Skip to main content
Erschienen in: Journal of Ovarian Research 1/2014

Open Access 01.12.2014 | Research

Does bariatric surgery improve ovarian stimulation characteristics, oocyte yield, or embryo quality?

verfasst von: Abraham Tsur, Raoul Orvieto, Jigal Haas, Alon Kedem, Ronit Machtinger

Erschienen in: Journal of Ovarian Research | Ausgabe 1/2014

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

Obesity is a major global health concern associated with multiple co-morbidities. Bariatric surgery has been considered a good treatment option in cases of morbid obesity. This preliminary study aims to investigate the effect of bariatric surgery on ovarian stimulation characteristics and IVF treatment cycle outcome.

Methods

A retrospective study that was performed in a tertiary, university-affiliated medical center and included all patients who underwent IVF treatment both before and after bariatric surgery. Data on ovarian stimulation variables of IVF treatment cycle prior and following the bariatric surgery were reviewed and compared.

Results

From January 2005 to June 2014, seven women fulfilled the inclusion criteria. After the operation, BMI was significantly reduced (mean ± SD) (43.1 ± 3.3 vs. 29.6 ± 7.33, p = 0.018), as was the number of gonadotropin ampoules required during stimulation (69.3 ± 10.5 vs. 44.5 ± 17, p = 0.043). No between-cycle differences were observed in peak estradiol level, the number of oocytes retrieved, and percentage of mature oocytes.

Conclusions

To the best of our knowledge, this preliminary case series is the first comparison of IVF cycle characteristics prior to and following bariatric surgery. The operation seems to reduce treatment costs without affecting oocyte or embryo quality. Further large studies are required to establish the surgery’s effect on IVF outcome among infertile women.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

AT- collected data, analyzed it and participated in writing the manuscript. RO- planned the study design together with RM and edited the manuscript. JH – Helped in writing the article, AK – Helped in writing the article. RM planned the study design together with RO, analyzed the data, and participated in writing the manuscript. All authors read and approved the final manuscript.
Abkürzungen
BMI
Body Mass Index
TQE
Top-Quality Embryo

Background

Obesity is a major global health concern with increasing prevalence [1]. According to the National Health and Nutrition Examination Survey (NHANES), the prevalence of obesity [body mass index (BMI) > 30 kg/m2] in the United States between 2011 and 2012 was as high as 36.1% among adult women, with a 8.3% prevalence of morbid obesity (BMI ≥ 40) [2]. Obesity may be associated with various co-morbidities such as diabetes type 2, chronic hypertension, heart disease, sleep apnea, and stroke [3]. Moreover, being obese may reduce woman’s fertility, increase risks associated with pregnancy [4], and be detrimental to in vitro fertilization (IVF) outcomes [5]-[8].
Treatment options include lifestyle modification, exercise, dietary and pharmacological therapy, liposuction, and bariatric surgery. While non-surgical approaches are generally associated with modest weight loss that is poorly sustained in most patients, bariatric surgery has been associated with significant weight loss, and its beneficial effects seem to be sustained in the long term [9].
Along the many merits of bariatric surgeries, these procedures might be followed by intraoperative, short and long term complications as wound infection, leakage through staples or sutures, abdominal hernia, ulcers, dumping syndrome, and nutritional deficiencies leading to anemia and osteoporosis [10].
Current indications for this operation are BMI ≥ 40 kg/m2 without co-morbidities or BMI ≥ 35 kg/m2 with severe co-morbidities [11],[12]. Bariatric surgeries are classified as either mal-absorptive or restrictive [13] and are effective in reducing obesity-associated co-morbidities such as chronic hypertension and diabetes [13],[14] and in improving spontaneous fecundity and pregnancy outcome [15]. However, data regarding the effects of bariatric surgery on the reproductive outcome of infertile women undergoing IVF are still scarce.
Prompted by the aforementioned observations, we aimed to investigate the effect of bariatric surgery on ovarian stimulation characteristics and IVF treatment cycle outcome in infertile patients undergoing IVF treatment, both prior to and following bariatric surgery.

