Skip to main content
Erschienen in: Calcified Tissue International 3/2015

01.09.2015 | Review

Do Non-collagenous Proteins Affect Skeletal Mechanical Properties?

verfasst von: Stacyann Morgan, Atharva A. Poundarik, Deepak Vashishth

Erschienen in: Calcified Tissue International | Ausgabe 3/2015

Einloggen, um Zugang zu erhalten

Abstract

The remarkable mechanical behavior of bone is attributed to its complex nanocomposite structure that, in addition to mineral and collagen, comprises a variety of non-collagenous matrix proteins or NCPs. Traditionally, NCPs have been studied as signaling molecules in biological processes including bone formation, resorption, and turnover. Limited attention has been given to their role in determining the mechanical properties of bone. Recent studies have highlighted that NCPs can indeed be lost or modified with aging, diseases, and drug therapies. Homozygous and heterozygous mice models of key NCP provide a useful approach to determine the impact of NCPs on bone morphology as well as matrix quality, and to carry out detailed mechanical analysis for elucidating the pathway by which NCPs can affect the mechanical properties of bone. In this article, we present a systematic analysis of a large cohort of NCPs on bone’s structural and material hierarchy, and identify three principal pathways by which they determine bone’s mechanical properties. These pathways include alterations of bone morphological parameters crucial for bone’s structural competency, bone quality changes in key matrix parameters (mineral and collagen), and a direct role as load-bearing structural proteins.
Literatur
1.
Zurück zum Zitat Mccreadie BR, Goldstein SA (2000) Biomechanics of fracture: is bone mineral density sufficient to assess risk? J Bone Miner Res 15(12):2305–2308PubMedCrossRef Mccreadie BR, Goldstein SA (2000) Biomechanics of fracture: is bone mineral density sufficient to assess risk? J Bone Miner Res 15(12):2305–2308PubMedCrossRef
2.
Zurück zum Zitat Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312(7041):1254–1259PubMedCentralPubMedCrossRef Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312(7041):1254–1259PubMedCentralPubMedCrossRef
3.
Zurück zum Zitat Bouxsein ML (2003) Bone quality: where do we go from here? Osteoporos Int 14(5):118–127CrossRef Bouxsein ML (2003) Bone quality: where do we go from here? Osteoporos Int 14(5):118–127CrossRef
4.
Zurück zum Zitat Paschalis EP, Shane E, Lyritis G, Skarantavos G, Mendelsohn R, Boskey AL (2004) Bone fragility and collagen cross-links. J Bone Miner Res 19(12):2000–2004PubMedCentralPubMedCrossRef Paschalis EP, Shane E, Lyritis G, Skarantavos G, Mendelsohn R, Boskey AL (2004) Bone fragility and collagen cross-links. J Bone Miner Res 19(12):2000–2004PubMedCentralPubMedCrossRef
5.
6.
Zurück zum Zitat Ferris BD, Klenerman L, Dodds RA, Bitensky L, Chayen J (1987) Altered organization of non-collagenous bone matrix in osteoporosis. Bone 8(5):285–288PubMedCrossRef Ferris BD, Klenerman L, Dodds RA, Bitensky L, Chayen J (1987) Altered organization of non-collagenous bone matrix in osteoporosis. Bone 8(5):285–288PubMedCrossRef
7.
Zurück zum Zitat Grynpas MD, Tupy JH, Sodek J (1994) The distribution of soluble, mineral-bound, and matrix-bound proteins in osteoporotic and normal bones. Bone 15(5):505–513PubMedCrossRef Grynpas MD, Tupy JH, Sodek J (1994) The distribution of soluble, mineral-bound, and matrix-bound proteins in osteoporotic and normal bones. Bone 15(5):505–513PubMedCrossRef
8.
Zurück zum Zitat Ducy P, Desbois C, Boyce B, Pinero G et al (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382(6590):448–452PubMedCrossRef Ducy P, Desbois C, Boyce B, Pinero G et al (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382(6590):448–452PubMedCrossRef
9.
10.
