Skip to main content
Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine 6/2020

08.08.2020 | Commentary

Does the brain have mechanical compliance?

verfasst von: Noam Alperin

Erschienen in: Magnetic Resonance Materials in Physics, Biology and Medicine | Ausgabe 6/2020

Einloggen, um Zugang zu erhalten

Excerpt

The terms “intracranial compliance” and “brain compliance” are often used interchangeably in the cerebrospinal fluid (CSF) literature [1, 2]. It is therefore time to clarify what intracranial compliance is and whether brains have compliance. The impetus for this commentary is a sentence I read while reviewing a manuscript; “Intracranial compliance is the ability of the brain to adapt to changes in intracranial volume while maintaining intracranial pressure”. I had to read it twice because compliance has a lot to do with changes in volume and pressure but nothing to do with the ability of the brain to adapt to these changes. The notion behind “brain compliance” is likely related to the perception that the brain is “soft” and therefore it can accommodate a change in volume. The brain is not “soft” in the same way that water is not soft as both are incompressible within the physiological range of pressure changes. The brain material is viscoelastic, it is pliable, it can change its shape upon application of force, it is deformable and its resistance to deformation is termed stiffness [3]. The stiffness of the brain can actually be measured without touching it using MR elastography (MRE) [4] by imaging the propagation of shear waves through the brain caused by mechanical vibrations. Brain MRE is a maturing technique that is being used to map the stiffness of tissues throughout the brain in the healthy and disease states [5]. …
Literatur
5.
8.
Zurück zum Zitat Bateman GA (2000) Vascular compliance in normal pressure hydrocephalus. AJNR Am J Neuroradiol 21(9):1574–1585 (Epub 2000/10/20 PubMed PMID: 11039334)PubMed Bateman GA (2000) Vascular compliance in normal pressure hydrocephalus. AJNR Am J Neuroradiol 21(9):1574–1585 (Epub 2000/10/20 PubMed PMID: 11039334)PubMed
10.
Zurück zum Zitat Magendie F (1996) Recherches physiologiques et cliniques sur le liquide céphalorachidien ou cérébro-spinal. Librairie Medicale de Mequigenon-Marvis, Paris Magendie F (1996) Recherches physiologiques et cliniques sur le liquide céphalorachidien ou cérébro-spinal. Librairie Medicale de Mequigenon-Marvis, Paris
14.
Zurück zum Zitat Pelc NJ, Herfkens RJ, Shimakawa A, Enzmann DR (1991) Phase contrast cine magnetic resonance imaging. Magn Res Q 7(4):229–254 (Epub 1991/10/01 PubMed PMID: 1790111) Pelc NJ, Herfkens RJ, Shimakawa A, Enzmann DR (1991) Phase contrast cine magnetic resonance imaging. Magn Res Q 7(4):229–254 (Epub 1991/10/01 PubMed PMID: 1790111)
15.
Zurück zum Zitat Enzmann DR, Pelc NJ (1993) Cerebrospinal fluid flow measured by phase-contrast cine MR. AJNR Am J Neuroradiol 14(6):1301–1307 (Discussion 9-10. Epub 1993/11/01. PubMed PMID: 8279323)PubMed Enzmann DR, Pelc NJ (1993) Cerebrospinal fluid flow measured by phase-contrast cine MR. AJNR Am J Neuroradiol 14(6):1301–1307 (Discussion 9-10. Epub 1993/11/01. PubMed PMID: 8279323)PubMed
16.
Zurück zum Zitat Alperin N, Vikingstad EM, Gomez-Anson B, Levin DN (1996) Hemodynamically independent analysis of cerebrospinal fluid and brain motion observed with dynamic phase contrast MRI. Magnet Reson Med Official J Soc Med 35(5):741–754 (Epub 1996/05/01 PubMed PMID: 8722826)CrossRef Alperin N, Vikingstad EM, Gomez-Anson B, Levin DN (1996) Hemodynamically independent analysis of cerebrospinal fluid and brain motion observed with dynamic phase contrast MRI. Magnet Reson Med Official J Soc Med 35(5):741–754 (Epub 1996/05/01 PubMed PMID: 8722826)CrossRef
17.
Zurück zum Zitat Alperin NJ, Lee SH, Loth F, Raksin PB, Lichtor T (2000) MR-Intracranial pressure (ICP): a method to measure intracranial elastance and pressure noninvasively by means of MR imaging: baboon and human study. Radiology 217(3):877–885 (Epub 2000/12/09 PubMed PMID: 11110957)CrossRef Alperin NJ, Lee SH, Loth F, Raksin PB, Lichtor T (2000) MR-Intracranial pressure (ICP): a method to measure intracranial elastance and pressure noninvasively by means of MR imaging: baboon and human study. Radiology 217(3):877–885 (Epub 2000/12/09 PubMed PMID: 11110957)CrossRef
18.
Zurück zum Zitat Tain RW, Ertl-Wagner B, Alperin N (2009) Influence of the compliance of the neck arteries and veins on the measurement of intracranial volume change by phase-contrast MRI. J Magnet Res Imaging JMRI 30(4):878–883 (Epub 2009/09/30. doi: 10.1002/jmri.21925. PubMed PMID: 19787740; PMCID: PMC2919212)CrossRef Tain RW, Ertl-Wagner B, Alperin N (2009) Influence of the compliance of the neck arteries and veins on the measurement of intracranial volume change by phase-contrast MRI. J Magnet Res Imaging JMRI 30(4):878–883 (Epub 2009/09/30. doi: 10.1002/jmri.21925. PubMed PMID: 19787740; PMCID: PMC2919212)CrossRef
22.
Zurück zum Zitat Tain RW, Bagci AM, Lam BL, Sklar EM, Ertl-Wagner B, Alperin N (2011) Determination of Cranio-Spinal canal compliance distribution by MRI: Methodology and early application in idiopathic intracranial hypertension. J Magn Res Imag 34(6):1397–1404. https://doi.org/10.1002/jmri.22799CrossRef Tain RW, Bagci AM, Lam BL, Sklar EM, Ertl-Wagner B, Alperin N (2011) Determination of Cranio-Spinal canal compliance distribution by MRI: Methodology and early application in idiopathic intracranial hypertension. J Magn Res Imag 34(6):1397–1404. https://​doi.​org/​10.​1002/​jmri.​22799CrossRef
23.
Zurück zum Zitat Loth F, Yardimci MA, Alperin N (2001) Hydrodynamic modeling of cerebrospinal fluid motion within the spinal cavity. J Biomech Eng 123(1):71–79 (Epub 2001/03/30 PubMed PMID: 11277305)CrossRef Loth F, Yardimci MA, Alperin N (2001) Hydrodynamic modeling of cerebrospinal fluid motion within the spinal cavity. J Biomech Eng 123(1):71–79 (Epub 2001/03/30 PubMed PMID: 11277305)CrossRef
Metadaten
Titel
Does the brain have mechanical compliance?
verfasst von
Noam Alperin
Publikationsdatum
08.08.2020
Verlag
Springer International Publishing
Erschienen in
Magnetic Resonance Materials in Physics, Biology and Medicine / Ausgabe 6/2020
Print ISSN: 0968-5243
Elektronische ISSN: 1352-8661
DOI
https://doi.org/10.1007/s10334-020-00880-2

Weitere Artikel der Ausgabe 6/2020

Magnetic Resonance Materials in Physics, Biology and Medicine 6/2020 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.