Methods

The study population consisted of all female patients admitted to our department between January 2005 and June 2014 with a history of bariatric surgery. We included only patients who underwent IVF treatment cycles both prior to and following bariatric surgery. The study was approved by the institutional IRB of Sheba Medical Center. Stimulation protocols employed for induction of follicular growth were previously described [16] and included long GnRH agonist protocol, flare GnRH-agonist protocol and the multidose GnRH antagonist protocol. Gonadotropines used included either recombinant FSH or HMG.
Data on patient age, BMI, and variables related to infertility treatment were collected from the files. Ovarian stimulation characteristics, number of oocytes retrieved, embryo quality, and number of embryos transferred during the patients’ IVF cycles before and after bariatric surgery were compared. Embryo classification was based on the individual scoring parameters according to pre-established definitions [17]. A top-quality embryo (TQE) was defined as seven or more blastomeres on day 3, equal sized blastomeres, and <20% fragmentation; all other embryos were categorized as poor quality.
Statistical analysis was performed using Wilcoxon rank sum test and Chi square, as appropriate p < 0.05 was considered significant.

Results

Out of 9869 patients treated in our IVF unit during the study period, 18 had a history of bariatric surgery. Seven such patients underwent an IVF treatment cycle both before and after bariatric surgery. Five patients underwent sleeve gastrectomy and two gastric banding. Mean patient age ± SD at IVF cycles before and after the operation were 34.1 ± 5.69 years and 36.8 ± 6.1 years respectively. Reasons for IVF included male factor infertility (n = 2), PCOS (n = 2), genetic (n = 1), unexplained (n = 1) and age (n = 1). Mean ± SD intervals between the operation and the subsequent IVF treatment cycle and between the consecutive IVF cycles were 15.6 ± 7.9 months and 28.4 ± 29.0 months respectively. All the patients had their weight stabilized before starting the IVF treatment, as the metabolic parameters vary widely during the rapid weight-loss phase after the surgery. Of the seven patients, following the operation two had a normal BMI, two were overweight and three remained obese (of them two remained morbid obese).
The clinical characteristics of patients’ IVF cycles before and after the bariatric surgery are shown in Tables 1 and 2. BMI was significantly reduced after the operation (43.1 ± 3.3 vs. 29.6 ± 7.33, p = 0.018). Moreover, in two women severe co-morbidities (diabetes and hypertension) completely resolved following bariatric surgery without any additional treatment.
Table 1
IVF treatment cycle characteristics of each patient undergoing IVF: last cycle before and first cycle after bariatric surgery
patient
Bariatric surgery
age
BMI
Total # of Gonadotropin ampoules
Days of stimulation
Peak E2 (pmol/L)
# of oocytes retrieved
# of MII oocytes
# of top quality embryos
# of embryos transferred
Type of Bariatric surgery
# 1
Before
38
39.3
66
11
3025
6
3
0
2
Sleeve gastrectomy
After
40
29.8
66
11
2562
4
4
0
4
# 2
Before
36
42.7
50
11
4302
19
14
6
2
Sleeve gastrectomy
After
42
25.6
40
11
4346
9
9
1
3
# 3
Before
43
42
78
13
4167
2
2
1
2
Sleeve gastrectomy
After
44
37.6
66
11
1065
1
1
0
1
# 4
Before
26
47.8
71.5
25
1374
Retrieval cancelled – lack of ovarian response
Gastric banding
After
27
38.9
30
10
4826
13
8
1
1
# 5
Before
32
45.8
72
12
1158
7
5
1
4
Sleeve gastrectomy
After
35
33
32
8
5444
10
8
3
3
# 6
Before
29
39.1
*
*
*
15
10
*
2
Gastric banding
After
31
20.7
*
*
*
20
16
3
4
# 7
Before
35
45.2
78
19
4271
12
12
0
3
Sleeve gastrectomy
After
39
21.5
33
13
4451.6
8
8
3
2
*Data missing.
Table 2
Summary of IVF treatment cycle characteristics of all patients undergoing IVF: last cycle before and first cycle after bariatric surgery
 
