Skip to main content
Erschienen in: Virology Journal 1/2022

Open Access 01.12.2022 | Review

Disseminated cryptococcosis with varicella-zoster virus coinfection of idiopathic CD4 + T lymphocytopenia: a case report and literature review

verfasst von: Li Fang, Junli Zhang, Fangfang Lv

Erschienen in: Virology Journal | Ausgabe 1/2022

Abstract

Background

Idiopathic CD4 + T lymphocytopenia (ICL) is a rare immunodeficiency syndrome, unaccompanied by various opportunistic infections. Cryptococcus and varicella-zoster viruse are the most common opportunistic infections.

Method

We described a case of disseminated cryptococcosis with varicella-zoster virus coinfection in a patient with ICL and reviewed all published reports. A total of 26 cases with cryptococcal meningitis in ICL were enrolled.

Discussion

ICL remains poorly understood to clinicians. Patients with cryptococcal meningitis in ICL mostly suffered with headache and fever in a subacute or chronic period, while some patients might have atypical manifestations which makes a difficulty for early diagnosis. Some characteristics of cerebrospinal fluid can help to predict the prognosis of the disease. Cryptococcosis with varicella-zoster virus coinfection is rare but serious.

Conclusion

We recommed CD4 + T cells should be assessed in patients with unusual or recurrent infections. As the underlying pathophysiology is poorly understood, there is no standard therapy for ICL. Increased awareness of the disease and early prevention for CD4 reduction are needed.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ICL
Idiopathic CD4 + T lymphocytopenia
HIV
Human immunodeficiency virus
CSF
Cerebrospinal fluid
PCR
Polymerase chain reaction
CT
Computed tomography
MRI
Magnetic resonance imaging
mNGS
Metagenomic next-generation sequencing
GCS
Glasgow Coma Scale

Background

Idiopathic CD4 + T lymphocytopenia (ICL) is a rare immunodeficiency syndrome with an unexplained reduction of CD4 + T lymphocytes and no evidence of Human Immunodeficiency Virus (HIV) infection or any other cause of immunodeficiency [1]. It is defined as a documented absolute CD4 + T-cell count < 300 cells/L or < 20% of total lymphocytes on at least two occasions, usually two or three months apart [2]. Patients with ICL typically present with opportunistic infections, malignancies, or autoimmune disorders. Cryptococcus infection is the most common opportunistic infection in ICL patients [1]. Cryptococcal meningitis is the most serious disease with high morbidity and mortality [35]. Here, we present a case of disseminated cryptococcosis with varicella-zoster virus coinfection in a patient with ICL, and the relevant literature is reviewed. ICL should not be ignored in some patients who seem to be immunocompetent.

