Skip to main content
Erschienen in: Brain Structure and Function 1/2017

12.04.2016 | Original Article

Distribution of growth hormone-responsive cells in the mouse brain

verfasst von: Isadora C. Furigo, Martin Metzger, Pryscila D. S. Teixeira, Carlos R. J. Soares, Jose Donato Jr.

Erschienen in: Brain Structure and Function | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

Abstract

Growth hormone (GH) exerts important biological effects primarily related to growth and metabolism. However, the role of GH signaling in the brain is still elusive. To better understand GH functions in the brain, we mapped the distribution of GH-responsive cells and identified the receptors involved in GH central effects. For this purpose, mice received an acute intraperitoneal challenge with specific ligands of the GH receptor (mouse GH), prolactin receptor (prolactin) or both receptors (human GH), and their brains were subsequently processed immunohistochemically to detect the phosphorylated form of STAT5 (pSTAT5). GH induced pSTAT5 immunoreactivity in neurons, but not in astroglial cells of numerous brain regions, including the cerebral cortex, nucleus accumbens, hippocampus, septum and amygdala. The most prominent populations of GH-responsive neurons were located in hypothalamic areas, including several preoptic divisions, and the supraoptic, paraventricular, suprachiasmatic, periventricular, arcuate, ventromedial, dorsomedial, tuberal, posterior and ventral premammillary nuclei. Interestingly, many brainstem structures also exhibited GH-responsive cells. Experiments combining immunohistochemistry for pSTAT5 and in situ hybridization for GH and prolactin receptors revealed that human GH induced pSTAT5 in most, but not all, brain regions through both prolactin and GH receptors. Additionally, males and females exhibited a similar number of GH-responsive cells in forebrain structures known to be sexually dimorphic. In summary, we found GH-responsive cells primarily distributed in brain regions implicated in neurovegetative, emotional/motivational and cognitive functions. Our findings deepen the understanding of GH signaling in the brain and suggest that central GH signaling is likely more ample and complex than formerly recognized.
Literatur
Zurück zum Zitat Aberg ND, Brywe KG, Isgaard J (2006) Aspects of growth hormone and insulin-like growth factor-I related to neuroprotection, regeneration, and functional plasticity in the adult brain. Sci World J 6:53–80. doi:10.1100/tsw.2006.22 CrossRef Aberg ND, Brywe KG, Isgaard J (2006) Aspects of growth hormone and insulin-like growth factor-I related to neuroprotection, regeneration, and functional plasticity in the adult brain. Sci World J 6:53–80. doi:10.​1100/​tsw.​2006.​22 CrossRef
Zurück zum Zitat Argente J, Chowen JA, Zeitler P, Clifton DK, Steiner RA (1991) Sexual dimorphism of growth hormone-releasing hormone and somatostatin gene expression in the hypothalamus of the rat during development. Endocrinology 128(5):2369–2375. doi:10.1210/endo-128-5-2369 CrossRefPubMed Argente J, Chowen JA, Zeitler P, Clifton DK, Steiner RA (1991) Sexual dimorphism of growth hormone-releasing hormone and somatostatin gene expression in the hypothalamus of the rat during development. Endocrinology 128(5):2369–2375. doi:10.​1210/​endo-128-5-2369 CrossRefPubMed
Zurück zum Zitat Bouyer K, Loudes C, Robinson IC, Epelbaum J, Faivre-Bauman A (2006) Sexually dimorphic distribution of sst2A somatostatin receptors on growth hormone-releasing hormone neurons in mice. Endocrinology 147(6):2670–2674. doi:10.1210/en.2005-1462 CrossRefPubMed Bouyer K, Loudes C, Robinson IC, Epelbaum J, Faivre-Bauman A (2006) Sexually dimorphic distribution of sst2A somatostatin receptors on growth hormone-releasing hormone neurons in mice. Endocrinology 147(6):2670–2674. doi:10.​1210/​en.​2005-1462 CrossRefPubMed