Before surgery
After surgery
p
BMI
   
Mean ±SD
43.1±3.3
29.6±7.3
0.018
Median
42.7
29.8
 
Range
39.1-47.8
20.7-38.9
 
Total number of gonadotropin ampoules used
   
Mean ±SD
69.3±10.5
44.5±17.0
0.043
Median
71.7
36.5
 
Range
50-78
30-66
 
Days of stimulation
   
Mean ±SD
15.2±5.6
10.7±1.6
0.068
Median
12.5
11
 
Range
11-25
8-13
 
Peak E 2 (pmol/L)
   
Mean ±SD
3049.5±1462.6
3782.4±1642.5
0.46
Median
3596
4398.8
 
Range
1158-4302
1065.0-5444.0
 
Number of follicles ≥15 mm on day of hCG administration
   
Mean ±SD
3.8±2.3
7.0±4.2
0.1
Median
3
8
 
Range
2-8
1-11
 
Number of oocytes retrieved
   
Mean ±SD
10.1±6.3
8.7±6.5
0.6
Median
9.5
9
 
Range
2-19
1-20
 
Number of MII oocytes
   
Mean ±SD
7.7±5.0
7.7±5.0
1.0
Median
7.5
8
 
Range
2-14
1-16
 
% MII of all oocytes retrieved
   
Mean ±SD
79%±21.3
90.9±11.5
0.1
Median
74
100
 
Range
50-100
76-100
 
Fertilization rate (%)
71.7%±21.5
67.9±26.5%
 
Median
78.6
50
 
Range
50-100
44-100
0.46
Number of top-quality embryos
   
Mean ±SD
1.6±2.5
1.6±1.3
0.78
Median
1
1
 
Range
0-6
0-3
 
% of top-quality embryos
   
Mean ±SD
28.2%±29.6
37.2±23.59
0.78
Median
25.0
42.8
 
Range
0-66
0-75
 
Number of embryos transferred
   
Mean ±SD
2.5±0.8
2.8±1.1
0.51
Median
2
3
 
Range
2-4
1-4
 
Number of embryos frozen
   
Mean ±SD
1.8±2.0
0.8±1.6
0.28
Median
1.5
1.5
 
Range
0-4
0-4
 
Following the surgery, patients required significantly fewer gonadotropin ampoules. There were no differences between the cycles in peak estradiol level, number of follicles ≥15 mm on day of hCG administration, the number of oocytes retrieved, MII oocytes, fertilization rates or number of TQE.
One of the patients conceived from embryos cryopreserved in the cycle following the operation. This pregnancy ended in missed abortion in the first trimester. Other patients did not conceive in the first cycle after the surgery.

