Skip to main content
Erschienen in: Cardiovascular Engineering 4/2010

01.12.2010 | Original Research

Discrete Wavelet-Aided Delineation of PCG Signal Events via Analysis of an Area Curve Length-Based Decision Statistic

verfasst von: M. R. Homaeinezhad, S. A. Atyabi, E. Daneshvar, A. Ghaffari, M. Tahmasebi

Erschienen in: Cardiovascular Engineering | Ausgabe 4/2010

Einloggen, um Zugang zu erhalten

Abstract

The aim of this study is to describe a robust unified framework for segmentation of the phonocardiogram (PCG) signal sounds based on the false-alarm probability (FAP) bounded segmentation of a properly calculated detection measure. To this end, first the original PCG signal is appropriately pre-processed and then, a fixed sample size sliding window is moved on the pre-processed signal. In each slid, the area under the excerpted segment is multiplied by its curve-length to generate the Area Curve Length (ACL) metric to be used as the segmentation decision statistic (DS). Afterwards, histogram parameters of the nonlinearly enhanced DS metric are used for regulation of the α-level Neyman-Pearson classifier for FAP-bounded delineation of the PCG events. The proposed method was applied to all 85 records of Nursing Student Heart Sounds database (NSHSDB) including stenosis, insufficiency, regurgitation, gallop, septal defect, split sound, rumble, murmur, clicks, friction rub and snap disorders with different sampling frequencies. Also, the method was applied to the records obtained from an electronic stethoscope board designed for fulfillment of this study in the presence of high-level power-line noise and external disturbing sounds and as the results, no false positive (FP) or false negative (FN) errors were detected. High noise robustness, acceptable detection-segmentation accuracy of PCG events in various cardiac system conditions, and having no parameters dependency to the acquisition sampling frequency can be mentioned as the principal virtues and abilities of the proposed ACL-based PCG events detection-segmentation algorithm.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ahlstrom C, Lanne T, Ask P, Johansson A. A method for accurate localization of the first heart sound and possible applications. Physiol Meas. 2008;29:417–28.CrossRefPubMed Ahlstrom C, Lanne T, Ask P, Johansson A. A method for accurate localization of the first heart sound and possible applications. Physiol Meas. 2008;29:417–28.CrossRefPubMed
Zurück zum Zitat Ari S, Saha G. In search of an optimization technique for artificial neural network to classify abnormal heart sounds. Appl Soft Comput. 2009;9:330–40.CrossRef Ari S, Saha G. In search of an optimization technique for artificial neural network to classify abnormal heart sounds. Appl Soft Comput. 2009;9:330–40.CrossRef
Zurück zum Zitat Babaei S, Geranmayeh A. Heart sound reproduction based on neural network classification of cardiac valve disorders using wavelet transforms of PCG signals. Comput Biol Med. 2009;39:8–15.CrossRefPubMed Babaei S, Geranmayeh A. Heart sound reproduction based on neural network classification of cardiac valve disorders using wavelet transforms of PCG signals. Comput Biol Med. 2009;39:8–15.CrossRefPubMed
Zurück zum Zitat Cherif LH, Debbal SM, Bereksi-Reguig F. Choice of the wavelet analyzing in the phonocardiogram signal analysis using the discrete and the packet wavelet transform. Expert Syst Appl. 2010;37:913–8.CrossRef Cherif LH, Debbal SM, Bereksi-Reguig F. Choice of the wavelet analyzing in the phonocardiogram signal analysis using the discrete and the packet wavelet transform. Expert Syst Appl. 2010;37:913–8.CrossRef
Zurück zum Zitat Choi S. Detection of valvular heart disorders using wavelet packet decomposition and support vector machine. Expert Syst Appl. 2008;35:1679–87.CrossRef Choi S. Detection of valvular heart disorders using wavelet packet decomposition and support vector machine. Expert Syst Appl. 2008;35:1679–87.CrossRef
Zurück zum Zitat Choi S, Jiang Z. Comparison of envelope extraction algorithms for cardiac sound signal segmentation. Expert Syst Appl. 2008;34:1056–69.CrossRef Choi S, Jiang Z. Comparison of envelope extraction algorithms for cardiac sound signal segmentation. Expert Syst Appl. 2008;34:1056–69.CrossRef