Case presentation

A 44-year-old man was admitted to the emergency department with a complaint of headache lasting for 10 days without fever or any other symptoms, and he was prescribed some painkillers. He suffered fever, vomiting, delirious and urinary retention two weeks later. He had no medical or surgical history and no history of drug or alcohol abuse. Vital signs included a body temperature of 38.5 °C, respiration of 20 breaths/min, heart rate at 97 beats/min, blood pressure of 133/90 mmHg, and O2 saturation of 97% on ambient air. Physical examination showed a decreased muscle strength of both lower limbs and neck was stiff with positive Kernig's and Brudzinki's signs.
Laboratory tests results are as follows: a leukocyte count of 15.3/mm3 (reference range 3.5–9.5/mm3), with neutrophils 14.18/mm3 (reference range 1.8–6.3/mm3) and lymphocytes 0.5/mm3 (reference range 1.1–3.2/mm3), high-sensitive c-reactive protein 26.5 mg/L (reference range 0–5 mg/L), Erythrocyte Sedimentation Rate 46 mm/h (reference range 0–20 mm/h), potassium 2.95 mM/L (reference range 3.5–5.5 mM/L), sodium 132 mM/L (reference range 137–147 mM/L), chlorine 92 mM/L (reference range 99–110 mM/L), and serum creatinine 163 μM/L(reference range 40–106 μM/L). The biochemistry testing on the liver was normal. A lumbar puncture (LP) showed an elevated open pressure of > 40 cmH2O (1 cmH2O = 0.1 kPa). Cerebrospinal fluid (CSF) analysis revealed 90 /mm3 leukocyte (reference range 0–5/mm3), with 9% neutrophils and 86% lymphocytes. The glucose level was 0.28 mM/L (reference range 2.5–4.44 mM/L), chloride level was 116 mM/L (reference range 119–129 mM/L) and protein level was 0.898 g/L (reference range 0.15–0.45 g/L). Polymerase chain reaction (PCR) for Herpes simplex, Epstein Barr virus, Varicella, Cytomegalovirus were negative. Acid-fast staining was negative, India ink preparation was positive, and cryptococcal antigen showed positive at 76.6 μg/L. The mycological culture was positive for Cryptococcus neoformans variant. A head computed tomography (CT) scan revealed no signs of hydrocephalus. The electroencephalogram showed a minor anomaly, while a lung CT scan revealed cavernous lesions in the lower lobe of the left lung, and pleural effusion was observed bilaterally, as well as a few fibrous foci in the right lung's middle lobe (Fig. 1).
A thorough analysis to rule out immunocompromised status was performed. The HIV serology and HIV RNA, T-SPOT.TB tests were negative, the antinuclear antibody was negative, and the serum immunoglobulins and complement were normal. The anti-IFN-γ autoantibodies linked to disseminated nontuberculous mycobacterial infections were normal. He had serially decreased lymphocytes during his follow-up, particularly CD4 + T cells in Table 1.
Table 1
Blood cell counts of the patient with CD4 + T lymphocytopenia
Date of analysis
Count, /mm3
white blood cells 3.5–9.5
Lymphocytes 1.1–3.2
CD3 + CD4 + cells 0.20–1.82
CD3 + CD8 + cells 0.13–1.35
CD16/56 + cells* 0.04–1.00
CD19 + cells* 0.05–0.67
March 27
9.6
0.4
0.04
0.18
0.02
0.17
April 6
7.7
0.5
0.06
0.26
0.01
0.1
April 26
4.4
1.0
0.12
0.71
0.03
0.04
June 29
6.5
1.5
0.18
0.84
0.04
0.28
CD16/56 + cells*: natural killer cells, CD19 + cells*: B cells
The patient was treated with amphotericin B (0.7 mg/kg daily) and 5-fluorocytosine (2.5 g per 12 h), an Ommaya reservoir was implanted for cerebrospinal fluid drainage. He was deteriorated in the second week of hospitalization, with persistent positive CSF culture and a higher CSF cryptococcal antigen result (3097.6 μg/L). During the fourth week of hospitalization, zonal dispersed papules were seen on the right lower leg of the patient, with reduced muscular strength in both lower limbs, and he was suffered from hallucinations and auditory hallucinations. Cerebrospinal fluid was hemorrhagic, with 6 /mm3 leukocyte and 700 /mm3 erythrocyte. Magnetic resonance imaging (MRI) showed multiple lesions and lamellar necrosis in the parietal lobe of the frontotemporal island and the cortex of the left cerebellar hemisphere. We also observed hydrocephalus in several lesions, accompanied by interstitial edema (Fig. 2). Varicella-zoster virus and cryptococcus were positive in metagenomic next-generation sequencing (mNGS) of cerebrospinal fluid, and ganciclovir was started for antiviral therapy. Unfortunately, he finally died of cerebral edema and respiratory failure after 3 months of admission.

