Skip to main content
Erschienen in: Brain Structure and Function 5/2019

20.04.2019 | Original Article

Distribution of excitatory and inhibitory axon terminals on the rat hypoglossal motoneurons

verfasst von: Sang Kyoo Paik, Hong Il Yoo, Seung Ki Choi, Jin Young Bae, Sook Kyung Park, Yong Chul Bae

Erschienen in: Brain Structure and Function | Ausgabe 5/2019

Einloggen, um Zugang zu erhalten

Abstract

Detailed information about the excitatory and inhibitory synapses on the hypoglossal motoneurons may help understand the neural mechanism for control of the hypoglossal motoneuron excitability and hence the precise and coordinated movements of the tongue during chewing, swallowing and licking. For this, we investigated the distribution of GABA-, glycine (Gly)- and glutamate (Glut)-immunopositive (+) axon terminals on the genioglossal (GG) motoneurons by retrograde tracing, electron microscopic immunohistochemistry, and quantitative analysis. Small GG motoneurons (< 400 μm2 in cross-sectional area) had fewer primary dendrites, significantly higher nuclear/cytoplasmic ratio, and smaller membrane area covered by synaptic boutons than large GG motoneurons (> 400 μm2). The fraction of inhibitory boutons (GABA + only, Gly + only, and mixed GABA +/Gly + boutons) of all boutons was significantly higher for small GG motoneurons than for large ones, whereas the fraction of Glut + boutons was significantly higher for large GG motoneurons than for small ones. Almost all boutons (> 95%) on both small and large GG motoneurons were GABA + , Gly + or Glut + . The frequency of mixed GABA +/Gly + boutons was the highest among inhibitory boutons types for both small and large GG motoneurons. These findings may elucidate the anatomical substrate for precise regulation of the motoneuron firing required for the fine movements of the tongue, and also suggest that the excitability of small and large GG motoneurons may be regulated differently.
Literatur
Zurück zum Zitat Alvarez FJ, Kavookjian AM, Light AR (1993) Ultrastructural morphology, synaptic relationships, and CGRP immunoreactivity of physiologically identified C-fiber terminals in the monkey spinal cord. J Comp Neurol 329:472–490CrossRefPubMed Alvarez FJ, Kavookjian AM, Light AR (1993) Ultrastructural morphology, synaptic relationships, and CGRP immunoreactivity of physiologically identified C-fiber terminals in the monkey spinal cord. J Comp Neurol 329:472–490CrossRefPubMed
Zurück zum Zitat Bach-y-Rita P, Lennerstrand G, Alvarado J, Nichols K, McHolm G (1977) Extraocular muscle fibers: ultrastructural identification of iontophoretically labeled fibers contracting in response to succinylcholine. Invest Ophthalmol Vis Sci 16:561–565PubMed Bach-y-Rita P, Lennerstrand G, Alvarado J, Nichols K, McHolm G (1977) Extraocular muscle fibers: ultrastructural identification of iontophoretically labeled fibers contracting in response to succinylcholine. Invest Ophthalmol Vis Sci 16:561–565PubMed
Zurück zum Zitat Bae YC, Choi BJ, Lee MG, Lee HJ, Park KP, Zhang LF, Honma S, Fukami H, Yoshida A, Ottersen OP, Shigenaga Y (2002) Quantitative ultrastructural analysis of glycine- and gamma-aminobutyric acid-immunoreactive terminals on trigeminal alpha- and gamma-motoneuron somata in the rat. J Comp Neurol 442:308–319CrossRefPubMed Bae YC, Choi BJ, Lee MG, Lee HJ, Park KP, Zhang LF, Honma S, Fukami H, Yoshida A, Ottersen OP, Shigenaga Y (2002) Quantitative ultrastructural analysis of glycine- and gamma-aminobutyric acid-immunoreactive terminals on trigeminal alpha- and gamma-motoneuron somata in the rat. J Comp Neurol 442:308–319CrossRefPubMed
Zurück zum Zitat Barret KE, Barman SM, Boitano S, Brooks H (2009) Excitable tissue: nerve. In: Barret KE, Barman SM, Boitano S, Brooks H (eds) Ganong’s review of medical physiology, 23rd edn. McGraw-Hill Medical, New York, pp 79–92 Barret KE, Barman SM, Boitano S, Brooks H (2009) Excitable tissue: nerve. In: Barret KE, Barman SM, Boitano S, Brooks H (eds) Ganong’s review of medical physiology, 23rd edn. McGraw-Hill Medical, New York, pp 79–92