Discussion

In this preliminary case series we observed a significant decrease in the total number of gonadotropin ampoules required during IVF cycle following bariatric surgery, with no adverse effects on the number of follicles ≥15 mm, number of oocytes retrieved and number of MII oocytes.
To the best of our knowledge, this is the first comparison of IVF cycle characteristics prior to and following bariatric surgery. To date, few reports have described treatment outcomes of infertile female patients undergoing IVF following bariatric surgery. Doblado et al. published their description of five patients who underwent IVF treatment following bariatric surgery [18]. All their patients conceived in the first or second IVF cycle following the operation, and none experienced complications during or after IVF treatment cycles. The authors concluded that bariatric surgery is a safe procedure in women undergoing artificial reproduction techniques. Christofolini et al. compared ovarian stimulation parameters and treatment outcome among three different groups of patients: (a) 29 patients after bariatric surgery [average BMI 26.6 kg/m2, range (22.8-35.8)]; (b) 57 obese patients [average BMI 32.8 kg/m2, range (30.1-46.2)]; and (c) 94 normal-BMI and overweight patients [average BMI 23.5 kg/m2, range (17.5-29.6)] undergoing their first IVF cycle [19]. They reported significantly fewer follicles, oocytes retrieved, and mature oocytes among patients with a prior bariatric surgery as compared with patients from the two other groups. Although the difference was statistically significant, it seems clinically meaningless, since the mean number of follicles and oocytes retrieved were 5 and 5 (respectively) in the bariatric surgery group, 6 and 6 in the obese group, and 7 and 6.5 in the normal BMI/overweight group. However, their conclusions might deserve further consideration, as the difference might be attributable to the variability in ovarian reserve parameters among patients rather than the intervention.
The effect of bariatric surgery on female fertility and ovarian reserve is of specific significance, given the reported increase in the number of bariatric surgeries [20]. Therefore, evaluating the effects of this operation on female fertility has become quite relevant. Radical decreases in BMI after the operation have previously been described. The significant decrease in the number of FSH ampoules required after the surgery is associated both with reduced treatment costs and increased patient comfort, due to fewer injections.
Moreover, while the radical decrease in weight following surgery usually improves metabolic impairments such as diabetes, it might also cause deficiencies in iron, folate, vitamin B12, calcium, and vitamin D [21]. Animal and human data suggest that these nutrients might play a role in folliculogenesis and oocyte maturation [22]-[24], with deficiencies possibly causing detrimental effects on fertility.
Time to start treatment again was tailored by patient’s age, weight reduction and metabolic parameters. Possibly some of the beneficial effects of bariatric surgery on fertility were obscured by the time passed and the potential decrease in ovarian reserve due to aging. Historically women undergoing bariatric surgery were advised to delay pregnancy for 12 to 24 months after surgery. This recommendation was intended to both optimize weight loss and minimize adverse effects of nutritional deficiencies [25],[26]. Recent studies and guidelines emphasize the importance of nutritional balance rather than the time from surgery to conception [27]. It might make sense to offer this treatment option to younger patients, seeking for infertility treatments, as in the older population the delay in time might interfere with fertility treatment results.
The main limitations of our study are the small sample size (seven patients) and the long period between the operation and the subsequent IVF treatments. In order to demonstrate, for example, a difference of 30% in the number of oocytes retrieved at a power of 80% and an alpha value of 5% using the uncorrected chi-squared test, 33 study subjects would be needed. This is a preliminary study and the sample size was limited by the unique methodology comparing IVF cycle characteristics in the same patients prior to and following bariatric surgery and the relative rarity of such patients.

Conclusions

These preliminary case series suggest that bariatric surgery for weight reduction seems to be a safe and beneficial treatment option for morbidly obese infertile patients. Further studies are needed to evaluate the long-term effects of bariatric surgery on ovarian reserve or ovarian stimulation characteristics.

Acknowledgment

The authors thank Ms. Ilana Gelernter, Department of Statistics and Operations Research, Tel-Aviv University for her statistical analysis.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Creative Commons Public Domain Dedication waiver (https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