Literature review and discussion

ICL is a rare condition that is found worldwide, with unknown incidence and etiology, and it is viewed as a syndrome that likely encompasses different disorders caused by the reduction of CD4 cell numbers. CD4 is a glycoprotein expressed on the surface of various types of helper and regulatory T cells. CD4 + T cell is an important immune cell that regulates the activities of cells participating in immune responses, participate in apoptosis (programmed cell death), and tumor monitoring. Patients with ICL will develop opportunistic infections, malignancies, and/or autoimmune diseases [6]. Cryptococcal meningitis is the most common opportunistic infection. According to a series of studies, one-third of patients were infected with cryptococcus, while around 10% were infected with the varicella-zoster virus [7]. Cryptococcus was reported to be the most frequent infection in 258 ICL patients (26.6%), followed by mycobacterial (17.0%), candidal (16.2%), and varicella-zoster virus infections (13.1%) [8].
CD4 + T cells should be assessed when the patient presents with unusual or recurrent infections. However, the infection can be associated with lymphocyte changes, and it is impossible to determine whether changes reflect a primary immunologic defect or the response to infection. Our patient suffered disseminated cryptococcal infection and herpes virus infection with no underlying disease and HIV or tuberculosis, but a series of low CD4 + T cells lasting for more than 3 months. As reported, anti-cytokine autoantibodies have also been related to opportunistic infections, with anti-IFNγ autoantibodies linked to disseminated nontuberculous mycobacterial infections and anti-IL-17 autoantibodies linked to chronic mucocutaneous candidiasis, and anti-IL-6 autoantibodies linked to Staphylococcal infections [9]. Anti-GM-CSF autoantibodies have also been found in a few cryptococcal meningitis patients caused by Cryptococcus. Gattii, but not Cryptococcus. neoformans [10, 11]. However, CD4 + T cells were normal or slightly lower in most patients [12].
Cryptococcal meningitis is not uncommon in the clinic, and ICL remained poorly understood to clinicians. There are few systematic reviews on ICL and cryptococcal meningitis. A systematic search was performed on PubMed between 1992 and December 2020. A combination of the following search terms was used: cryptococcosis, cryptococcus infection, cryptococcal meningitis, idiopathic CD4 lymphocytopenia, ICL, HIV negative CD4 lymphocytopenia. 26 cases were enrolled for analysis [1336]. Among those patients, 20 (76.9%) were male, 6 (23.1%) were female. The median age was 42 (range 4.5–75) at diagnosis. Cryptococcosis in ICL patients usually had a subacute or chronic course and took weeks to months from symptom until diagnosis [37]. The most common symptoms were headache, fever, nausea/vomiting, and meningeal irritation. The symptoms in those 26 patients were described in Table 2. The primary symptoms were headache and fever (73.1%, 61.5%). Nausea, vomiting, and disorientation were also common. The patients suffered only headaches at the early period. Therefore, some patients might have atypical manifestations during the process of disease.
Table 2
Presenting Symptoms of cryptococcal meningitis in ICL
Symptoms
No. of patients (%)
Headache
19 (73.10)
Fever
16 (61.50)
Nausea/vomiting
9 (34.60)
Confusion
8 (30.80)
Dizziness
4 (15.40)
Neck pain
3 (11.50)
Hemiparesis
3 (11.50)
Ataxia
3 (11.50)
Weight loss
3 (11.50)
Diplopia
3 (11.50)
Experiencing speech difficulties
2 (7.70)
Cerebrospinal fluid were analysed in 22 cases with adequate information in Table 3 [1319, 2124, 26, 27, 29, 3136]. It showed a median leukocyte of 61 cells/μL (ranging 0–700), mainly constituted by lymphocytic, glucose of 39.1 mg/dL (ranging 1.98–87 mg/dL), below 40 mg/dL (1 mM/L = 18 mg/dL) in 50% of the patients, and protein of 116 mg/dL (ranging 20–266 mg/dL). The India ink stain and cryptococcal antigen titer positive rates were 12/14 (86%) and 15/16 (94%), respectively. The positive rate of CSF culture was 18 /19 (95%), Only one case was Cryptococcus. gattii and all the others were Cryptococcus neoformans. Cryptococcal meningitis is linked to a high rate of morbidity and death. Poor outcomes have previously been linked to advanced age (≥ 60 years), solid malignancy, hematologic malignancy, liver cirrhosis, respiratory failure, long-term ICU stay, corticosteroid treatment, and disturbed mental state (coma, seizure, herniation) [3841]. Low CSF leukocyte counts (less than 20 cells/microL), low CSF glucose, high CSF CrAg titers (> 1:1024), high CSF opening pressure (≥ 250 mm H2O), lower Glasgow Coma Scale (GCS) scores, hematogenous dissemination of cryptococcosis, hydrocephalus, and cerebral infarction have all been linked to poor outcomes [38, 4046].
Table 3
Presenting characteristics in cerebrospinal fluid of cryptococcal meningitis in ICL patients
References
Protein (mg/dL)
Glucose (mg/dL)
Leukocyte (cells/mm3)
Predominant cell
India ink stain
Cryptococcal antigen
Culture
Sim et al. [13]
266
1.98
10
NA
Positive
1:2560
Cryptococcus neoformans
Eshwara et al. [14]
50
60
54
Lymphocyte
Positive
Negative
Cryptococcus gattii
Malone et al. [15]
48
87
45
Lymphocyte
Positive
1:512
Cryptococcus neoformans
Shribman et al. [17]
83
34.2
NA
Lymphocyte
NA
1:1280
Cryptococcus neoformans
Shribman et al. [17]
89
19.8
212
Lymphocyte
NA
Positive
Cryptococcus neoformans
Ivica et al. [18]
138
66.6
478
Neutrophils
Positive
NA
Cryptococcus neoformans
Sancesario et al. [19]
133
23
23
NA
Negaitive
NA
NA
Sharma et al. [21]
125
17
0
0
NA
1:8192
Cryptococcus neoformans
Augustine et al. [22]
107
31
125
Lymphocyte
Negative
NA
negative
Augusto et al. [23]
60
28.11
43
Lymphocyte
Positive
NA
Cryptococcus neoformans
Yilmaz-Demirdag et al. [24]
175
44
75
Neutrophils
Positive
1:1024
Cryptococcus neoformans
Jha et al. [26]
80
NA
NA
NA
Positive
Positive
NA
Salit et al. [27]
227
65.88
126
NA
NA
1:2048
Cryptococcus neoformans
Lepur et al. [39]
191.5
3.6
700
Lymphocyte
Positive
NA
Cryptococcus neoformans
Lepur et al. [29]
155.5
10.8
450
Neutrophils
NA
NA
Cryptococcus neoformans
Cheung et al. [31]
NA
NA
13
Neutrophils
Positive
1:4.56
Cryptococcus neoformans
C.L.HO et al. [32]
NA
48
0
0
NA
1:64
NA
Yinnon et al. [33]
NA
NA
87
NA
NA
1:1024
Cryptococcus neoformans
Ramirez et al. [34]
20
68
0
0
NA
1:1024
Cryptococcus neoformans
Ostrowski et al. [35]
NA
NA
98
Lymphocyte
Positive
1:8192
Cryptococcus neoformans
Duncan et al. [36]
25
54
0
0
Positive
1:8192
Cryptococcus neoformans
Duncan et al. [36]
172
48.96
68
Lymphocyte
Positive
1:16,384
Cryptococcus neoformans
Cryptococcal infection and ICL have an increased likelihood of developing dermatomal zoster [47]. However, due to a lack of systems analysis, it is not sure whether this coinfection can be more severe than a single infection. We consider the deterioration of our patient is related to the activation of the varicella-zoster virus. We believe it may also require more cases or literature reviews.