Zurück zum Zitat Brull SJ (2014) Physiology of neuromuscular transmission. In: Murray MJ, Harrison BA, Mueller JT, Rose SH, Wass CT, Wedel DJ (eds) Faust’s anesthesiology review, 4th edn. Elsevier Saunders, Philadelphia, pp 98–99 Brull SJ (2014) Physiology of neuromuscular transmission. In: Murray MJ, Harrison BA, Mueller JT, Rose SH, Wass CT, Wedel DJ (eds) Faust’s anesthesiology review, 4th edn. Elsevier Saunders, Philadelphia, pp 98–99
Zurück zum Zitat Chamberlin NL, Eikermann M, Fassbender P, White DP, Malhotra A (2007) Genioglossus premotoneurons and the negative pressure reflex in rats. J Physiol 579:515–526CrossRefPubMed Chamberlin NL, Eikermann M, Fassbender P, White DP, Malhotra A (2007) Genioglossus premotoneurons and the negative pressure reflex in rats. J Physiol 579:515–526CrossRefPubMed
Zurück zum Zitat Chandler SH, Goldberg LJ (1982) Intracellular analysis of synaptic mechanisms controlling spontaneous and cortically induced rhythmical jaw movements in the guinea pig. J Neurophysiol 48:126–138CrossRefPubMed Chandler SH, Goldberg LJ (1982) Intracellular analysis of synaptic mechanisms controlling spontaneous and cortically induced rhythmical jaw movements in the guinea pig. J Neurophysiol 48:126–138CrossRefPubMed
Zurück zum Zitat Conradi S (1969) Ultrastructure and distribution of neuronal and glial elements on the motoneuron surface in the lumbosacral spinal cord of the adult cat. Acta Physiol Scand Suppl 332:5–48PubMed Conradi S (1969) Ultrastructure and distribution of neuronal and glial elements on the motoneuron surface in the lumbosacral spinal cord of the adult cat. Acta Physiol Scand Suppl 332:5–48PubMed
Zurück zum Zitat Dal Bo G, St-Gelais F, Danik M, Williams S, Cotton M, Trudeau LE (2004) Dopamine neurons in culture express VGLUT2 explaining their capacity to release glutamate at synapses in addition to dopamine. J Neurochem 88:1398–1405CrossRef Dal Bo G, St-Gelais F, Danik M, Williams S, Cotton M, Trudeau LE (2004) Dopamine neurons in culture express VGLUT2 explaining their capacity to release glutamate at synapses in addition to dopamine. J Neurochem 88:1398–1405CrossRef
Zurück zum Zitat Debanne D, Campanac E, Bialowas A, Carlier E, Alcaraz G (2011) Axon physiology. Physiol Rev 91:555–602CrossRefPubMed Debanne D, Campanac E, Bialowas A, Carlier E, Alcaraz G (2011) Axon physiology. Physiol Rev 91:555–602CrossRefPubMed
Zurück zum Zitat Destombes J, Horcholle-Bossavit G, Thiesson D, Jami L (1992) Alpha and gamma motoneurons in the peroneal nuclei of the cat spinal cord: an ultrastructural study. J Comp Neurol 317:79–90CrossRefPubMed Destombes J, Horcholle-Bossavit G, Thiesson D, Jami L (1992) Alpha and gamma motoneurons in the peroneal nuclei of the cat spinal cord: an ultrastructural study. J Comp Neurol 317:79–90CrossRefPubMed
Zurück zum Zitat Engelhardt JK, Silveira V, Morales FR, Pose I, Chase MH (2010) Serotoninergic control of glycinergic inhibitory postsynaptic currents in rat hypoglossal motoneurons. Brain Res 1345:1–8CrossRefPubMedPubMedCentral Engelhardt JK, Silveira V, Morales FR, Pose I, Chase MH (2010) Serotoninergic control of glycinergic inhibitory postsynaptic currents in rat hypoglossal motoneurons. Brain Res 1345:1–8CrossRefPubMedPubMedCentral
Zurück zum Zitat Fay RA, Norgren R (1997) Identification of rat brainstem multisynaptic connections to the oral motor nuclei using pseudorabies virus. III. Lingual muscle motor systems. Brain Res Brain Res Rev 25:291–311CrossRefPubMed Fay RA, Norgren R (1997) Identification of rat brainstem multisynaptic connections to the oral motor nuclei using pseudorabies virus. III. Lingual muscle motor systems. Brain Res Brain Res Rev 25:291–311CrossRefPubMed