Zurück zum Zitat Glowacki J, Rey C, Glimcher MJ, Cox KA, Lian J (1991) A role for osteocalcin in osteoclast differentiation. J Cell Biochem 45(3):292–302PubMedCrossRef Glowacki J, Rey C, Glimcher MJ, Cox KA, Lian J (1991) A role for osteocalcin in osteoclast differentiation. J Cell Biochem 45(3):292–302PubMedCrossRef
11.
Zurück zum Zitat Rittling SR, Matsumoto HN, Mckee MD et al (1998) Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro. J Bone Miner Res 13(7):1101–1111PubMedCrossRef Rittling SR, Matsumoto HN, Mckee MD et al (1998) Mice lacking osteopontin show normal development and bone structure but display altered osteoclast formation in vitro. J Bone Miner Res 13(7):1101–1111PubMedCrossRef
12.
Zurück zum Zitat Romberg RW, Werness PG, Riggs BL, Mann KG (1986) Inhibition of hydroxyapatite-crystal growth by bone-specific and other calcium-binding proteins. Biochemistry 25(5):1176–1180PubMedCrossRef Romberg RW, Werness PG, Riggs BL, Mann KG (1986) Inhibition of hydroxyapatite-crystal growth by bone-specific and other calcium-binding proteins. Biochemistry 25(5):1176–1180PubMedCrossRef
13.
14.
Zurück zum Zitat Boskey AL (1989) Noncollagenous matrix proteins and their role in mineralization. Bone Miner. 6(2):111–123PubMedCrossRef Boskey AL (1989) Noncollagenous matrix proteins and their role in mineralization. Bone Miner. 6(2):111–123PubMedCrossRef
15.
Zurück zum Zitat Boskey AL, Gadaleta S, Gundberg C, Doty SB, Ducy P, Karsenty G (1998) Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23(3):187–196PubMedCrossRef Boskey AL, Gadaleta S, Gundberg C, Doty SB, Ducy P, Karsenty G (1998) Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin. Bone 23(3):187–196PubMedCrossRef
16.
Zurück zum Zitat Ameye L, Young MF (2002) Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal diseases. Glycobiology 12(9):107R–116RPubMedCrossRef Ameye L, Young MF (2002) Mice deficient in small leucine-rich proteoglycans: novel in vivo models for osteoporosis, osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal diseases. Glycobiology 12(9):107R–116RPubMedCrossRef
17.
Zurück zum Zitat Nikel O, Laurencin D, McCallum SA, Gundberg CM, Vashishth D (2013) NMR investigation of the role of osteocalcin and osteopontin at the organic-inorganic interface in bone. Langmuir 29(45):13873–13882PubMedCentralPubMedCrossRef Nikel O, Laurencin D, McCallum SA, Gundberg CM, Vashishth D (2013) NMR investigation of the role of osteocalcin and osteopontin at the organic-inorganic interface in bone. Langmuir 29(45):13873–13882PubMedCentralPubMedCrossRef
18.
Zurück zum Zitat Boskey AL, Spevak L, Paschalis E, Doty SB, McKee MD (2002) Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif Tissue Int 71(2):145–154PubMedCrossRef Boskey AL, Spevak L, Paschalis E, Doty SB, McKee MD (2002) Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif Tissue Int 71(2):145–154PubMedCrossRef
19.
Zurück zum Zitat Kavukcuoglu NB, Denhardt DT, Guzelsu N, Mann AB (2007) Osteopontin deficiency and aging on nanomechanics of mouse bone. J Biomed Mater Res Part A 83(1):136–144CrossRef Kavukcuoglu NB, Denhardt DT, Guzelsu N, Mann AB (2007) Osteopontin deficiency and aging on nanomechanics of mouse bone. J Biomed Mater Res Part A 83(1):136–144CrossRef
20.
Zurück zum Zitat Hansma PK, Fantner GE, Kindt JH et al (2005) Sacrificial bonds in the interfibrillar matrix of bone. J Musculoskelet Neuronal Interact 5(4):313PubMed Hansma PK, Fantner GE, Kindt JH et al (2005) Sacrificial bonds in the interfibrillar matrix of bone. J Musculoskelet Neuronal Interact 5(4):313PubMed
21.