AT- collected data, analyzed it and participated in writing the manuscript. RO- planned the study design together with RM and edited the manuscript. JH – Helped in writing the article, AK – Helped in writing the article. RM planned the study design together with RO, analyzed the data, and participated in writing the manuscript. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Imes CC, Burke LE: The obesity epidemic: the United States as a cautionary tale for the rest of the world. Curr Epidemiol Rep 2014, 1: 82–88. 10.1007/s40471-014-0012-6PubMedCentralCrossRefPubMed Imes CC, Burke LE: The obesity epidemic: the United States as a cautionary tale for the rest of the world. Curr Epidemiol Rep 2014, 1: 82–88. 10.1007/s40471-014-0012-6PubMedCentralCrossRefPubMed
2.
Zurück zum Zitat Ogden CL, Carroll MD, Kit BK, Flegal KM: Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 2014, 311: 806–814. 10.1001/jama.2014.732CrossRefPubMed Ogden CL, Carroll MD, Kit BK, Flegal KM: Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 2014, 311: 806–814. 10.1001/jama.2014.732CrossRefPubMed
3.
4.
Zurück zum Zitat Frøen JF, Arnestad M, Frey K, Vege A, Saugstad OD, Stray-Pedersen B: Risk factors for sudden intrauterine unexplained death: epidemiologic characteristics of singleton cases in Oslo, Norway, 1986–1995. Am J Obstet Gynecol 2001, 184: 694–702. 10.1067/mob.2001.110697CrossRefPubMed Frøen JF, Arnestad M, Frey K, Vege A, Saugstad OD, Stray-Pedersen B: Risk factors for sudden intrauterine unexplained death: epidemiologic characteristics of singleton cases in Oslo, Norway, 1986–1995. Am J Obstet Gynecol 2001, 184: 694–702. 10.1067/mob.2001.110697CrossRefPubMed
5.
Zurück zum Zitat Shah DK, Missmer SA, Berry KF, Racowsky C, Ginsburg ES: Effect of obesity on oocyte and embryo quality in women undergoing in vitro fertilization. Obstet Gynecol 2011, 118: 63–70. 10.1097/AOG.0b013e31821fd360CrossRefPubMed Shah DK, Missmer SA, Berry KF, Racowsky C, Ginsburg ES: Effect of obesity on oocyte and embryo quality in women undergoing in vitro fertilization. Obstet Gynecol 2011, 118: 63–70. 10.1097/AOG.0b013e31821fd360CrossRefPubMed
6.
Zurück zum Zitat Luke B, Brown MB, Missmer SA, Bukulmez O, Leach R, Stern JE: The effect of increasing obesity on the response to and outcome of assisted reproductive technology: a national study. Fertil Steril 2011, 96: 820–825. 10.1016/j.fertnstert.2011.07.1100CrossRefPubMed Luke B, Brown MB, Missmer SA, Bukulmez O, Leach R, Stern JE: The effect of increasing obesity on the response to and outcome of assisted reproductive technology: a national study. Fertil Steril 2011, 96: 820–825. 10.1016/j.fertnstert.2011.07.1100CrossRefPubMed
7.
Zurück zum Zitat Kumbak B, Oral E, Bukulmez O: Female obesity and assisted reproductive technologies. Semin Reprod Med 2012, 30: 507–516. 10.1055/s-0032-1328879CrossRefPubMed Kumbak B, Oral E, Bukulmez O: Female obesity and assisted reproductive technologies. Semin Reprod Med 2012, 30: 507–516. 10.1055/s-0032-1328879CrossRefPubMed
8.
Zurück zum Zitat Orvieto R, Meltcer S, Nahum R, Rabinson J, Anteby EY, Ashkenazi J: The influence of body mass index on in vitro fertilization outcome. Int J Gynaecol Obstet 2009, 104: 53–55. 10.1016/j.ijgo.2008.08.012CrossRefPubMed Orvieto R, Meltcer S, Nahum R, Rabinson J, Anteby EY, Ashkenazi J: The influence of body mass index on in vitro fertilization outcome. Int J Gynaecol Obstet 2009, 104: 53–55. 10.1016/j.ijgo.2008.08.012CrossRefPubMed
9.
Zurück zum Zitat Acosta A, Abu Dayyeh BK, Port JD, Camilleri M: Recent advances in clinical practice challenges and opportunities in the management of obesity. Gut 2014, 63: 687–695. 10.1136/gutjnl-2013-306235PubMedCentralCrossRefPubMed Acosta A, Abu Dayyeh BK, Port JD, Camilleri M: Recent advances in clinical practice challenges and opportunities in the management of obesity. Gut 2014, 63: 687–695. 10.1136/gutjnl-2013-306235PubMedCentralCrossRefPubMed