Zurück zum Zitat Fried G, Terenius L, Hokfelt T, Goldstein M (1985) Evidence for differential localization of noradrenaline and neuropeptide Y in neuronal storage vesicles isolated from rat vas deferens. J Neurosci 5:450–458CrossRefPubMed Fried G, Terenius L, Hokfelt T, Goldstein M (1985) Evidence for differential localization of noradrenaline and neuropeptide Y in neuronal storage vesicles isolated from rat vas deferens. J Neurosci 5:450–458CrossRefPubMed
Zurück zum Zitat Gestreau C, Dutschmann M, Obled S, Bianchi AL (2005) Activation of XII motoneurons and premotor neurons during various oropharyngeal behaviors. Respir Physiol Neurobiol 147:159–176CrossRefPubMed Gestreau C, Dutschmann M, Obled S, Bianchi AL (2005) Activation of XII motoneurons and premotor neurons during various oropharyngeal behaviors. Respir Physiol Neurobiol 147:159–176CrossRefPubMed
Zurück zum Zitat Goldberg LJ, Chandler SH, Tal M (1982) Relationship between jaw movements and trigeminal motoneuron membrane-potential fluctuations during cortically induced rhythmical jaw movements in the guinea pig. J Neurophysiol 48:110–138CrossRefPubMed Goldberg LJ, Chandler SH, Tal M (1982) Relationship between jaw movements and trigeminal motoneuron membrane-potential fluctuations during cortically induced rhythmical jaw movements in the guinea pig. J Neurophysiol 48:110–138CrossRefPubMed
Zurück zum Zitat Hall WC (2004) Lower motor neuron circuits and motor control. In: Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO, Williams SM (eds) Neuroscience, 3rd edn. Sinauer Associates, Sunderland, pp 371–392 Hall WC (2004) Lower motor neuron circuits and motor control. In: Purves D, Augustine GJ, Fitzpatrick D, Hall WC, LaMantia A-S, McNamara JO, Williams SM (eds) Neuroscience, 3rd edn. Sinauer Associates, Sunderland, pp 371–392
Zurück zum Zitat Henry JN, Manaker S (1998) Colocalization of substance P or enkephalin in serotonergic neuronal afferents to the hypoglossal nucleus in the rat. J Comp Neurol 391:491–505CrossRefPubMed Henry JN, Manaker S (1998) Colocalization of substance P or enkephalin in serotonergic neuronal afferents to the hypoglossal nucleus in the rat. J Comp Neurol 391:491–505CrossRefPubMed
Zurück zum Zitat Horner RL (2009) Emerging principles and neural substrates underlying tonic sleep-state-dependent influences on respiratory motor activity. Philos Trans R Soc Lond B Biol Sci 364:2553–2564CrossRefPubMedPubMedCentral Horner RL (2009) Emerging principles and neural substrates underlying tonic sleep-state-dependent influences on respiratory motor activity. Philos Trans R Soc Lond B Biol Sci 364:2553–2564CrossRefPubMedPubMedCentral
Zurück zum Zitat Ito T, Hioki H, Nakamura K, Kaneko T, Iino S, Nojyo Y (2008) Some gamma-motoneurons contain gamma-aminobutyric acid in the rat cervical spinal cord. Brain Res 1201:78–87CrossRefPubMed Ito T, Hioki H, Nakamura K, Kaneko T, Iino S, Nojyo Y (2008) Some gamma-motoneurons contain gamma-aminobutyric acid in the rat cervical spinal cord. Brain Res 1201:78–87CrossRefPubMed
Zurück zum Zitat Johnson MD (1994) Synaptic glutamate release by postnatal rat serotonergic neurons in microculture. Neuron 12:433–442CrossRefPubMed Johnson MD (1994) Synaptic glutamate release by postnatal rat serotonergic neurons in microculture. Neuron 12:433–442CrossRefPubMed
Zurück zum Zitat Jonas P, Bischofberger J, Sandkuhler J (1998) Corelease of two fast neurotransmitters at a central synapse. Science 281:419–424CrossRefPubMed Jonas P, Bischofberger J, Sandkuhler J (1998) Corelease of two fast neurotransmitters at a central synapse. Science 281:419–424CrossRefPubMed
Zurück zum Zitat Kolston J, Osen KK, Hackney CM, Ottersen OP, Storm-Mathisen J (1992) An atlas of glycine- and GABA-like immunoreactivity and colocalization in the cochlear nuclear complex of the guinea pig. Anat Embryol (Berl) 186:443–465CrossRef Kolston J, Osen KK, Hackney CM, Ottersen OP, Storm-Mathisen J (1992) An atlas of glycine- and GABA-like immunoreactivity and colocalization in the cochlear nuclear complex of the guinea pig. Anat Embryol (Berl) 186:443–465CrossRef