Zurück zum Zitat Gupta HS, Wagermaier W, Zickler GA et al (2005) Nanoscale deformation mechanisms in bone. Nano Lett 5(10):2108–2111PubMedCrossRef Gupta HS, Wagermaier W, Zickler GA et al (2005) Nanoscale deformation mechanisms in bone. Nano Lett 5(10):2108–2111PubMedCrossRef
23.
Zurück zum Zitat Garnero P, Delmas PD (2004) Contribution of bone mineral density and bone turnover markers to the estimation of risk of osteoporotic fracture in postmenopausal women. J Musculoskelet Neuronal Interact 4(1):50PubMed Garnero P, Delmas PD (2004) Contribution of bone mineral density and bone turnover markers to the estimation of risk of osteoporotic fracture in postmenopausal women. J Musculoskelet Neuronal Interact 4(1):50PubMed
24.
Zurück zum Zitat Seibel MJ (2005) Biochemical markers of bone turnover part I: biochemistry and variability. Clin Biochemist 26(4):97 Seibel MJ (2005) Biochemical markers of bone turnover part I: biochemistry and variability. Clin Biochemist 26(4):97
25.
Zurück zum Zitat Ammann P, Rizzoli R, Meyer JM, Bonjour JP (1996) Bone density and shape as determinants of bone strength in IGF-I and/or pamidronate-treated ovariectomized rats. Osteoporos Int 6(3):219–227PubMedCrossRef Ammann P, Rizzoli R, Meyer JM, Bonjour JP (1996) Bone density and shape as determinants of bone strength in IGF-I and/or pamidronate-treated ovariectomized rats. Osteoporos Int 6(3):219–227PubMedCrossRef
26.
Zurück zum Zitat Crabtree N, Loveridge N, Parker M, Rushton N et al (2001) Intracapsular hip fracture and the region-specific loss of cortical bone: analysis by peripheral quantitative computed tomography. J Bone Miner Res 16(7):1318–1328PubMedCrossRef Crabtree N, Loveridge N, Parker M, Rushton N et al (2001) Intracapsular hip fracture and the region-specific loss of cortical bone: analysis by peripheral quantitative computed tomography. J Bone Miner Res 16(7):1318–1328PubMedCrossRef
28.
Zurück zum Zitat Van der Meulen MCH, Jepsen KJ, Mikić B (2001) Understanding bone strength: size isn’t everything. Bone 29(2):101–104PubMedCrossRef Van der Meulen MCH, Jepsen KJ, Mikić B (2001) Understanding bone strength: size isn’t everything. Bone 29(2):101–104PubMedCrossRef
29.
Zurück zum Zitat Wolf G (1996) Function of the bone protein osteocalcin: definitive evidence. Nutr Rev 54(10):332–333PubMedCrossRef Wolf G (1996) Function of the bone protein osteocalcin: definitive evidence. Nutr Rev 54(10):332–333PubMedCrossRef
30.
Zurück zum Zitat Ingram RT, Clarke BL, Fisher LW, Fitzpatrick LA (1993) Distribution of noncollagenous proteins in the matrix of adult human bone: evidence of anatomic and functional heterogeneity. J Bone Miner Res 8(9):1019–1029PubMedCrossRef Ingram RT, Clarke BL, Fisher LW, Fitzpatrick LA (1993) Distribution of noncollagenous proteins in the matrix of adult human bone: evidence of anatomic and functional heterogeneity. J Bone Miner Res 8(9):1019–1029PubMedCrossRef
31.
Zurück zum Zitat Xu T, Bianco P, Fisher LW, Longenecker G et al (1998) Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat Genet 20(1):78–82PubMedCrossRef Xu T, Bianco P, Fisher LW, Longenecker G et al (1998) Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat Genet 20(1):78–82PubMedCrossRef
32.
Zurück zum Zitat Corsi A, Xu T, Chen XD, Boyde A et al (2002) Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers-Danlos-like changes in bone and other connective tissues. J Bone Miner Res 17(7):1180–1189PubMedCrossRef Corsi A, Xu T, Chen XD, Boyde A et al (2002) Phenotypic effects of biglycan deficiency are linked to collagen fibril abnormalities, are synergized by decorin deficiency, and mimic Ehlers-Danlos-like changes in bone and other connective tissues. J Bone Miner Res 17(7):1180–1189PubMedCrossRef
33.