Conclusion

Low CD4 + T cell counts characterize idiopathic CD4 + T lymphocytopenia and commonly presents as various opportunistic infections, autoimmune diseases, and/or neoplasias. Patients with opportunistic infections with HIV negative should be evaluated for ICL. Here we present a case of disseminated cryptococcosis with varicella-zoster virus coinfection, with an adverse outcome. As the underlying pathophysiology is poorly understood, there is no standard therapy for ICL. The focus is still on the preventive treatment of CD4 + T cell reduction.

Acknowledgements

Not applicable.

Declarations

All patient details have been de-identified. The patient provide verbal informed consent.
Not applicable.

Competing interests

The authors declare no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Yarmohammadi H, Cunningham-Rundles C. Idiopathic CD4 lymphocytopenia: pathogenesis, etiologies, clinical presentations and treatment strategies. Ann Allergy Asthma Immunol. 2017;119(4):374–8.PubMedPubMedCentral Yarmohammadi H, Cunningham-Rundles C. Idiopathic CD4 lymphocytopenia: pathogenesis, etiologies, clinical presentations and treatment strategies. Ann Allergy Asthma Immunol. 2017;119(4):374–8.PubMedPubMedCentral
2.
Zurück zum Zitat Centers for Disease Control (CDC). Unexplained CD4+ T-lymphocyte depletion in persons without evident HIV infection—United States. MMWR Morb Mortal Wkly Rep. 1992;41:541. Centers for Disease Control (CDC). Unexplained CD4+ T-lymphocyte depletion in persons without evident HIV infection—United States. MMWR Morb Mortal Wkly Rep. 1992;41:541.
3.
Zurück zum Zitat Sloan DJ, Parris V. Cryptococcal meningitis: epidemiology and therapeutic options. Clin Epidemiol. 2014;6:169–82.PubMedPubMedCentral Sloan DJ, Parris V. Cryptococcal meningitis: epidemiology and therapeutic options. Clin Epidemiol. 2014;6:169–82.PubMedPubMedCentral
4.
Zurück zum Zitat Rajasingham R, Smith RM, Park BJ, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis. 2017;17:873–81.CrossRef Rajasingham R, Smith RM, Park BJ, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis. 2017;17:873–81.CrossRef
5.
Zurück zum Zitat Wilson LS, Reyes CM, Stolpman M, et al. The direct cost and incidence of systemic fungal infections. Value Health. 2002;5:26–34.PubMed Wilson LS, Reyes CM, Stolpman M, et al. The direct cost and incidence of systemic fungal infections. Value Health. 2002;5:26–34.PubMed
6.
Zurück zum Zitat Gholamin M, Bazi A, Abbaszadegan MR. Idiopathic lymphocytopenia. Curr Opin Hematol. 2015;22:46.PubMed Gholamin M, Bazi A, Abbaszadegan MR. Idiopathic lymphocytopenia. Curr Opin Hematol. 2015;22:46.PubMed
7.
Zurück zum Zitat Zonios DI, Falloon J, Bennett JE, et al. Idiopathic CD4+ lymphocytopenia: natural history and prognostic factors. Blood. 2008;112:287.PubMedPubMedCentral Zonios DI, Falloon J, Bennett JE, et al. Idiopathic CD4+ lymphocytopenia: natural history and prognostic factors. Blood. 2008;112:287.PubMedPubMedCentral
8.
Zurück zum Zitat Ahmad DS, Esmadi M, Steinmann WC. Idiopathic CD4 lymphocytopenia: spectrum of opportunistic infections, malignancies, and autoimmune diseases. Avicenna J Med. 2013;3(2):37–47.PubMedPubMedCentral Ahmad DS, Esmadi M, Steinmann WC. Idiopathic CD4 lymphocytopenia: spectrum of opportunistic infections, malignancies, and autoimmune diseases. Avicenna J Med. 2013;3(2):37–47.PubMedPubMedCentral
9.
Zurück zum Zitat Browne SK. Anticytokine autoantibodies in infectious diseases: pathogenesis and mechanisms-ScienceDirect. Lancet Infect Dis. 2010;10(12):875–85.PubMed Browne SK. Anticytokine autoantibodies in infectious diseases: pathogenesis and mechanisms-ScienceDirect. Lancet Infect Dis. 2010;10(12):875–85.PubMed