Zurück zum Zitat Krol RC, Knuth SL, Bartlett D Jr (1984) Selective reduction of genioglossal muscle activity by alcohol in normal human subjects. Am Rev Respir Dis 129:247–250PubMed Krol RC, Knuth SL, Bartlett D Jr (1984) Selective reduction of genioglossal muscle activity by alcohol in normal human subjects. Am Rev Respir Dis 129:247–250PubMed
Zurück zum Zitat Kubo Y, Enomoto S, Nakamura Y (1981) Synaptic basis of orbital cortically induced rhythmical masticatory activity of trigeminal motoneurons in immobilized cats. Brain Res 230:97–110CrossRefPubMed Kubo Y, Enomoto S, Nakamura Y (1981) Synaptic basis of orbital cortically induced rhythmical masticatory activity of trigeminal motoneurons in immobilized cats. Brain Res 230:97–110CrossRefPubMed
Zurück zum Zitat Lawson SN, Waddell PJ (1991) Soma neurofilament immunoreactivity is related to cell size and fibre conduction velocity in rat primary sensory neurons. J Physiol 435:41–63CrossRefPubMedPubMedCentral Lawson SN, Waddell PJ (1991) Soma neurofilament immunoreactivity is related to cell size and fibre conduction velocity in rat primary sensory neurons. J Physiol 435:41–63CrossRefPubMedPubMedCentral
Zurück zum Zitat Li YQ, Takada M, Kaneko T, Mizuno N (1997) Distribution of GABAergic and glycinergic premotor neurons projecting to the facial and hypoglossal nuclei in the rat. J Comp Neurol 378:283–294CrossRefPubMed Li YQ, Takada M, Kaneko T, Mizuno N (1997) Distribution of GABAergic and glycinergic premotor neurons projecting to the facial and hypoglossal nuclei in the rat. J Comp Neurol 378:283–294CrossRefPubMed
Zurück zum Zitat Liu X, Sood S, Liu H, Nolan P, Morrison JL, Horner RL (2003) Suppression of genioglossus muscle tone and activity during reflex hypercapnic stimulation by GABA(A) mechanisms at the hypoglossal motor nucleus in vivo. Neuroscience 116:249–259CrossRefPubMed Liu X, Sood S, Liu H, Nolan P, Morrison JL, Horner RL (2003) Suppression of genioglossus muscle tone and activity during reflex hypercapnic stimulation by GABA(A) mechanisms at the hypoglossal motor nucleus in vivo. Neuroscience 116:249–259CrossRefPubMed
Zurück zum Zitat Lu T, Rubio ME, Trussell LO (2008) Glycinergic transmission shaped by the corelease of GABA in a mammalian auditory synapse. Neuron 57:524–535CrossRefPubMed Lu T, Rubio ME, Trussell LO (2008) Glycinergic transmission shaped by the corelease of GABA in a mammalian auditory synapse. Neuron 57:524–535CrossRefPubMed
Zurück zum Zitat Morrison JL, Sood S, Liu H, Park E, Nolan P, Horner RL (2003) GABAA receptor antagonism at the hypoglossal motor nucleus increases genioglossus muscle activity in NREM but not REM sleep. J Physiol 548:569–583CrossRefPubMedPubMedCentral Morrison JL, Sood S, Liu H, Park E, Nolan P, Horner RL (2003) GABAA receptor antagonism at the hypoglossal motor nucleus increases genioglossus muscle activity in NREM but not REM sleep. J Physiol 548:569–583CrossRefPubMedPubMedCentral
Zurück zum Zitat Muller E, Triller A, Legendre P (2004) Glycine receptors and GABA receptor alpha 1 and gamma 2 subunits during the development of mouse hypoglossal nucleus. Eur J Neurosci 20:3286–3300CrossRefPubMed Muller E, Triller A, Legendre P (2004) Glycine receptors and GABA receptor alpha 1 and gamma 2 subunits during the development of mouse hypoglossal nucleus. Eur J Neurosci 20:3286–3300CrossRefPubMed
Zurück zum Zitat Muller E, Le Corronc H, Triller A, Legendre P (2006) Developmental dissociation of presynaptic inhibitory neurotransmitter and postsynaptic receptor clustering in the hypoglossal nucleus. Mol Cell Neurosci 32:254–273CrossRefPubMed Muller E, Le Corronc H, Triller A, Legendre P (2006) Developmental dissociation of presynaptic inhibitory neurotransmitter and postsynaptic receptor clustering in the hypoglossal nucleus. Mol Cell Neurosci 32:254–273CrossRefPubMed
