (2002) Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature 420(6913):287–293CrossRefPubMed
44.
Zurück zum Zitat Linke SP et al (2003) p53 interacts with hRAD51 and hRAD54, and directly modulates homologous recombination. Cancer Res 63(10):2596–2605PubMed Linke SP et al (2003) p53 interacts with hRAD51 and hRAD54, and directly modulates homologous recombination. Cancer Res 63(10):2596–2605PubMed
45.
Zurück zum Zitat Tanaka K et al (2000) A novel human rad54 homologue, Rad54B, associates with Rad51. J Biol Chem 275(34):26316–26321CrossRefPubMed Tanaka K et al (2000) A novel human rad54 homologue, Rad54B, associates with Rad51. J Biol Chem 275(34):26316–26321CrossRefPubMed
47.
Zurück zum Zitat Casadei S et al (2011) Contribution of inherited mutations in the BRCA2-interacting protein PALB2 to familial breast cancer. Cancer Res 71(6):2222–2229CrossRefPubMedPubMedCentral Casadei S et al (2011) Contribution of inherited mutations in the BRCA2-interacting protein PALB2 to familial breast cancer. Cancer Res 71(6):2222–2229CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Blanco A et al (2014) RAD51C germline mutations found in Spanish site-specific breast cancer and breast-ovarian cancer families. Breast Cancer Res Treat 147(1):133–143CrossRefPubMed Blanco A et al (2014) RAD51C germline mutations found in Spanish site-specific breast cancer and breast-ovarian cancer families. Breast Cancer Res Treat 147(1):133–143CrossRefPubMed
51.
Zurück zum Zitat Michalska MM et al (2015) Single nucleotide polymorphisms (SNPs) of RAD51-G172T and XRCC2-41657C/T homologous recombination repair genes and the risk of triple-negative breast cancer in polish women. Pathol Oncol Res 21(4):935–940CrossRefPubMedPubMedCentral Michalska MM et al (2015) Single nucleotide polymorphisms (SNPs) of RAD51-G172T and XRCC2-41657C/T homologous recombination repair genes and the risk of triple-negative breast cancer in polish women. Pathol Oncol Res 21(4):935–940CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Thompson ER et al (2012) Analysis of RAD51C germline mutations in high-risk breast and ovarian cancer families and ovarian cancer patients. Hum Mutat 33(1):95–99CrossRefPubMed Thompson ER et al (2012) Analysis of RAD51C germline mutations in high-risk breast and ovarian cancer families and ovarian cancer patients. Hum Mutat 33(1):95–99CrossRefPubMed
55.
Zurück zum Zitat Meindl A et al (2010) Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet 42(5):410–414CrossRefPubMed Meindl A et al (2010) Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet 42(5):410–414CrossRefPubMed
58.
Zurück zum Zitat Somyajit K et al (2015) Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart. Nucleic Acids Res 43(20):9835–9855PubMedPubMedCentral Somyajit K et al (2015) Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart. Nucleic Acids Res 43(20):9835–9855PubMedPubMedCentral
59.
Zurück zum Zitat Godin SK, Sullivan MR, Bernstein KA (2016) Novel insights into RAD51 activity and regulation during homologous recombination and DNA replication. Biochem Cell Biol 94(5):407–418CrossRefPubMedPubMedCentral Godin SK, Sullivan MR, Bernstein KA (2016) Novel insights into RAD51 activity and regulation during homologous recombination and DNA replication. Biochem Cell Biol 94(5):407–418CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Ameziane N et al (2015) A novel Fanconi anaemia subtype associated with a dominant-negative mutation in RAD51. Nat Commun. 6 Ameziane N et al (2015) A novel Fanconi anaemia subtype associated with a dominant-negative mutation in RAD51. Nat Commun. 6
62.