11.
Zurück zum Zitat Kuo CY, Wang SY, Shih HP, et al. Disseminated cryptococcosis due to anti-granulocyte-macrophage colony-stimulating factor autoantibodies in the absence of pulmonary alveolar proteinosis. J Clin Immunol. 2017;37:143–52.PubMed Kuo CY, Wang SY, Shih HP, et al. Disseminated cryptococcosis due to anti-granulocyte-macrophage colony-stimulating factor autoantibodies in the absence of pulmonary alveolar proteinosis. J Clin Immunol. 2017;37:143–52.PubMed
12.
Zurück zum Zitat Saijo T, Chen J, Chen SC, Rosen LB, Yi J, Sorrell TC, et al. Anti- granulocyte-macrophage colony-stimulating factor autoantibodies are a risk factor for central nervous system infection by Cryptococcus gattii in otherwise immunocompetent patients. MBio. 2014;5(2):e00912-e914.PubMedPubMedCentral Saijo T, Chen J, Chen SC, Rosen LB, Yi J, Sorrell TC, et al. Anti- granulocyte-macrophage colony-stimulating factor autoantibodies are a risk factor for central nervous system infection by Cryptococcus gattii in otherwise immunocompetent patients. MBio. 2014;5(2):e00912-e914.PubMedPubMedCentral
13.
Zurück zum Zitat Sim BNH, Hui LY, Krishnan D, et al. Idiopathic CD4 lymphopenia in a case of disseminated cryptococcosis with brain, vertebral spine and reproductive organ involvement. Clin Med (Lond). 2019;19(2):133–4. Sim BNH, Hui LY, Krishnan D, et al. Idiopathic CD4 lymphopenia in a case of disseminated cryptococcosis with brain, vertebral spine and reproductive organ involvement. Clin Med (Lond). 2019;19(2):133–4.
14.
Zurück zum Zitat Eshwara VK, Garg R, Chandrashekhar GS, et al. Fatal Cryptococcus gattii meningitis with negative cryptococcal antigen test in a HIV-non-infected patient. Indian J Med Microbiol. 2018;36(3):439–40.PubMed Eshwara VK, Garg R, Chandrashekhar GS, et al. Fatal Cryptococcus gattii meningitis with negative cryptococcal antigen test in a HIV-non-infected patient. Indian J Med Microbiol. 2018;36(3):439–40.PubMed
15.
Zurück zum Zitat Malone C, Gupta ND, Kothari A, Palacios E, Neitzschman H. Radiology case of the month: idiopathic CD4 lymphocytopenia. J La State Med Soc. 2017;169(3):85–7.PubMed Malone C, Gupta ND, Kothari A, Palacios E, Neitzschman H. Radiology case of the month: idiopathic CD4 lymphocytopenia. J La State Med Soc. 2017;169(3):85–7.PubMed
17.
Zurück zum Zitat Shribman S, Noyce A, Gnanapavan S, et al. Cryptococcal meningitis in apparently immunocompetent patients: association with idiopathic CD4+ lymphopenia. Pract Neurol. 2018;18:166–9.PubMed Shribman S, Noyce A, Gnanapavan S, et al. Cryptococcal meningitis in apparently immunocompetent patients: association with idiopathic CD4+ lymphopenia. Pract Neurol. 2018;18:166–9.PubMed
18.
Zurück zum Zitat Pavić I, Cekinović D, Begovac J, et al. Cryptococcus neoformans meningoencephalitis in a patient with idiopathic CD4+ T lymphocytopenia. Coll Antropol. 2013;37(2):619–23.PubMed Pavić I, Cekinović D, Begovac J, et al. Cryptococcus neoformans meningoencephalitis in a patient with idiopathic CD4+ T lymphocytopenia. Coll Antropol. 2013;37(2):619–23.PubMed
19.
Zurück zum Zitat Sancesario G, Palmieri G, Viola G, et al. Difficulty diagnosing chronic cryptococcal meningitis in idiopathic CD4+ lymphocytopenia. Neurol Sci. 2011;32(3):519–24.PubMed Sancesario G, Palmieri G, Viola G, et al. Difficulty diagnosing chronic cryptococcal meningitis in idiopathic CD4+ lymphocytopenia. Neurol Sci. 2011;32(3):519–24.PubMed
20.