Zurück zum Zitat Choi S, Jiang Z. Cardiac sound murmurs classification with autoregressive spectral analysis and multi-support vector machine technique. Comput Biol Med. 2010;40:8–20.CrossRefPubMed Choi S, Jiang Z. Cardiac sound murmurs classification with autoregressive spectral analysis and multi-support vector machine technique. Comput Biol Med. 2010;40:8–20.CrossRefPubMed
Zurück zum Zitat Debbal SM, Bereksi-Reguig F. Time-frequency analysis of the first and the second heartbeat sounds. Appl Math Comput. 2007a;184:1041–52.CrossRef Debbal SM, Bereksi-Reguig F. Time-frequency analysis of the first and the second heartbeat sounds. Appl Math Comput. 2007a;184:1041–52.CrossRef
Zurück zum Zitat Debbal SM, Bereksi-Reguig F. Automatic measure of the split in the second cardiac sound by using the wavelet transform technique. Comput Biol Med. 2007b;37:269–76.CrossRefPubMed Debbal SM, Bereksi-Reguig F. Automatic measure of the split in the second cardiac sound by using the wavelet transform technique. Comput Biol Med. 2007b;37:269–76.CrossRefPubMed
Zurück zum Zitat Dokur Z, Ölmez T. Heart sound classification using wavelet transform and incremental self-organizing map. Digit Signal Process. 2008;18:951–9.CrossRef Dokur Z, Ölmez T. Heart sound classification using wavelet transform and incremental self-organizing map. Digit Signal Process. 2008;18:951–9.CrossRef
Zurück zum Zitat Dokur Z, Ölmez T. Feature determination for heart sounds based on divergence analysis. Digit Signal Process. 2009;19:521–31.CrossRef Dokur Z, Ölmez T. Feature determination for heart sounds based on divergence analysis. Digit Signal Process. 2009;19:521–31.CrossRef
Zurück zum Zitat Fliege NJ. Multirate digital signal processing: multirate systems—filter banks—wavelets. NJ: Wiley; 1994. Fliege NJ. Multirate digital signal processing: multirate systems—filter banks—wavelets. NJ: Wiley; 1994.
Zurück zum Zitat Ghaffari A, Homaeinezhad MR, Atarod M, Akraminia M. Parallel processing of ecg and blood pressure waveforms for detection of acute hypotensive episodes: a simulation study using a risk scoring model. Computer methods in biomechanics and biomedical engineering. Taylor & Francis Publishing; 2010 (in press). Ghaffari A, Homaeinezhad MR, Atarod M, Akraminia M. Parallel processing of ecg and blood pressure waveforms for detection of acute hypotensive episodes: a simulation study using a risk scoring model. Computer methods in biomechanics and biomedical engineering. Taylor & Francis Publishing; 2010 (in press).
Zurück zum Zitat Ghaffari A, Homaeinezhad MR, Khazraee M, Daevaeiha M. Segmentation of holter ECG waves via analysis of a discrete wavelet-derived multiple skewness-kurtosis based metric. Ann Biomed Eng. 2010;38(4):1497–510. Ghaffari A, Homaeinezhad MR, Khazraee M, Daevaeiha M. Segmentation of holter ECG waves via analysis of a discrete wavelet-derived multiple skewness-kurtosis based metric. Ann Biomed Eng. 2010;38(4):1497–510.
Zurück zum Zitat Gray RM, Davisson LD. An introduction to statistical signal processing. Cambridge: Cambridge University Press; 2007. Gray RM, Davisson LD. An introduction to statistical signal processing. Cambridge: Cambridge University Press; 2007.
Zurück zum Zitat Gupta CN, Palaniappan R, Swaminathan S, Krishnan SM. Neural network classification of homomorphic segmented heart sounds. Appl Soft Comput. 2007;7:286–97.CrossRef Gupta CN, Palaniappan R, Swaminathan S, Krishnan SM. Neural network classification of homomorphic segmented heart sounds. Appl Soft Comput. 2007;7:286–97.CrossRef
Zurück zum Zitat Hadjileontiadis LJ, Panas SM. A wavelet-based reduction of heart sound noise from lung sounds. Int J Med Inform. 1998;52:183–90.CrossRefPubMed Hadjileontiadis LJ, Panas SM. A wavelet-based reduction of heart sound noise from lung sounds. Int J Med Inform. 1998;52:183–90.CrossRefPubMed
Zurück zum Zitat Jin F, Sattar F, Goh DYT. A filter bank-based source extraction algorithm for heart sound removal in respiratory sounds. Comput Biol Med. 2009;39:768–77.CrossRefPubMed Jin F, Sattar F, Goh DYT. A filter bank-based source extraction algorithm for heart sound removal in respiratory sounds. Comput Biol Med. 2009;39:768–77.CrossRefPubMed