Zurück zum Zitat Kato M et al (2000) Identification of Rad51 alteration in patients with bilateral breast cancer. J Hum Genet 45(3):133–137CrossRefPubMed Kato M et al (2000) Identification of Rad51 alteration in patients with bilateral breast cancer. J Hum Genet 45(3):133–137CrossRefPubMed
63.
Zurück zum Zitat Le Calvez-Kelm F et al (2012) RAD51 and breast cancer susceptibility: no evidence for rare variant association in the breast cancer family registry study. PLoS One 7(12):e52374CrossRefPubMedPubMedCentral Le Calvez-Kelm F et al (2012) RAD51 and breast cancer susceptibility: no evidence for rare variant association in the breast cancer family registry study. PLoS One 7(12):e52374CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Tennessen JA et al (2012) Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337(6090):64–69CrossRefPubMedPubMedCentral Tennessen JA et al (2012) Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337(6090):64–69CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat John EM et al (2007) Prevalence of pathogenic BRCA1 mutation carriers in 5 US racial/ethnic groups. JAMA 298(24):2869–2876CrossRefPubMed John EM et al (2007) Prevalence of pathogenic BRCA1 mutation carriers in 5 US racial/ethnic groups. JAMA 298(24):2869–2876CrossRefPubMed
66.
Zurück zum Zitat Gunn A, Stark JM (2012) I-SceI-based assays to examine distinct repair outcomes of mammalian chromosomal double strand breaks. Methods Mol Biol 920:379–391CrossRefPubMed Gunn A, Stark JM (2012) I-SceI-based assays to examine distinct repair outcomes of mammalian chromosomal double strand breaks. Methods Mol Biol 920:379–391CrossRefPubMed
67.
Zurück zum Zitat Bak RO et al (2015) Chemically modified guide RNAs enhance CRISPR/Cas genome editing in human primary cells. Hum Gene Ther 26(10):A11–A12 Bak RO et al (2015) Chemically modified guide RNAs enhance CRISPR/Cas genome editing in human primary cells. Hum Gene Ther 26(10):A11–A12
68.
Zurück zum Zitat Graffeo R et al (2016) Time to incorporate germline multigene panel testing into breast and ovarian cancer patient care. Breast Cancer Res Treat 160(3):393–410CrossRefPubMed Graffeo R et al (2016) Time to incorporate germline multigene panel testing into breast and ovarian cancer patient care. Breast Cancer Res Treat 160(3):393–410CrossRefPubMed
69.
70.
Zurück zum Zitat Walsh CS (2015) Two decades beyond BRCA1/2: homologous recombination, hereditary cancer risk and a target for ovarian cancer therapy. Gynecol Oncol 137(2):343–350CrossRefPubMed Walsh CS (2015) Two decades beyond BRCA1/2: homologous recombination, hereditary cancer risk and a target for ovarian cancer therapy. Gynecol Oncol 137(2):343–350CrossRefPubMed
71.
Zurück zum Zitat Cobain EF, Milliron KJ, Merajver SD (2016) Updates on breast cancer genetics: Clinical implications of detecting syndromes of inherited increased susceptibility to breast cancer. Semin Oncol 43(5):528–535CrossRefPubMed Cobain EF, Milliron KJ, Merajver SD (2016) Updates on breast cancer genetics: Clinical implications of detecting syndromes of inherited increased susceptibility to breast cancer. Semin Oncol 43(5):528–535CrossRefPubMed
Metadaten
Titel
Discovery of mutations in homologous recombination genes in African-American women with breast cancer
verfasst von
Yuan Chun Ding
Aaron W. Adamson
Linda Steele
Adam M. Bailis
Esther M. John
Gail Tomlinson
Susan L. Neuhausen
Publikationsdatum
02.09.2017
Verlag
Springer Netherlands
Erschienen in
Familial Cancer / Ausgabe 2/2018
Print ISSN: 1389-9600
Elektronische ISSN: 1573-7292
DOI
https://doi.org/10.1007/s10689-017-0036-4

Weitere Artikel der Ausgabe 2/2018

Familial Cancer 2/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.