Zurück zum Zitat Tsalik EL, Jaggers LB. Life-threatening asymptomatic incidentaloma: a case report of idiopathic CD4 lymphocytopenia and opportunistic infections. Am J Med Sci. 2010;340(2):158–9.PubMed Tsalik EL, Jaggers LB. Life-threatening asymptomatic incidentaloma: a case report of idiopathic CD4 lymphocytopenia and opportunistic infections. Am J Med Sci. 2010;340(2):158–9.PubMed
21.
Zurück zum Zitat Sharma A, Lal V, Modi M, et al. Idiopathic CD4 lymphocytopenia presenting as refractory cryptococcal meningitis. Ann Indian Acad Neurol. 2010;13(2):136–8.PubMedPubMedCentral Sharma A, Lal V, Modi M, et al. Idiopathic CD4 lymphocytopenia presenting as refractory cryptococcal meningitis. Ann Indian Acad Neurol. 2010;13(2):136–8.PubMedPubMedCentral
22.
Zurück zum Zitat Augustine R, Khalid M, Misri ZK, et al. Idiopathic CD4+ T-lymphocytopenia-a diagnostic dilemma. J Assoc Physicians India. 2010;58:45–7.PubMed Augustine R, Khalid M, Misri ZK, et al. Idiopathic CD4+ T-lymphocytopenia-a diagnostic dilemma. J Assoc Physicians India. 2010;58:45–7.PubMed
23.
Zurück zum Zitat Augusto E, Raguenaud ME, Kim C, et al. Idiopathic CD4+ T-lymphocytopenia with cryptococcal meningitis: first case report from Cambodia. Trop Doct. 2009;39(3):176–7.PubMed Augusto E, Raguenaud ME, Kim C, et al. Idiopathic CD4+ T-lymphocytopenia with cryptococcal meningitis: first case report from Cambodia. Trop Doct. 2009;39(3):176–7.PubMed
24.
Zurück zum Zitat Yilmaz-Demirdag Y, Wilson B, Lowery-Nordberg M, et al. Interleukin-2 treatment for persistent cryptococcal meningitis in a child with idiopathic CD4(+) T lymphocytopenia. Allergy Asthma Proc. 2008;29(4):421–4.PubMed Yilmaz-Demirdag Y, Wilson B, Lowery-Nordberg M, et al. Interleukin-2 treatment for persistent cryptococcal meningitis in a child with idiopathic CD4(+) T lymphocytopenia. Allergy Asthma Proc. 2008;29(4):421–4.PubMed
25.
Zurück zum Zitat Juhi T, BibhaBati M, Aradhana B, et al. Cryptococcal meningitis in a tertiary care hospital. Nippon Ishinkin Gakkai Zasshi. 2009;50(2):95–9. Juhi T, BibhaBati M, Aradhana B, et al. Cryptococcal meningitis in a tertiary care hospital. Nippon Ishinkin Gakkai Zasshi. 2009;50(2):95–9.
26.
Zurück zum Zitat Jha S, Ghosh P, Agarwal V. Cryptococcal meningitis unmasking idiopathic CD4 lymphocytopenia. Neurol India. 2007;55(3):312–4.PubMed Jha S, Ghosh P, Agarwal V. Cryptococcal meningitis unmasking idiopathic CD4 lymphocytopenia. Neurol India. 2007;55(3):312–4.PubMed
27.
Zurück zum Zitat Salit RB, Hankey KG, Yi R, et al. Detection of CD4(+) T-cell antibodies in a patient with idiopathic CD4 T lymphocytopenia and cryptococcal meningitis. Br J Haematol. 2010;139(1):133–7. Salit RB, Hankey KG, Yi R, et al. Detection of CD4(+) T-cell antibodies in a patient with idiopathic CD4 T lymphocytopenia and cryptococcal meningitis. Br J Haematol. 2010;139(1):133–7.
28.
Zurück zum Zitat Diamantis PK, Zacharenia S, Ireni K, et al. Idiopathic CD4+ T lymphocytopenia disclosed by recurrent cryptococcal meningitis. First case report from Greece. Int J Infect Dis. 2005;9:347–8. Diamantis PK, Zacharenia S, Ireni K, et al. Idiopathic CD4+ T lymphocytopenia disclosed by recurrent cryptococcal meningitis. First case report from Greece. Int J Infect Dis. 2005;9:347–8.
29.
Zurück zum Zitat Lepur D, Vranjican Z, Barsić B, et al. Idiopathic CD4+ T-lymphocytopenia-two unusual patients with cryptococcal meningitis. J Infect. 2005;51(2):E15–8.PubMed Lepur D, Vranjican Z, Barsić B, et al. Idiopathic CD4+ T-lymphocytopenia-two unusual patients with cryptococcal meningitis. J Infect. 2005;51(2):E15–8.PubMed
30.