Zurück zum Zitat Nabekura J, Katsurabayashi S, Kakazu Y, Shibata S, Matsubara A, Jinno S, Mizoguchi Y, Sasaki A, Ishibashi H (2004) Developmental switch from GABA to glycine release in single central synaptic terminals. Nat Neurosci 7:17–23CrossRefPubMed Nabekura J, Katsurabayashi S, Kakazu Y, Shibata S, Matsubara A, Jinno S, Mizoguchi Y, Sasaki A, Ishibashi H (2004) Developmental switch from GABA to glycine release in single central synaptic terminals. Nat Neurosci 7:17–23CrossRefPubMed
Zurück zum Zitat O’Brien JA, Berger AJ (2001) The nonuniform distribution of the GABA(A) receptor alpha 1 subunit influences inhibitory synaptic transmission to motoneurons within a motor nucleus. J Neurosci 21:8482–8494CrossRefPubMed O’Brien JA, Berger AJ (2001) The nonuniform distribution of the GABA(A) receptor alpha 1 subunit influences inhibitory synaptic transmission to motoneurons within a motor nucleus. J Neurosci 21:8482–8494CrossRefPubMed
Zurück zum Zitat Ornung G, Shupliakov O, Linda H, Ottersen OP, Storm-Mathisen J, Ulfhake B, Cullheim S (1996) Qualitative and quantitative analysis of glycine- and GABA-immunoreactive nerve terminals on motoneuron cell bodies in the cat spinal cord: a postembedding electron microscopic study. J Comp Neurol 365:413–426CrossRefPubMed Ornung G, Shupliakov O, Linda H, Ottersen OP, Storm-Mathisen J, Ulfhake B, Cullheim S (1996) Qualitative and quantitative analysis of glycine- and GABA-immunoreactive nerve terminals on motoneuron cell bodies in the cat spinal cord: a postembedding electron microscopic study. J Comp Neurol 365:413–426CrossRefPubMed
Zurück zum Zitat Ornung G, Ottersen OP, Cullheim S, Ulfhake B (1998) Distribution of glutamate-, glycine- and GABA-immunoreactive nerve terminals on dendrites in the cat spinal motor nucleus. Exp Brain Res 118:517–532CrossRefPubMed Ornung G, Ottersen OP, Cullheim S, Ulfhake B (1998) Distribution of glutamate-, glycine- and GABA-immunoreactive nerve terminals on dendrites in the cat spinal motor nucleus. Exp Brain Res 118:517–532CrossRefPubMed
Zurück zum Zitat Ottersen OP (1989) Quantitative electron microscopic immunocytochemistry of neuroactive amino acids. Anat Embryol (Berl) 180:1–15CrossRef Ottersen OP (1989) Quantitative electron microscopic immunocytochemistry of neuroactive amino acids. Anat Embryol (Berl) 180:1–15CrossRef
Zurück zum Zitat Ottersen OP, Storm-Mathisen J (1984) Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. J Comp Neurol 229:374–392CrossRefPubMed Ottersen OP, Storm-Mathisen J (1984) Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. J Comp Neurol 229:374–392CrossRefPubMed
Zurück zum Zitat Ottersen OP, Storm-Mathisen J, Madsen S, Skumlien S, Stromhaug J (1986) Evaluation of the immunocytochemical method for amino acids. Med Biol 64:147–158PubMed Ottersen OP, Storm-Mathisen J, Madsen S, Skumlien S, Stromhaug J (1986) Evaluation of the immunocytochemical method for amino acids. Med Biol 64:147–158PubMed
Zurück zum Zitat Paik SK, Bae JY, Park SE, Moritani M, Yoshida A, Yeo EJ, Choi KS, Ahn DK, Moon C, Shigenaga Y, Bae YC (2007) Developmental changes in distribution of gamma-aminobutyric acid- and glycine-immunoreactive boutons on rat trigeminal motoneurons. I. Jaw-closing motoneurons. J Comp Neurol 503:779–789CrossRefPubMed Paik SK, Bae JY, Park SE, Moritani M, Yoshida A, Yeo EJ, Choi KS, Ahn DK, Moon C, Shigenaga Y, Bae YC (2007) Developmental changes in distribution of gamma-aminobutyric acid- and glycine-immunoreactive boutons on rat trigeminal motoneurons. I. Jaw-closing motoneurons. J Comp Neurol 503:779–789CrossRefPubMed
Zurück zum Zitat Paik SK, Kwak WK, Bae JY, Na YK, Park SY, Yi HW, Ahn DK, Ottersen OP, Yoshida A, Bae YC (2012a) Development of gamma-aminobutyric acid-, glycine-, and glutamate-immunopositive boutons on rat jaw-opening motoneurons. J Comp Neurol 520:1212–1226CrossRefPubMed Paik SK, Kwak WK, Bae JY, Na YK, Park SY, Yi HW, Ahn DK, Ottersen OP, Yoshida A, Bae YC (2012a) Development of gamma-aminobutyric acid-, glycine-, and glutamate-immunopositive boutons on rat jaw-opening motoneurons. J Comp Neurol 520:1212–1226CrossRefPubMed