10.
Zurück zum Zitat Tack J, Deloose E: Complications of bariatric surgery: dumping syndrome, reflux and vitamin deficiencies. Best Pract Res Clin Gastroenterol 2014, 28: 741–749. 10.1016/j.bpg.2014.07.010CrossRefPubMed Tack J, Deloose E: Complications of bariatric surgery: dumping syndrome, reflux and vitamin deficiencies. Best Pract Res Clin Gastroenterol 2014, 28: 741–749. 10.1016/j.bpg.2014.07.010CrossRefPubMed
11.
Zurück zum Zitat Gastrointestinal surgery for severe obesity. NIH consensus development conference, March 25–7, 1991. Nutrition 1996, 12: 397–404. Gastrointestinal surgery for severe obesity. NIH consensus development conference, March 25–7, 1991. Nutrition 1996, 12: 397–404.
12.
Zurück zum Zitat Guidelines (2013) for the management of overweight and obesity in adults Obesity 2014, 22: S41-S410. 10.1002/oby.20660 Guidelines (2013) for the management of overweight and obesity in adults Obesity 2014, 22: S41-S410. 10.1002/oby.20660
13.
Zurück zum Zitat DeMaria EJ: Bariatric surgery for morbid obesity. N Engl J Med 2007, 356: 2176–2183. 10.1056/NEJMct067019CrossRefPubMed DeMaria EJ: Bariatric surgery for morbid obesity. N Engl J Med 2007, 356: 2176–2183. 10.1056/NEJMct067019CrossRefPubMed
14.
Zurück zum Zitat Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, Schoelles K: Bariatric surgery: a systematic review and meta-analysis. JAMA 2004, 292: 1724–1737. 10.1001/jama.292.14.1724CrossRefPubMed Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, Schoelles K: Bariatric surgery: a systematic review and meta-analysis. JAMA 2004, 292: 1724–1737. 10.1001/jama.292.14.1724CrossRefPubMed
15.
Zurück zum Zitat Tan O, Carr BR: The impact of bariatric surgery on obesity-related infertility and in vitro fertilization outcomes. Semin Reprod Med 2012, 30: 517–528. 10.1055/s-0032-1328880CrossRefPubMed Tan O, Carr BR: The impact of bariatric surgery on obesity-related infertility and in vitro fertilization outcomes. Semin Reprod Med 2012, 30: 517–528. 10.1055/s-0032-1328880CrossRefPubMed
16.
Zurück zum Zitat Baum M, Machtinger R, Yerushalmi GM, Maman E, Seidman DS, Dor J, Hourvitz A: Recurrence of empty follicle syndrome with stimulated IVF cycles. Gynecol Endocrinol 2012, 28: 293–295. 10.3109/09513590.2011.631629CrossRefPubMed Baum M, Machtinger R, Yerushalmi GM, Maman E, Seidman DS, Dor J, Hourvitz A: Recurrence of empty follicle syndrome with stimulated IVF cycles. Gynecol Endocrinol 2012, 28: 293–295. 10.3109/09513590.2011.631629CrossRefPubMed
17.
Zurück zum Zitat Ziebe S, Lundin K, Janssens R, Helmgaard L, Arce JC: Influence of ovarian stimulation with HP-hMG or recombinant FSH on embryo quality parameters in patients undergoing IVF. Hum Reprod 2007, 22: 2404–2413. 10.1093/humrep/dem221CrossRefPubMed Ziebe S, Lundin K, Janssens R, Helmgaard L, Arce JC: Influence of ovarian stimulation with HP-hMG or recombinant FSH on embryo quality parameters in patients undergoing IVF. Hum Reprod 2007, 22: 2404–2413. 10.1093/humrep/dem221CrossRefPubMed
18.
Zurück zum Zitat Doblado MA, Lewkowksi BM, Odem RR, Jungheim ES: In vitro fertilization after bariatric surgery. Fertil Steril 2010, 94: 2812–2814. 10.1016/j.fertnstert.2010.06.052PubMedCentralCrossRefPubMed Doblado MA, Lewkowksi BM, Odem RR, Jungheim ES: In vitro fertilization after bariatric surgery. Fertil Steril 2010, 94: 2812–2814. 10.1016/j.fertnstert.2010.06.052PubMedCentralCrossRefPubMed
19.