Zurück zum Zitat Netea MG, Brouwer AE, Hoogendoorn EH, et al. Two patients with cryptococcal meningitis and idiopathic CD4 lymphopenia: defective cytokine production and reversal by recombinant interferon-gamma therapy. Clin Infect Dis. 2004;39(9):e83–7.PubMed Netea MG, Brouwer AE, Hoogendoorn EH, et al. Two patients with cryptococcal meningitis and idiopathic CD4 lymphopenia: defective cytokine production and reversal by recombinant interferon-gamma therapy. Clin Infect Dis. 2004;39(9):e83–7.PubMed
31.
32.
Zurück zum Zitat Ho CL, Chang BC, Hsu GC, et al. Pulmonary cryptococcoma with CD4 lymphocytopenia and meningitis in an HIV-negative patient. Respir Med. 1998;92:120–2.PubMed Ho CL, Chang BC, Hsu GC, et al. Pulmonary cryptococcoma with CD4 lymphocytopenia and meningitis in an HIV-negative patient. Respir Med. 1998;92:120–2.PubMed
33.
Zurück zum Zitat Yinnon AM, Bernard R, Ephaim S, et al. Invasive cryptococcosis in a family with epidermodysplasia verruciformis and idiopathic CD4 cell depletion. Clin Infect Dis Off Publ Infect Dis Soc Am. 1997;5:1252–3. Yinnon AM, Bernard R, Ephaim S, et al. Invasive cryptococcosis in a family with epidermodysplasia verruciformis and idiopathic CD4 cell depletion. Clin Infect Dis Off Publ Infect Dis Soc Am. 1997;5:1252–3.
34.
Zurück zum Zitat Ramirez JA, Srinath L, Ahkee S, et al. HIV-negative “AIDS” in Kentucky: a case of idiopathic CD4+ lymphopenia and cryptococcal meningitis. South Med J. 1994;87(7):751–2.PubMed Ramirez JA, Srinath L, Ahkee S, et al. HIV-negative “AIDS” in Kentucky: a case of idiopathic CD4+ lymphopenia and cryptococcal meningitis. South Med J. 1994;87(7):751–2.PubMed
35.
Zurück zum Zitat Ostrowski M, Salit IE, Gold WL, et al. Idiopathic CD4+ T-lymphocytopenia in two patients. CMAJ. 1993;149(11):1679.PubMedPubMedCentral Ostrowski M, Salit IE, Gold WL, et al. Idiopathic CD4+ T-lymphocytopenia in two patients. CMAJ. 1993;149(11):1679.PubMedPubMedCentral
36.
Zurück zum Zitat Duncan RA, von Reyn CF, Alliegro GM, et al. Idiopathic CD4+ T-lymphocytopenia-four patients with opportunistic infections and no evidence of HIV infection. N Engl J Med. 1993;328(6):393–8.PubMed Duncan RA, von Reyn CF, Alliegro GM, et al. Idiopathic CD4+ T-lymphocytopenia-four patients with opportunistic infections and no evidence of HIV infection. N Engl J Med. 1993;328(6):393–8.PubMed
37.
Zurück zum Zitat Zhu LP, Wu JQ, Xu B, et al. Cryptococcal meningitis in non-HIV-infected patients in a Chinese tertiary care hospital, 1997–2007. Med Mycol. 2010;48(4):570–9.PubMed Zhu LP, Wu JQ, Xu B, et al. Cryptococcal meningitis in non-HIV-infected patients in a Chinese tertiary care hospital, 1997–2007. Med Mycol. 2010;48(4):570–9.PubMed
38.
Zurück zum Zitat Chen CH, Sy HN, Lin LJ, et al. Epidemiological characterization and prognostic factors in patients with confirmed cerebral cryptococcosis in central Taiwan. J Venom Anim Toxins Incl Trop Dis. 2015;21:12.PubMedPubMedCentral Chen CH, Sy HN, Lin LJ, et al. Epidemiological characterization and prognostic factors in patients with confirmed cerebral cryptococcosis in central Taiwan. J Venom Anim Toxins Incl Trop Dis. 2015;21:12.PubMedPubMedCentral
39.
Zurück zum Zitat Pappas PG, Perfect JR, Cloud GA, et al. Cryptococcosis in human immunodeficiency virus-negative patients in the era of effective azole therapy. Clin Infect Dis. 2001;33(5):690–9.PubMed Pappas PG, Perfect JR, Cloud GA, et al. Cryptococcosis in human immunodeficiency virus-negative patients in the era of effective azole therapy. Clin Infect Dis. 2001;33(5):690–9.PubMed
40.