Zurück zum Zitat Paik SK, Kwak MK, Bae JY, Yi HW, Yoshida A, Ahn DK, Bae YC (2012b) gamma-Aminobutyric acid-, glycine-, and glutamate-immunopositive boutons on mesencephalic trigeminal neurons that innervate jaw-closing muscle spindles in the rat: ultrastructure and development. J Comp Neurol 520:3414–3427CrossRefPubMed Paik SK, Kwak MK, Bae JY, Yi HW, Yoshida A, Ahn DK, Bae YC (2012b) gamma-Aminobutyric acid-, glycine-, and glutamate-immunopositive boutons on mesencephalic trigeminal neurons that innervate jaw-closing muscle spindles in the rat: ultrastructure and development. J Comp Neurol 520:3414–3427CrossRefPubMed
Zurück zum Zitat Pang YW, Li JL, Nakamura K, Wu S, Kaneko T, Mizuno N (2006) Expression of vesicular glutamate transporter 1 immunoreactivity in peripheral and central endings of trigeminal mesencephalic nucleus neurons in the rat. J Comp Neurol 498:129–141CrossRefPubMed Pang YW, Li JL, Nakamura K, Wu S, Kaneko T, Mizuno N (2006) Expression of vesicular glutamate transporter 1 immunoreactivity in peripheral and central endings of trigeminal mesencephalic nucleus neurons in the rat. J Comp Neurol 498:129–141CrossRefPubMed
Zurück zum Zitat Park SK, Lee DS, Bae JY, Bae YC (2016) Central connectivity of the chorda tympani afferent terminals in the rat rostral nucleus of the solitary tract. Brain Struct Funct 221:1125–1137CrossRefPubMed Park SK, Lee DS, Bae JY, Bae YC (2016) Central connectivity of the chorda tympani afferent terminals in the rat rostral nucleus of the solitary tract. Brain Struct Funct 221:1125–1137CrossRefPubMed
Zurück zum Zitat Peters A, Palay SL, Webster Hd (1991) The fine structure of the nervous system: neurons and their supporting cells, 3rd edn. Oxford University Press, New York Peters A, Palay SL, Webster Hd (1991) The fine structure of the nervous system: neurons and their supporting cells, 3rd edn. Oxford University Press, New York
Zurück zum Zitat Remmers JE, deGroot WJ, Sauerland EK, Anch AM (1978) Pathogenesis of upper airway occlusion during sleep. J Appl Physiol Respir Environ Exerc Physiol 44:931–938 Remmers JE, deGroot WJ, Sauerland EK, Anch AM (1978) Pathogenesis of upper airway occlusion during sleep. J Appl Physiol Respir Environ Exerc Physiol 44:931–938
Zurück zum Zitat Richardson KA, Gatti PJ (2004) Genioglossal hypoglossal motoneurons contact substance P-like immunoreactive nerve terminals in the cat: a dual labeling electron microscopic study. Exp Brain Res 154:327–332CrossRefPubMed Richardson KA, Gatti PJ (2004) Genioglossal hypoglossal motoneurons contact substance P-like immunoreactive nerve terminals in the cat: a dual labeling electron microscopic study. Exp Brain Res 154:327–332CrossRefPubMed
Zurück zum Zitat Russier M, Kopysova IL, Ankri N, Ferrand N, Debanne D (2002) GABA and glycine co-release optimizes functional inhibition in rat brainstem motoneurons in vitro. J Physiol 541:123–137CrossRefPubMedPubMedCentral Russier M, Kopysova IL, Ankri N, Ferrand N, Debanne D (2002) GABA and glycine co-release optimizes functional inhibition in rat brainstem motoneurons in vitro. J Physiol 541:123–137CrossRefPubMedPubMedCentral
Zurück zum Zitat Sahara Y, Hashimoto N, Kato M, Nakamura Y (1988) Synaptic bases of cortically-induced rhythmical hypoglossal motoneuronal activity in the cat. Neurosci Res 5:439–452CrossRefPubMed Sahara Y, Hashimoto N, Kato M, Nakamura Y (1988) Synaptic bases of cortically-induced rhythmical hypoglossal motoneuronal activity in the cat. Neurosci Res 5:439–452CrossRefPubMed
Zurück zum Zitat Sawczuk A, Mosier KM (2001) Neural control of tongue movement with respect to respiration and swallowing. Crit Rev Oral Biol Med 12:18–37CrossRefPubMed Sawczuk A, Mosier KM (2001) Neural control of tongue movement with respect to respiration and swallowing. Crit Rev Oral Biol Med 12:18–37CrossRefPubMed
Zurück zum Zitat Scrima L, Broudy M, Nay KN, Cohn MA (1982) Increased severity of obstructive sleep apnea after bedtime alcohol ingestion: diagnostic potential and proposed mechanism of action. Sleep 5:318–328CrossRefPubMed Scrima L, Broudy M, Nay KN, Cohn MA (1982) Increased severity of obstructive sleep apnea after bedtime alcohol ingestion: diagnostic potential and proposed mechanism of action. Sleep 5:318–328CrossRefPubMed