Zurück zum Zitat Brem G, Wanke R, Wolf E, Buchmuller T, Muller M, Brenig B, Hermanns W (1989) Multiple consequences of human growth hormone expression in transgenic mice. Mol Biol Med 6(6):531–547PubMed Brem G, Wanke R, Wolf E, Buchmuller T, Muller M, Brenig B, Hermanns W (1989) Multiple consequences of human growth hormone expression in transgenic mice. Mol Biol Med 6(6):531–547PubMed
Zurück zum Zitat Brown RS, Piet R, Herbison AE, Grattan DR (2012) Differential actions of prolactin on electrical activity and intracellular signal transduction in hypothalamic neurons. Endocrinology 153(5):2375–2384. doi:10.1210/en.2011-2005 CrossRefPubMed Brown RS, Piet R, Herbison AE, Grattan DR (2012) Differential actions of prolactin on electrical activity and intracellular signal transduction in hypothalamic neurons. Endocrinology 153(5):2375–2384. doi:10.​1210/​en.​2011-2005 CrossRefPubMed
Zurück zum Zitat Burton KA, Kabigting EB, Clifton DK, Steiner RA (1992) Growth hormone receptor messenger ribonucleic acid distribution in the adult male rat brain and its colocalization in hypothalamic somatostatin neurons. Endocrinology 131(2):958–963. doi:10.1210/endo.131.2.1353444 PubMed Burton KA, Kabigting EB, Clifton DK, Steiner RA (1992) Growth hormone receptor messenger ribonucleic acid distribution in the adult male rat brain and its colocalization in hypothalamic somatostatin neurons. Endocrinology 131(2):958–963. doi:10.​1210/​endo.​131.​2.​1353444 PubMed
Zurück zum Zitat Carroll PV, Christ ER, Bengtsson BA, Carlsson L, Christiansen JS, Clemmons D, Hintz R, Ho K, Laron Z, Sizonenko P, Sonksen PH, Tanaka T, Thorne M (1998) Growth hormone deficiency in adulthood and the effects of growth hormone replacement: a review. Growth Hormone Research Society Scientific Committee. J Clin Endocrinol Metab 83(2):382–395. doi:10.1210/jcem.83.2.4594 CrossRefPubMed Carroll PV, Christ ER, Bengtsson BA, Carlsson L, Christiansen JS, Clemmons D, Hintz R, Ho K, Laron Z, Sizonenko P, Sonksen PH, Tanaka T, Thorne M (1998) Growth hormone deficiency in adulthood and the effects of growth hormone replacement: a review. Growth Hormone Research Society Scientific Committee. J Clin Endocrinol Metab 83(2):382–395. doi:10.​1210/​jcem.​83.​2.​4594 CrossRefPubMed
Zurück zum Zitat Coculescu M (1999) Blood-brain barrier for human growth hormone and insulin-like growth factor-I. J Pediatr Endocrinol Metab JPEM 12(2):113–124CrossRefPubMed Coculescu M (1999) Blood-brain barrier for human growth hormone and insulin-like growth factor-I. J Pediatr Endocrinol Metab JPEM 12(2):113–124CrossRefPubMed
Zurück zum Zitat Cunningham BC, Bass S, Fuh G, Wells JA (1990) Zinc mediation of the binding of human growth hormone to the human prolactin receptor. Science 250(4988):1709–1712CrossRefPubMed Cunningham BC, Bass S, Fuh G, Wells JA (1990) Zinc mediation of the binding of human growth hormone to the human prolactin receptor. Science 250(4988):1709–1712CrossRefPubMed
Zurück zum Zitat Forsyth IA, Folley SJ, Chadwick A (1965) Lactogenic and pigeon crop-stimulating activities of human pituitary growth hormone preparations. J Endocrinol 31:115–126CrossRefPubMed Forsyth IA, Folley SJ, Chadwick A (1965) Lactogenic and pigeon crop-stimulating activities of human pituitary growth hormone preparations. J Endocrinol 31:115–126CrossRefPubMed
Zurück zum Zitat Furigo IC, Kim KW, Nagaishi VS, Ramos-Lobo AM, de Alencar A, Pedroso JA, Metzger M, Donato J Jr (2014) Prolactin-sensitive neurons express estrogen receptor-alpha and depend on sex hormones for normal responsiveness to prolactin. Brain Res 1566:47–59. doi:10.1016/j.brainres.2014.04.018 CrossRefPubMed Furigo IC, Kim KW, Nagaishi VS, Ramos-Lobo AM, de Alencar A, Pedroso JA, Metzger M, Donato J Jr (2014) Prolactin-sensitive neurons express estrogen receptor-alpha and depend on sex hormones for normal responsiveness to prolactin. Brain Res 1566:47–59. doi:10.​1016/​j.​brainres.​2014.​04.​018 CrossRefPubMed
Zurück zum Zitat Gatford KL, Egan AR, Clarke IJ, Owens PC (1998) Sexual dimorphism of the somatotrophic axis. J Endocrinol 157(3):373–389CrossRefPubMed Gatford KL, Egan AR, Clarke IJ, Owens PC (1998) Sexual dimorphism of the somatotrophic axis. J Endocrinol 157(3):373–389CrossRefPubMed