Zurück zum Zitat Arteaga-Solis E, Sui-Arteaga L, Kim M, Schaffler MB et al (2011) Material and mechanical properties of bones deficient for fibrillin-1 or fibrillin-2 microfibrils. Matrix Biol 30(3):188–194PubMedCentralPubMedCrossRef Arteaga-Solis E, Sui-Arteaga L, Kim M, Schaffler MB et al (2011) Material and mechanical properties of bones deficient for fibrillin-1 or fibrillin-2 microfibrils. Matrix Biol 30(3):188–194PubMedCentralPubMedCrossRef
34.
Zurück zum Zitat Termine JD, Kleinman HK, Whitson SW, Conn KM et al (1981) Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26(1):99–105PubMedCrossRef Termine JD, Kleinman HK, Whitson SW, Conn KM et al (1981) Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26(1):99–105PubMedCrossRef
35.
36.
Zurück zum Zitat Rios H, Koushik SV, Wang H, Wang J et al (2005) Periostin null mice exhibit dwarfism, incisor enamel defects, and an early-onset periodontal disease-like phenotype. Mol Cell Biol 25(24):11131–11144PubMedCentralPubMedCrossRef Rios H, Koushik SV, Wang H, Wang J et al (2005) Periostin null mice exhibit dwarfism, incisor enamel defects, and an early-onset periodontal disease-like phenotype. Mol Cell Biol 25(24):11131–11144PubMedCentralPubMedCrossRef
37.
Zurück zum Zitat Bonnet N, Standley KN, Bianchi EN, Stadelmann V et al (2009) The matricellular protein periostin is required for sost inhibition and the anabolic response to mechanical loading and physical activity. J Biol Chem 284(51):35939–35950PubMedCentralPubMedCrossRef Bonnet N, Standley KN, Bianchi EN, Stadelmann V et al (2009) The matricellular protein periostin is required for sost inhibition and the anabolic response to mechanical loading and physical activity. J Biol Chem 284(51):35939–35950PubMedCentralPubMedCrossRef
38.
Zurück zum Zitat Gowen LC, Petersen DN, Mansolf AL, Qi H et al (2003) Targeted disruption of the osteoblast/osteocyte factor 45 gene (OF45) results in increased bone formation and bone mass. J Biol Chem 278(3):1998–2007PubMedCrossRef Gowen LC, Petersen DN, Mansolf AL, Qi H et al (2003) Targeted disruption of the osteoblast/osteocyte factor 45 gene (OF45) results in increased bone formation and bone mass. J Biol Chem 278(3):1998–2007PubMedCrossRef
39.
Zurück zum Zitat Malaval L, Wade-Guéye NM, Boudiffa M, Fei J et al (2008) Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis. J Exp Med 205(5):1145–1153PubMedCentralPubMedCrossRef Malaval L, Wade-Guéye NM, Boudiffa M, Fei J et al (2008) Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis. J Exp Med 205(5):1145–1153PubMedCentralPubMedCrossRef
40.
Zurück zum Zitat Thurner PJ, Chen CG, Ionova-Martin S et al (2010) Osteopontin deficiency increases bone fragility but preserves bone mass. Bone 46(6):1564–1573PubMedCentralPubMedCrossRef Thurner PJ, Chen CG, Ionova-Martin S et al (2010) Osteopontin deficiency increases bone fragility but preserves bone mass. Bone 46(6):1564–1573PubMedCentralPubMedCrossRef
41.
Zurück zum Zitat Duvall CL, Taylor WR, Weiss D, Wojtowicz AM, Guldberg RE (2007) Impaired angiogenesis, early callus formation, and late stage remodeling in fracture healing of osteopontin-deficient mice. J Bone Miner Res 22(2):286–297PubMedCrossRef Duvall CL, Taylor WR, Weiss D, Wojtowicz AM, Guldberg RE (2007) Impaired angiogenesis, early callus formation, and late stage remodeling in fracture healing of osteopontin-deficient mice. J Bone Miner Res 22(2):286–297PubMedCrossRef
42.