Zurück zum Zitat Hung CW, Chang WN, Kung CT, et al. Predictors and long-term outcome of seizures in human immuno-deficiency virus (HIV)-negative cryptococcal meningitis. BMC Neurol. 2014;14:208.PubMedPubMedCentral Hung CW, Chang WN, Kung CT, et al. Predictors and long-term outcome of seizures in human immuno-deficiency virus (HIV)-negative cryptococcal meningitis. BMC Neurol. 2014;14:208.PubMedPubMedCentral
41.
Zurück zum Zitat Wu JQ, Xu B, Ou XT, et al. Factors associated with mortality in cryptococcal meningitis. Zhonghua Yi Xue Za Zhi. 2010;90(1):33–7.PubMed Wu JQ, Xu B, Ou XT, et al. Factors associated with mortality in cryptococcal meningitis. Zhonghua Yi Xue Za Zhi. 2010;90(1):33–7.PubMed
42.
Zurück zum Zitat Diamond RD, Bennett JE. Prognostic factors in cryptococcal meningitis. A study in 111 cases. Ann Intern Med. 1974;80(2):176–81.PubMed Diamond RD, Bennett JE. Prognostic factors in cryptococcal meningitis. A study in 111 cases. Ann Intern Med. 1974;80(2):176–81.PubMed
43.
Zurück zum Zitat Lee YC, Wang JT, Sun HY, et al. Comparisons of clinical features and mortality of cryptococcal meningitis between patients with and without human immunodeficiency virus infection. J Microbiol Immunol Infect. 2011;44(5):338–45.PubMed Lee YC, Wang JT, Sun HY, et al. Comparisons of clinical features and mortality of cryptococcal meningitis between patients with and without human immunodeficiency virus infection. J Microbiol Immunol Infect. 2011;44(5):338–45.PubMed
44.
Zurück zum Zitat Anekthananon T, Manosuthi W, Chetchotisakd P, et al. Predictors of poor clinical outcome of cryptococcal meningitis in HIV-infected patients. Int J STD AIDS. 2011;22(11):665–70.PubMed Anekthananon T, Manosuthi W, Chetchotisakd P, et al. Predictors of poor clinical outcome of cryptococcal meningitis in HIV-infected patients. Int J STD AIDS. 2011;22(11):665–70.PubMed
45.
Zurück zum Zitat Cabello Úbeda A, Fortes Alen J, Gadea I, et al. Cryptococcal meningoencephalitis. Epidemiology and mortality risk factors in pre- and post-HAART era. Med Clin (Barc). 2016;146(9):397–401. Cabello Úbeda A, Fortes Alen J, Gadea I, et al. Cryptococcal meningoencephalitis. Epidemiology and mortality risk factors in pre- and post-HAART era. Med Clin (Barc). 2016;146(9):397–401.
46.
Zurück zum Zitat Hakyemez IN, Erdem H, Beraud G, et al. Prediction of unfavorable outcomes in cryptococcal meningitis: results of the multicenter Infectious Diseases International Research Initiative (ID-IRI) cryptococcal meningitis study. Eur J Clin Microbiol Infect Dis. 2018;37(7):1241–2.PubMed Hakyemez IN, Erdem H, Beraud G, et al. Prediction of unfavorable outcomes in cryptococcal meningitis: results of the multicenter Infectious Diseases International Research Initiative (ID-IRI) cryptococcal meningitis study. Eur J Clin Microbiol Infect Dis. 2018;37(7):1241–2.PubMed
47.
Zurück zum Zitat Zonios DI, Falloon J, Huang CY, et al. Cryptococcosis and idiopathic CD4 lymphocytopenia. Medicine. 2007;86(2):78–92.PubMed Zonios DI, Falloon J, Huang CY, et al. Cryptococcosis and idiopathic CD4 lymphocytopenia. Medicine. 2007;86(2):78–92.PubMed
Metadaten
Titel
Disseminated cryptococcosis with varicella-zoster virus coinfection of idiopathic CD4 + T lymphocytopenia: a case report and literature review
verfasst von
Li Fang
Junli Zhang
Fangfang Lv
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
Virology Journal / Ausgabe 1/2022
Elektronische ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-022-01765-7

Weitere Artikel der Ausgabe 1/2022

Virology Journal 1/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.