Zurück zum Zitat Christofolini J, Bianco B, Santos G, Adami F, Christofolini D, Barbosa CP: Bariatric surgery influences the number and quality of oocytes in patients submitted to assisted reproduction techniques. Obesity (Silver Spring) 2014, 22: 939–942. 10.1002/oby.20590CrossRef Christofolini J, Bianco B, Santos G, Adami F, Christofolini D, Barbosa CP: Bariatric surgery influences the number and quality of oocytes in patients submitted to assisted reproduction techniques. Obesity (Silver Spring) 2014, 22: 939–942. 10.1002/oby.20590CrossRef
20.
Zurück zum Zitat Santry HP, Gillen DL, Lauderdale DS: Trends in bariatric surgical procedures. JAMA 2005, 294: 1909–1917. 10.1001/jama.294.15.1909CrossRefPubMed Santry HP, Gillen DL, Lauderdale DS: Trends in bariatric surgical procedures. JAMA 2005, 294: 1909–1917. 10.1001/jama.294.15.1909CrossRefPubMed
21.
Zurück zum Zitat Guelinckx I, Devlieger R, Vansant G: Reproductive outcome after bariatric surgery: a critical review. Hum Reprod Update 2009, 15: 189–201. 10.1093/humupd/dmn057CrossRefPubMed Guelinckx I, Devlieger R, Vansant G: Reproductive outcome after bariatric surgery: a critical review. Hum Reprod Update 2009, 15: 189–201. 10.1093/humupd/dmn057CrossRefPubMed
22.
Zurück zum Zitat Corduk N, Abban G, Yildirim B, Sarioglu-Buke A: The effect of vitamin D on expression of TGF beta1 in ovary. Exp Clin Endocrinol Diabetes 2012, 120: 490–493.PubMed Corduk N, Abban G, Yildirim B, Sarioglu-Buke A: The effect of vitamin D on expression of TGF beta1 in ovary. Exp Clin Endocrinol Diabetes 2012, 120: 490–493.PubMed
23.
Zurück zum Zitat Inpanbutr N: Association between calbindin-D28K and oogenesis in ovaries of chicken embryos in vitro. Am J Vet Res 1994, 55: 1341–1346.PubMed Inpanbutr N: Association between calbindin-D28K and oogenesis in ovaries of chicken embryos in vitro. Am J Vet Res 1994, 55: 1341–1346.PubMed
24.
Zurück zum Zitat Steegers-Theunissen RP, Twigt J, Pestinger V, Sinclair KD: The periconceptional period, reproduction and long-term health of offspring: the importance of one-carbon metabolism. Hum Reprod Update 2013, 19: 640–655. 10.1093/humupd/dmt041CrossRefPubMed Steegers-Theunissen RP, Twigt J, Pestinger V, Sinclair KD: The periconceptional period, reproduction and long-term health of offspring: the importance of one-carbon metabolism. Hum Reprod Update 2013, 19: 640–655. 10.1093/humupd/dmt041CrossRefPubMed
25.
Zurück zum Zitat Marceau P, Kaufman D, Biron S, Hould FS, Lebel S, Marceau S, Kral JG: Outcome of pregnancies after biliopancreatic diversion. Obes Surg 2004, 14: 318–324. 10.1381/096089204322917819CrossRefPubMed Marceau P, Kaufman D, Biron S, Hould FS, Lebel S, Marceau S, Kral JG: Outcome of pregnancies after biliopancreatic diversion. Obes Surg 2004, 14: 318–324. 10.1381/096089204322917819CrossRefPubMed
26.
Zurück zum Zitat Beard JH, Bell RL, Duffy AJ: Reproductive considerations and pregnancy after bariatric surgery: current evidence and recommendations. Obes Surg 2008, 18: 1023–1027. 10.1007/s11695-007-9389-3CrossRefPubMed Beard JH, Bell RL, Duffy AJ: Reproductive considerations and pregnancy after bariatric surgery: current evidence and recommendations. Obes Surg 2008, 18: 1023–1027. 10.1007/s11695-007-9389-3CrossRefPubMed
27.
Zurück zum Zitat ACOG Committee opinion no. 549: obesity in pregnancy Obstet Gynecol 2013, 121: 213–217. ACOG Committee opinion no. 549: obesity in pregnancy Obstet Gynecol 2013, 121: 213–217.
Metadaten
Titel
Does bariatric surgery improve ovarian stimulation characteristics, oocyte yield, or embryo quality?
verfasst von
Abraham Tsur
Raoul Orvieto
Jigal Haas
Alon Kedem
Ronit Machtinger
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Journal of Ovarian Research / Ausgabe 1/2014
Elektronische ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-014-0116-0

Weitere Artikel der Ausgabe 1/2014

Journal of Ovarian Research 1/2014 Zur Ausgabe

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.