43.
Zurück zum Zitat Delany AM, Hankenson KD (2009) Thrombospondin-2 and SPARC/osteonectin are critical regulators of bone remodeling. J Cell Commun Signal 3(3–4):227–238PubMedCentralPubMedCrossRef Delany AM, Hankenson KD (2009) Thrombospondin-2 and SPARC/osteonectin are critical regulators of bone remodeling. J Cell Commun Signal 3(3–4):227–238PubMedCentralPubMedCrossRef
44.
Zurück zum Zitat Bonnet N, Gineyts E, Ammann P, Conway SJ, Garnero P, Ferrari S (2013) Periostin deficiency increases bone damage and impairs injury response to fatigue loading in adult mice. PLoS One 8(10):e78347PubMedCentralPubMedCrossRef Bonnet N, Gineyts E, Ammann P, Conway SJ, Garnero P, Ferrari S (2013) Periostin deficiency increases bone damage and impairs injury response to fatigue loading in adult mice. PLoS One 8(10):e78347PubMedCentralPubMedCrossRef
45.
Zurück zum Zitat Currey JD (1984) Effects of differences in mineralization on the mechanical properties of bone. Philos Trans R Soc Lond B 304(1121):509–518CrossRef Currey JD (1984) Effects of differences in mineralization on the mechanical properties of bone. Philos Trans R Soc Lond B 304(1121):509–518CrossRef
46.
Zurück zum Zitat Schaffler MB, Burr DB (1988) Stiffness of compact bone: effects of porosity and density. J Biomech 21(1):13–16PubMedCrossRef Schaffler MB, Burr DB (1988) Stiffness of compact bone: effects of porosity and density. J Biomech 21(1):13–16PubMedCrossRef
47.
Zurück zum Zitat Viguet-Carrin S, Garnero P, Delmas PD (2006) The role of collagen in bone strength. Osteoporos Int 17(3):319–336PubMedCrossRef Viguet-Carrin S, Garnero P, Delmas PD (2006) The role of collagen in bone strength. Osteoporos Int 17(3):319–336PubMedCrossRef
48.
Zurück zum Zitat Vashishth D (2007) The role of the collagen matrix in skeletal fragility. Current Osteoporos Rep 5(2):62–66CrossRef Vashishth D (2007) The role of the collagen matrix in skeletal fragility. Current Osteoporos Rep 5(2):62–66CrossRef
49.
Zurück zum Zitat Yoshitake H, Rittling SR, Denhardt DT, Noda M (1999) Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption. Proc Natl Acad Sci 96(14):8156–8160PubMedCentralPubMedCrossRef Yoshitake H, Rittling SR, Denhardt DT, Noda M (1999) Osteopontin-deficient mice are resistant to ovariectomy-induced bone resorption. Proc Natl Acad Sci 96(14):8156–8160PubMedCentralPubMedCrossRef
50.
Zurück zum Zitat Rodriguez DE, Thula-Mata T, Toro EJ, Yeh YW, Holt C, Holliday LS, Gower LB (2014) Multifunctional role of osteopontin in directing intrafibrillar mineralization of collagen and activation of osteoclasts. Acta Biomater 10(1):494–507PubMedCrossRef Rodriguez DE, Thula-Mata T, Toro EJ, Yeh YW, Holt C, Holliday LS, Gower LB (2014) Multifunctional role of osteopontin in directing intrafibrillar mineralization of collagen and activation of osteoclasts. Acta Biomater 10(1):494–507PubMedCrossRef
51.
Zurück zum Zitat Boskey A (2003) Bone mineral crystal size. Osteoporosis international 14(5):16–21 Boskey A (2003) Bone mineral crystal size. Osteoporosis international 14(5):16–21
52.
Zurück zum Zitat Augat P, Schorlemmer S (2006) The role of cortical bone and its microstructure in bone strength. Age Ageing 35(suppl 2):ii27–ii31PubMed Augat P, Schorlemmer S (2006) The role of cortical bone and its microstructure in bone strength. Age Ageing 35(suppl 2):ii27–ii31PubMed
53.