Zurück zum Zitat Jessup SK, Dimaraki EV, Symons KV, Barkan AL (2003) Sexual dimorphism of growth hormone (GH) regulation in humans: endogenous GH-releasing hormone maintains basal GH in women but not in men. J Clin Endocrinol Metab 88(10):4776–4780. doi:10.1210/jc.2003-030246 CrossRefPubMed Jessup SK, Dimaraki EV, Symons KV, Barkan AL (2003) Sexual dimorphism of growth hormone (GH) regulation in humans: endogenous GH-releasing hormone maintains basal GH in women but not in men. J Clin Endocrinol Metab 88(10):4776–4780. doi:10.​1210/​jc.​2003-030246 CrossRefPubMed
Zurück zum Zitat Lobie PE, Garcia-Aragon J, Lincoln DT, Barnard R, Wilcox JN, Waters MJ (1993) Localization and ontogeny of growth hormone receptor gene expression in the central nervous system. Brain Res Dev Brain Res 74(2):225–233CrossRefPubMed Lobie PE, Garcia-Aragon J, Lincoln DT, Barnard R, Wilcox JN, Waters MJ (1993) Localization and ontogeny of growth hormone receptor gene expression in the central nervous system. Brain Res Dev Brain Res 74(2):225–233CrossRefPubMed
Zurück zum Zitat Low MJ, Otero-Corchon V, Parlow AF, Ramirez JL, Kumar U, Patel YC, Rubinstein M (2001) Somatostatin is required for masculinization of growth hormone-regulated hepatic gene expression but not of somatic growth. J Clin Invest 107(12):1571–1580. doi:10.1172/JCI11941 CrossRefPubMedPubMedCentral Low MJ, Otero-Corchon V, Parlow AF, Ramirez JL, Kumar U, Patel YC, Rubinstein M (2001) Somatostatin is required for masculinization of growth hormone-regulated hepatic gene expression but not of somatic growth. J Clin Invest 107(12):1571–1580. doi:10.​1172/​JCI11941 CrossRefPubMedPubMedCentral
Zurück zum Zitat MacLeod JN, Pampori NA, Shapiro BH (1991) Sex differences in the ultradian pattern of plasma growth hormone concentrations in mice. J Endocrinol 131(3):395–399CrossRefPubMed MacLeod JN, Pampori NA, Shapiro BH (1991) Sex differences in the ultradian pattern of plasma growth hormone concentrations in mice. J Endocrinol 131(3):395–399CrossRefPubMed
Zurück zum Zitat Marcus R, Butterfield G, Holloway L, Gilliland L, Baylink DJ, Hintz RL, Sherman BM (1990) Effects of short term administration of recombinant human growth hormone to elderly people. J Clin Endocrinol Metab 70(2):519–527. doi:10.1210/jcem-70-2-519 CrossRefPubMed Marcus R, Butterfield G, Holloway L, Gilliland L, Baylink DJ, Hintz RL, Sherman BM (1990) Effects of short term administration of recombinant human growth hormone to elderly people. J Clin Endocrinol Metab 70(2):519–527. doi:10.​1210/​jcem-70-2-519 CrossRefPubMed
Zurück zum Zitat Milton S, Cecim M, Li YS, Yun JS, Wagner TE, Bartke A (1992) Transgenic female mice with high human growth hormone levels are fertile and capable of normal lactation without having been pregnant. Endocrinology 131(1):536–538. doi:10.1210/endo.131.1.1612034 PubMed Milton S, Cecim M, Li YS, Yun JS, Wagner TE, Bartke A (1992) Transgenic female mice with high human growth hormone levels are fertile and capable of normal lactation without having been pregnant. Endocrinology 131(1):536–538. doi:10.​1210/​endo.​131.​1.​1612034 PubMed
Zurück zum Zitat Molina DP, Ariwodola OJ, Weiner JL, Brunso-Bechtold JK, Adams MM (2013) Growth hormone and insulin-like growth factor-I alter hippocampal excitatory synaptic transmission in young and old rats. Age (Dordr) 35(5):1575–1587. doi:10.1007/s11357-012-9460-4 CrossRef Molina DP, Ariwodola OJ, Weiner JL, Brunso-Bechtold JK, Adams MM (2013) Growth hormone and insulin-like growth factor-I alter hippocampal excitatory synaptic transmission in young and old rats. Age (Dordr) 35(5):1575–1587. doi:10.​1007/​s11357-012-9460-4 CrossRef
Zurück zum Zitat Munzberg H, Huo L, Nillni EA, Hollenberg AN, Bjorbaek C (2003) Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin. Endocrinology 144(5):2121–2131. doi:10.1210/en.2002-221037 CrossRefPubMed Munzberg H, Huo L, Nillni EA, Hollenberg AN, Bjorbaek C (2003) Role of signal transducer and activator of transcription 3 in regulation of hypothalamic proopiomelanocortin gene expression by leptin. Endocrinology 144(5):2121–2131. doi:10.​1210/​en.​2002-221037 CrossRefPubMed