Zurück zum Zitat Sharifullina E, Ostroumov K, Nistri A (2005) Metabotropic glutamate receptor activity induces a novel oscillatory pattern in neonatal rat hypoglossal motoneurones. J Physiol 563:139–159CrossRefPubMed Sharifullina E, Ostroumov K, Nistri A (2005) Metabotropic glutamate receptor activity induces a novel oscillatory pattern in neonatal rat hypoglossal motoneurones. J Physiol 563:139–159CrossRefPubMed
Zurück zum Zitat Shepherd GM, Koch C (1990) Appendix: Dendritic electrotonus and synaptic integration. In: Shepherd GM (ed) The synaptic organization of the brain, 3rd edn. Oxford University Press, New York, pp 439–473 Shepherd GM, Koch C (1990) Appendix: Dendritic electrotonus and synaptic integration. In: Shepherd GM (ed) The synaptic organization of the brain, 3rd edn. Oxford University Press, New York, pp 439–473
Zurück zum Zitat Shigenaga Y, Moritani M, Oh SJ, Park KP, Paik SK, Bae JY, Kim HN, Ma SK, Park CW, Yoshida A, Ottersen OP, Bae YC (2005) The distribution of inhibitory and excitatory synapses on single, reconstructed jaw-opening motoneurons in the cat. Neuroscience 133:507–518CrossRefPubMed Shigenaga Y, Moritani M, Oh SJ, Park KP, Paik SK, Bae JY, Kim HN, Ma SK, Park CW, Yoshida A, Ottersen OP, Bae YC (2005) The distribution of inhibitory and excitatory synapses on single, reconstructed jaw-opening motoneurons in the cat. Neuroscience 133:507–518CrossRefPubMed
Zurück zum Zitat Simon M, Destombes J, Horcholle-Bossavit G, Thiesson D (1996) Postnatal development of alpha- and gamma-peroneal motoneurons in kittens: an ultrastructural study. Neurosci Res 25:77–89CrossRefPubMed Simon M, Destombes J, Horcholle-Bossavit G, Thiesson D (1996) Postnatal development of alpha- and gamma-peroneal motoneurons in kittens: an ultrastructural study. Neurosci Res 25:77–89CrossRefPubMed
Zurück zum Zitat Singer JH, Berger AJ (2000) Development of inhibitory synaptic transmission to motoneurons. Brain Res Bull 53:553–560CrossRefPubMed Singer JH, Berger AJ (2000) Development of inhibitory synaptic transmission to motoneurons. Brain Res Bull 53:553–560CrossRefPubMed
Zurück zum Zitat Stanek E 4th, Cheng S, Takatoh J, Han BX, Wang F (2014) Monosynaptic premotor circuit tracing reveals neural substrates for oro-motor coordination. Elife 3:e02511CrossRefPubMedPubMedCentral Stanek E 4th, Cheng S, Takatoh J, Han BX, Wang F (2014) Monosynaptic premotor circuit tracing reveals neural substrates for oro-motor coordination. Elife 3:e02511CrossRefPubMedPubMedCentral
Zurück zum Zitat Steenland HW, Liu H, Horner RL (2008) Endogenous glutamatergic control of rhythmically active mammalian respiratory motoneurons in vivo. J Neurosci 28:6826–6835CrossRefPubMedPubMedCentral Steenland HW, Liu H, Horner RL (2008) Endogenous glutamatergic control of rhythmically active mammalian respiratory motoneurons in vivo. J Neurosci 28:6826–6835CrossRefPubMedPubMedCentral
Zurück zum Zitat Storm-Mathisen J, Leknes AK, Bore AT, Vaaland JL, Edminson P, Haug FM, Ottersen OP (1983) First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301:517–520CrossRefPubMed Storm-Mathisen J, Leknes AK, Bore AT, Vaaland JL, Edminson P, Haug FM, Ottersen OP (1983) First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301:517–520CrossRefPubMed
Zurück zum Zitat Sutherland FI, Bannatyne BA, Kerr R, Riddell JS, Maxwell DJ (2002) Inhibitory amino acid transmitters associated with axons in presynaptic apposition to cutaneous primary afferent axons in the cat spinal cord. J Comp Neurol 452:154–162CrossRefPubMed Sutherland FI, Bannatyne BA, Kerr R, Riddell JS, Maxwell DJ (2002) Inhibitory amino acid transmitters associated with axons in presynaptic apposition to cutaneous primary afferent axons in the cat spinal cord. J Comp Neurol 452:154–162CrossRefPubMed