Zurück zum Zitat Price PA, Otsuka AA, Poser JW, Kristaponis J, Raman N (1976) Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci 73(5):1447–1451PubMedCentralPubMedCrossRef Price PA, Otsuka AA, Poser JW, Kristaponis J, Raman N (1976) Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci 73(5):1447–1451PubMedCentralPubMedCrossRef
54.
Zurück zum Zitat Kavukcuoglu NB, Patterson-Buckendahl P, Mann AB (2009) Effect of osteocalcin deficiency on the nanomechanics and chemistry of mouse bones. J Mech Behav Biomed Mater 2(4):348–354PubMedCrossRef Kavukcuoglu NB, Patterson-Buckendahl P, Mann AB (2009) Effect of osteocalcin deficiency on the nanomechanics and chemistry of mouse bones. J Mech Behav Biomed Mater 2(4):348–354PubMedCrossRef
55.
Zurück zum Zitat Jepsen KJ, Davy DT, Krzypow DJ (1999) The role of the lamellar interface during torsional yielding of human cortical bone. J Biomech 32(3):303–310PubMedCrossRef Jepsen KJ, Davy DT, Krzypow DJ (1999) The role of the lamellar interface during torsional yielding of human cortical bone. J Biomech 32(3):303–310PubMedCrossRef
56.
Zurück zum Zitat Vashishth D (2004) Rising crack-growth-resistance behavior in cortical bone: implications for toughness measurements. J Biomech 37(6):943–946PubMedCrossRef Vashishth D (2004) Rising crack-growth-resistance behavior in cortical bone: implications for toughness measurements. J Biomech 37(6):943–946PubMedCrossRef
57.
Zurück zum Zitat Burstein AH, Zika JM, Heiple KG, Klein L (1975) Contribution of collagen and mineral to the elastic-plastic properties of bone. J Bone Joint Surg 57(7):956–961PubMed Burstein AH, Zika JM, Heiple KG, Klein L (1975) Contribution of collagen and mineral to the elastic-plastic properties of bone. J Bone Joint Surg 57(7):956–961PubMed
58.
Zurück zum Zitat Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, Fyhrie DP (2001) Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone 28(2):195–201PubMedCrossRef Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, Fyhrie DP (2001) Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone 28(2):195–201PubMedCrossRef
59.
Zurück zum Zitat Kavukcuoglu NB, Arteaga-Solis E, Lee-Arteaga S, Ramirez F, Mann AB (2007) Nanomechanics and Raman spectroscopy of fibrillin 2 knock-out mouse bones. J Mater Sci 42(21):8788–8794CrossRef Kavukcuoglu NB, Arteaga-Solis E, Lee-Arteaga S, Ramirez F, Mann AB (2007) Nanomechanics and Raman spectroscopy of fibrillin 2 knock-out mouse bones. J Mater Sci 42(21):8788–8794CrossRef
60.
Zurück zum Zitat Vogel KG, Paulsson M, Heinegard D (1984) Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem J 223:587–597PubMedCentralPubMed Vogel KG, Paulsson M, Heinegard D (1984) Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem J 223:587–597PubMedCentralPubMed
61.
Zurück zum Zitat Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV (1997) Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol 136(3):729–743PubMedCentralPubMedCrossRef Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV (1997) Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol 136(3):729–743PubMedCentralPubMedCrossRef
62.
Zurück zum Zitat Hoshi K, Kemmotsu S, Takeuchi Y, Amizuka N, Ozawa H (1999) The primary calcification in bones follows removal of decorin and fusion of collagen fibrils. J Bone Miner Res 14(2):273–280PubMedCrossRef Hoshi K, Kemmotsu S, Takeuchi Y, Amizuka N, Ozawa H (1999) The primary calcification in bones follows removal of decorin and fusion of collagen fibrils. J Bone Miner Res 14(2):273–280PubMedCrossRef
63.
Zurück zum Zitat Sugars RV, Milan AM, Brown JO, Waddington RJ et al (2002) Molecular interaction of recombinant decorin and biglycan with type I collagen influences crystal growth. Connect Tissue Res 44:189–195CrossRef Sugars RV, Milan AM, Brown JO, Waddington RJ et al (2002) Molecular interaction of recombinant decorin and biglycan with type I collagen influences crystal growth. Connect Tissue Res 44:189–195CrossRef
64.