Zurück zum Zitat Nass R, Toogood AA, Hellmann P, Bissonette E, Gaylinn B, Clark R, Thorner MO (2000) Intracerebroventricular administration of the rat growth hormone (GH) receptor antagonist G118R stimulates GH secretion: evidence for the existence of short loop negative feedback of GH. J Neuroendocrinol 12(12):1194–1199CrossRefPubMed Nass R, Toogood AA, Hellmann P, Bissonette E, Gaylinn B, Clark R, Thorner MO (2000) Intracerebroventricular administration of the rat growth hormone (GH) receptor antagonist G118R stimulates GH secretion: evidence for the existence of short loop negative feedback of GH. J Neuroendocrinol 12(12):1194–1199CrossRefPubMed
Zurück zum Zitat Painson JC, Tannenbaum GS (1991) Sexual dimorphism of somatostatin and growth hormone-releasing factor signaling in the control of pulsatile growth hormone secretion in the rat. Endocrinology 128(6):2858–2866. doi:10.1210/endo-128-6-2858 CrossRefPubMed Painson JC, Tannenbaum GS (1991) Sexual dimorphism of somatostatin and growth hormone-releasing factor signaling in the control of pulsatile growth hormone secretion in the rat. Endocrinology 128(6):2858–2866. doi:10.​1210/​endo-128-6-2858 CrossRefPubMed
Zurück zum Zitat Ramis M, Sarubbo F, Sola J, Aparicio S, Garau C, Miralles A, Esteban S (2013) Cognitive improvement by acute growth hormone is mediated by NMDA and AMPA receptors and MEK pathway. Prog Neuropsychopharmacol Biol Psychiatry 45:11–20. doi:10.1016/j.pnpbp.2013.04.005 CrossRefPubMed Ramis M, Sarubbo F, Sola J, Aparicio S, Garau C, Miralles A, Esteban S (2013) Cognitive improvement by acute growth hormone is mediated by NMDA and AMPA receptors and MEK pathway. Prog Neuropsychopharmacol Biol Psychiatry 45:11–20. doi:10.​1016/​j.​pnpbp.​2013.​04.​005 CrossRefPubMed
Zurück zum Zitat Simerly RB, Chang C, Muramatsu M, Swanson LW (1990) Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study. J Comp Neurol 294(1):76–95. doi:10.1002/cne.902940107 CrossRefPubMed Simerly RB, Chang C, Muramatsu M, Swanson LW (1990) Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: an in situ hybridization study. J Comp Neurol 294(1):76–95. doi:10.​1002/​cne.​902940107 CrossRefPubMed
Zurück zum Zitat Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang DM, Brown M, Bodner S, Grosveld G, Ihle JN (1998) Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93(5):841–850. doi:10.1016/S0092-8674(00)81444-0 CrossRefPubMed Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang DM, Brown M, Bodner S, Grosveld G, Ihle JN (1998) Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93(5):841–850. doi:10.​1016/​S0092-8674(00)81444-0 CrossRefPubMed
Zurück zum Zitat Waters MJ, Blackmore DG (2011) Growth hormone (GH), brain development and neural stem cells. Pediatr Endocrinol Rev 9(2):549–553PubMed Waters MJ, Blackmore DG (2011) Growth hormone (GH), brain development and neural stem cells. Pediatr Endocrinol Rev 9(2):549–553PubMed
Zurück zum Zitat Witty CF, Gardella LP, Perez MC, Daniel JM (2013) Short-term estradiol administration in aging ovariectomized rats provides lasting benefits for memory and the hippocampus: a role for insulin-like growth factor-I. Endocrinology 154(2):842–852. doi:10.1210/en.2012-1698 CrossRefPubMed Witty CF, Gardella LP, Perez MC, Daniel JM (2013) Short-term estradiol administration in aging ovariectomized rats provides lasting benefits for memory and the hippocampus: a role for insulin-like growth factor-I. Endocrinology 154(2):842–852. doi:10.​1210/​en.​2012-1698 CrossRefPubMed
Metadaten
Titel
Distribution of growth hormone-responsive cells in the mouse brain
verfasst von
Isadora C. Furigo
Martin Metzger
Pryscila D. S. Teixeira
Carlos R. J. Soares
Jose Donato Jr.
Publikationsdatum
12.04.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 1/2017
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-016-1221-1

Weitere Artikel der Ausgabe 1/2017

Brain Structure and Function 1/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.