Zurück zum Zitat Kumar D, Carvalho P, Antunes M, Henriques J, SaeMelo A, Schmidt R, Habeth J. Third heart sound detection using wavelet transform–simplicity filter. In: Proceedings of the 29th annual international conference of the IEEE EMBS. Lyon, France; 23–26 Aug 2007. Kumar D, Carvalho P, Antunes M, Henriques J, SaeMelo A, Schmidt R, Habeth J. Third heart sound detection using wavelet transform–simplicity filter. In: Proceedings of the 29th annual international conference of the IEEE EMBS. Lyon, France; 23–26 Aug 2007.
Zurück zum Zitat Libby P, Bonow RO, Mann DL, Zipes DP. Braunwald’s heart disease: a textbook of cardiovascular medicine, 8th ed. Saunders; 2007. Libby P, Bonow RO, Mann DL, Zipes DP. Braunwald’s heart disease: a textbook of cardiovascular medicine, 8th ed. Saunders; 2007.
Zurück zum Zitat Mallet S. A wavelet tour of signal processing. London: Academic Press; 1999. Mallet S. A wavelet tour of signal processing. London: Academic Press; 1999.
Zurück zum Zitat Montgomery DC, Runger GC. Applied statistics and probability for engineers. 3rd ed. NJ: Wiley; 2003. Montgomery DC, Runger GC. Applied statistics and probability for engineers. 3rd ed. NJ: Wiley; 2003.
Zurück zum Zitat Nigam V, Priemer R. Accessing heart dynamics to estimate durations of heart sounds. Physiol Meas. 2005;26:1005–18.CrossRefPubMed Nigam V, Priemer R. Accessing heart dynamics to estimate durations of heart sounds. Physiol Meas. 2005;26:1005–18.CrossRefPubMed
Zurück zum Zitat Sengur A. An expert system based on principal component analysis, artificial immune system and fuzzy k-NN for diagnosis of valvular heart diseases. Comput Biol Med. 2008a;38:329–38.CrossRefPubMed Sengur A. An expert system based on principal component analysis, artificial immune system and fuzzy k-NN for diagnosis of valvular heart diseases. Comput Biol Med. 2008a;38:329–38.CrossRefPubMed
Zurück zum Zitat Sengur A. An expert system based on linear discriminant analysis and adaptive neuro-fuzzy inference system to diagnosis heart valve diseases. Expert Syst Appl. 2008b;35:214–22.CrossRef Sengur A. An expert system based on linear discriminant analysis and adaptive neuro-fuzzy inference system to diagnosis heart valve diseases. Expert Syst Appl. 2008b;35:214–22.CrossRef
Zurück zum Zitat Sepehri AA, Gharehbaghi A, Dutoit T, Kocharian A, Kiani A. A novel method for pediatric heart sound segmentation without using the ECG. Comput Methods Programs Biomed. 2010;99(1):43–8. Sepehri AA, Gharehbaghi A, Dutoit T, Kocharian A, Kiani A. A novel method for pediatric heart sound segmentation without using the ECG. Comput Methods Programs Biomed. 2010;99(1):43–8.
Zurück zum Zitat Sepehri AA, Hancq J, Dutoit T, Gharehbaghi A, Kocharian A, Kiani A. Computerized screening of children congenital heart diseases. Comput Methods Programs Biomed. 2008;92:186–92.CrossRefPubMed Sepehri AA, Hancq J, Dutoit T, Gharehbaghi A, Kocharian A, Kiani A. Computerized screening of children congenital heart diseases. Comput Methods Programs Biomed. 2008;92:186–92.CrossRefPubMed
Zurück zum Zitat Uguz H, Arslan A, Saracoglu R, Turkoglu I. Detection of heart valve diseases by using fuzzy discrete hidden Markov model. Expert Syst Appl. 2008;34:2799–811.CrossRef Uguz H, Arslan A, Saracoglu R, Turkoglu I. Detection of heart valve diseases by using fuzzy discrete hidden Markov model. Expert Syst Appl. 2008;34:2799–811.CrossRef
Zurück zum Zitat Yana Z, Jiang Z, Miyamoto A, Wei Y. The moment segmentation analysis of heart sound pattern. Comput Methods Programs Biomed. 2010;98(2):140–50. Yana Z, Jiang Z, Miyamoto A, Wei Y. The moment segmentation analysis of heart sound pattern. Comput Methods Programs Biomed. 2010;98(2):140–50.
Metadaten
Titel
Discrete Wavelet-Aided Delineation of PCG Signal Events via Analysis of an Area Curve Length-Based Decision Statistic
verfasst von
M. R. Homaeinezhad
S. A. Atyabi
E. Daneshvar
A. Ghaffari
M. Tahmasebi
Publikationsdatum
01.12.2010
Verlag
Springer US
Erschienen in
Cardiovascular Engineering / Ausgabe 4/2010
Print ISSN: 1567-8822
Elektronische ISSN: 1573-6806
DOI
https://doi.org/10.1007/s10558-010-9110-3

Weitere Artikel der Ausgabe 4/2010

Cardiovascular Engineering 4/2010 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.