Zurück zum Zitat Boskey AL, Spevak L, Doty SB, Rosenberg L (1997) Effects of bone CS-proteoglycans, DS-decorin, and DS-biglycan on hydroxyapatite formation in a gelatin gel. Calcif Tissue Int 61(4):298–305PubMedCrossRef Boskey AL, Spevak L, Doty SB, Rosenberg L (1997) Effects of bone CS-proteoglycans, DS-decorin, and DS-biglycan on hydroxyapatite formation in a gelatin gel. Calcif Tissue Int 61(4):298–305PubMedCrossRef
66.
Zurück zum Zitat Termine JD, Kleinman HK, Whitson SW et al (1981) Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26(1):99–105PubMedCrossRef Termine JD, Kleinman HK, Whitson SW et al (1981) Osteonectin, a bone-specific protein linking mineral to collagen. Cell 26(1):99–105PubMedCrossRef
67.
Zurück zum Zitat Boskey AL, Moore DJ, Amling M, Canalis E, Delany AM (2003) Infrared analysis of the mineral and matrix in bones of osteonectin-null mice and their wildtype controls. J Bone Miner Res 18(6):1005–1011PubMedCrossRef Boskey AL, Moore DJ, Amling M, Canalis E, Delany AM (2003) Infrared analysis of the mineral and matrix in bones of osteonectin-null mice and their wildtype controls. J Bone Miner Res 18(6):1005–1011PubMedCrossRef
68.
Zurück zum Zitat Oxlund H, Barckman M, Ortoft G, Andreassen TT (1995) Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone 17(4):S365–S371CrossRef Oxlund H, Barckman M, Ortoft G, Andreassen TT (1995) Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone 17(4):S365–S371CrossRef
69.
Zurück zum Zitat Vashishth D (2005) Collagen glycation and its role in fracture properties of bone. J Musculoskelet Neuronal Interact 5(4):316PubMed Vashishth D (2005) Collagen glycation and its role in fracture properties of bone. J Musculoskelet Neuronal Interact 5(4):316PubMed
70.
Zurück zum Zitat Landis WJ, Hodgens KJ, Song MJ, Arena J et al (1996) Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging. J Struct Biol 117(1):24–35PubMedCrossRef Landis WJ, Hodgens KJ, Song MJ, Arena J et al (1996) Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging. J Struct Biol 117(1):24–35PubMedCrossRef
71.
Zurück zum Zitat Sasaki N, Nakayama Y, Yoshikawa M, Enyo A (1993) Stress relaxation function of bone and bone collagen. J Biomech 26(12):1369–1376PubMedCrossRef Sasaki N, Nakayama Y, Yoshikawa M, Enyo A (1993) Stress relaxation function of bone and bone collagen. J Biomech 26(12):1369–1376PubMedCrossRef
72.
Zurück zum Zitat Tai K, Dao M, Suresh S, Palazoglu A, Ortiz C (2007) Nanoscale heterogeneity promotes energy dissipation in bone. Nat Mater 6(6):454–462PubMedCrossRef Tai K, Dao M, Suresh S, Palazoglu A, Ortiz C (2007) Nanoscale heterogeneity promotes energy dissipation in bone. Nat Mater 6(6):454–462PubMedCrossRef
73.
Zurück zum Zitat Gao H, Ji B, Jäger IL, Arzt E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci 100(10):5597–5600PubMedCentralPubMedCrossRef Gao H, Ji B, Jäger IL, Arzt E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci 100(10):5597–5600PubMedCentralPubMedCrossRef
74.
Zurück zum Zitat Jackson AP, Vincent JFV, Turner RM (1988) The mechanical design of nacre. Proc R Soc Lond B Biol Sci 234(1277):415–440CrossRef Jackson AP, Vincent JFV, Turner RM (1988) The mechanical design of nacre. Proc R Soc Lond B Biol Sci 234(1277):415–440CrossRef
75.