Zurück zum Zitat Travers JB (2015) Oromotor nuclei. In: Paxinos G (ed) The rat nervous system, 4th edn. Academic Press, London, pp 223–245CrossRef Travers JB (2015) Oromotor nuclei. In: Paxinos G (ed) The rat nervous system, 4th edn. Academic Press, London, pp 223–245CrossRef
Zurück zum Zitat Travers JB, Yoo JE, Chandran R, Herman K, Travers SP (2005) Neurotransmitter phenotypes of intermediate zone reticular formation projections to the motor trigeminal and hypoglossal nuclei in the rat. J Comp Neurol 488:28–47CrossRefPubMed Travers JB, Yoo JE, Chandran R, Herman K, Travers SP (2005) Neurotransmitter phenotypes of intermediate zone reticular formation projections to the motor trigeminal and hypoglossal nuclei in the rat. J Comp Neurol 488:28–47CrossRefPubMed
Zurück zum Zitat van Brederode JF, Yanagawa Y, Berger AJ (2011) GAD67-GFP + neurons in the Nucleus of Roller: a possible source of inhibitory input to hypoglossal motoneurons. I. Morphology and firing properties. J Neurophysiol 105:235–248CrossRefPubMed van Brederode JF, Yanagawa Y, Berger AJ (2011) GAD67-GFP + neurons in the Nucleus of Roller: a possible source of inhibitory input to hypoglossal motoneurons. I. Morphology and firing properties. J Neurophysiol 105:235–248CrossRefPubMed
Zurück zum Zitat Weinberg RJ, van Eyck SL (1991) A tetramethylbenzidine/tungstate reaction for horseradish peroxidase histochemistry. J Histochem Cytochem 39:1143–1148CrossRefPubMed Weinberg RJ, van Eyck SL (1991) A tetramethylbenzidine/tungstate reaction for horseradish peroxidase histochemistry. J Histochem Cytochem 39:1143–1148CrossRefPubMed
Zurück zum Zitat Yamuy J, Fung SJ, Xi M, Morales FR, Chase MH (1999) Hypoglossal motoneurons are postsynaptically inhibited during carbachol-induced rapid eye movement sleep. Neuroscience 94:11–15CrossRefPubMed Yamuy J, Fung SJ, Xi M, Morales FR, Chase MH (1999) Hypoglossal motoneurons are postsynaptically inhibited during carbachol-induced rapid eye movement sleep. Neuroscience 94:11–15CrossRefPubMed
Zurück zum Zitat Yokota S, Niu JG, Tsumori T, Oka T, Yasui Y (2011) Glutamatergic Kolliker-Fuse nucleus neurons innervate hypoglossal motoneurons whose axons form the medial (protruder) branch of the hypoglossal nerve in the rat. Brain Res 1404:10–20CrossRefPubMed Yokota S, Niu JG, Tsumori T, Oka T, Yasui Y (2011) Glutamatergic Kolliker-Fuse nucleus neurons innervate hypoglossal motoneurons whose axons form the medial (protruder) branch of the hypoglossal nerve in the rat. Brain Res 1404:10–20CrossRefPubMed
Zurück zum Zitat Zhang J, Pendlebury WW, Luo P (2003) Synaptic organization of monosynaptic connections from mesencephalic trigeminal nucleus neurons to hypoglossal motoneurons in the rat. Synapse 49:157–169CrossRefPubMed Zhang J, Pendlebury WW, Luo P (2003) Synaptic organization of monosynaptic connections from mesencephalic trigeminal nucleus neurons to hypoglossal motoneurons in the rat. Synapse 49:157–169CrossRefPubMed
Zurück zum Zitat Zhou L, Wang ZY, Lian H, Song HY, Zhang YM, Zhang XL, Fan RF, Zheng LF, Zhu JX (2014) Altered expression of dopamine receptors in cholinergic motoneurons of the hypoglossal nucleus in a 6-OHDA-induced Parkinson’s disease rat model. Biochem Biophys Res Commun 452:560–566CrossRefPubMed Zhou L, Wang ZY, Lian H, Song HY, Zhang YM, Zhang XL, Fan RF, Zheng LF, Zhu JX (2014) Altered expression of dopamine receptors in cholinergic motoneurons of the hypoglossal nucleus in a 6-OHDA-induced Parkinson’s disease rat model. Biochem Biophys Res Commun 452:560–566CrossRefPubMed
Metadaten
Titel
Distribution of excitatory and inhibitory axon terminals on the rat hypoglossal motoneurons
verfasst von
Sang Kyoo Paik
Hong Il Yoo
Seung Ki Choi
Jin Young Bae
Sook Kyung Park
Yong Chul Bae
Publikationsdatum
20.04.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 5/2019
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-019-01874-0

Weitere Artikel der Ausgabe 5/2019

Brain Structure and Function 5/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.