Zurück zum Zitat Barthelat F, Rabiei R (2011) Toughness amplification in natural composites. J Mech Phys Solids 59(4):829–840CrossRef Barthelat F, Rabiei R (2011) Toughness amplification in natural composites. J Mech Phys Solids 59(4):829–840CrossRef
76.
Zurück zum Zitat Maruyama N, Shibata Y, Mochizuki A, Yamada A et al (2015) Bone micro-fragility caused by the mimetic aging processes in α-klotho deficient mice: in situ nanoindentation assessment of dilatational bands. Biomaterials 47:62–71PubMedCrossRef Maruyama N, Shibata Y, Mochizuki A, Yamada A et al (2015) Bone micro-fragility caused by the mimetic aging processes in α-klotho deficient mice: in situ nanoindentation assessment of dilatational bands. Biomaterials 47:62–71PubMedCrossRef
77.
Zurück zum Zitat Ritter NM, Farach-Carson MC, Butler WT (1992) Evidence for the formation of a complex between osteopontin and osteocalcin. J Bone Miner Res 7(8):877–885PubMedCrossRef Ritter NM, Farach-Carson MC, Butler WT (1992) Evidence for the formation of a complex between osteopontin and osteocalcin. J Bone Miner Res 7(8):877–885PubMedCrossRef
78.
Zurück zum Zitat Thompson JB, Kindt JH, Drake B, Hansma HG et al (2001) Bone indentation recovery time correlates with bond reforming time. Nature 414(6865):773–776PubMedCrossRef Thompson JB, Kindt JH, Drake B, Hansma HG et al (2001) Bone indentation recovery time correlates with bond reforming time. Nature 414(6865):773–776PubMedCrossRef
79.
Zurück zum Zitat Hassenkam T, Fantner GE, Cutroni JA, Weaver JC et al (2004) High-resolution AFM imaging of intact and fractured trabecular bone. Bone 35(1):4–10PubMedCrossRef Hassenkam T, Fantner GE, Cutroni JA, Weaver JC et al (2004) High-resolution AFM imaging of intact and fractured trabecular bone. Bone 35(1):4–10PubMedCrossRef
80.
Zurück zum Zitat Fantner GE, Hassenkam T, Kindt JH et al (2005) Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater 4(8):612–616PubMedCrossRef Fantner GE, Hassenkam T, Kindt JH et al (2005) Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat Mater 4(8):612–616PubMedCrossRef
81.
Zurück zum Zitat Fantner GE, Adams J, Turner P, Thurner PJ et al (2007) Nanoscale ion mediated networks in bone: osteopontin can repeatedly dissipate large amounts of energy. Nano Lett 7(8):2491–2498PubMedCrossRef Fantner GE, Adams J, Turner P, Thurner PJ et al (2007) Nanoscale ion mediated networks in bone: osteopontin can repeatedly dissipate large amounts of energy. Nano Lett 7(8):2491–2498PubMedCrossRef
82.
Zurück zum Zitat Diab T, Vashishth D (2005) Effects of damage morphology on cortical bone fragility. Bone 37(1):96–102PubMedCrossRef Diab T, Vashishth D (2005) Effects of damage morphology on cortical bone fragility. Bone 37(1):96–102PubMedCrossRef
83.
84.
Zurück zum Zitat Burr DB, Turner CH, Naick P, Forwood MR et al (1998) Does microdamage accumulation affect the mechanical properties of bone? J Biomech 31(4):337–345PubMedCrossRef Burr DB, Turner CH, Naick P, Forwood MR et al (1998) Does microdamage accumulation affect the mechanical properties of bone? J Biomech 31(4):337–345PubMedCrossRef
Metadaten
Titel
Do Non-collagenous Proteins Affect Skeletal Mechanical Properties?
verfasst von
Stacyann Morgan
Atharva A. Poundarik
Deepak Vashishth
Publikationsdatum
01.09.2015
Verlag
Springer US
Erschienen in
Calcified Tissue International / Ausgabe 3/2015
Print ISSN: 0171-967X
Elektronische ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-015-0016-3

Weitere Artikel der Ausgabe 3/2015

Calcified Tissue International 3/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.