Skip to main content
Erschienen in: German Journal of Exercise and Sport Research 4/2012

01.12.2012 | Hauptbeiträge

Dopaminerge Modulation striataler Plastizität

Türöffnerfunktion in der Automatisierung von Willkürbewegungen

verfasst von: Frieder Beck, Klaus Blischke, Birgit Abler

Erschienen in: German Journal of Exercise and Sport Research | Ausgabe 4/2012

Einloggen, um Zugang zu erhalten

Zusammenfassung

Der vorliegende Beitrag versucht, einen Überblick über die Neurobiologie der Automatisierung von Willkürbewegungen zu geben. Insbesondere wird aufgezeigt, dass eine zunehmende Bewegungsautomatisierung mit synaptischen Plastizitätsvorgängen im kortikokortikalen und kortikostriatalen System einhergeht, die vermutlich zu Veränderungen in den neuronalen Repräsentationen der geübten Bewegungen führen. Sodann wird die Rolle phasischer Dopaminaktivierungen und deren modulatorischer Effekt auf striatale Plastizitätsvorgänge bei denjenigen neuronalen Phänomenen diskutiert, die mit fortschreitendem Training beobachtet werden.
Literatur
1.
Zurück zum Zitat Abler, B., Hahlbrock, R., Unrath, A., Grön, G. & Kassubek, J. (2009). At-risk for pathological gambling: imaging neural reward processing under chronic dopamine agonists. Brain, 132, 2396–2402. Abler, B., Hahlbrock, R., Unrath, A., Grön, G. & Kassubek, J. (2009). At-risk for pathological gambling: imaging neural reward processing under chronic dopamine agonists. Brain, 132, 2396–2402.
2.
Zurück zum Zitat Abler, B., Walter, H., Erk, S., Kammerer, H. & Spitzer, M. (2006). Prediction error as a linear function of reward probability is coded in human nucleus accumbens. Neuroimage, 31, 790–795. Abler, B., Walter, H., Erk, S., Kammerer, H. & Spitzer, M. (2006). Prediction error as a linear function of reward probability is coded in human nucleus accumbens. Neuroimage, 31, 790–795.
3.
Zurück zum Zitat Albin, R.L., Young, A.B. & Penney, J.B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neuroscience, 12, 366–375. Albin, R.L., Young, A.B. & Penney, J.B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neuroscience, 12, 366–375.
4.
Zurück zum Zitat Bayer, H.M. & Glimcher, P.W. (2005). Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47, 129–141. Bayer, H.M. & Glimcher, P.W. (2005). Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47, 129–141.
5.
Zurück zum Zitat Beck, F. (2008). Sportmotorik und Gehirn. Sportwissenschaft, 38 (4), 423–450. Beck, F. (2008). Sportmotorik und Gehirn. Sportwissenschaft, 38 (4), 423–450.
6.
Zurück zum Zitat Beck, F. & Beckmann, J. (2009). Werden sportmotorisch relevante Handlungs-Effekt-Verknüpfungen über dopaminerge Neuromodulation vermittelt? Deutsche Zeitschrift für Sportmedizin, 2, 36–40. Beck, F. & Beckmann, J. (2009). Werden sportmotorisch relevante Handlungs-Effekt-Verknüpfungen über dopaminerge Neuromodulation vermittelt? Deutsche Zeitschrift für Sportmedizin, 2, 36–40.
7.
Zurück zum Zitat Beck, F. & Beckmann, J. (2010a). Die Bedeutung striataler Plastizitätsvorgänge und unerwarteten Bewegungserfolgs für sportmotorisches Lernen. Sportwissenschaft, 40 (1), 19–25. Beck, F. & Beckmann, J. (2010a). Die Bedeutung striataler Plastizitätsvorgänge und unerwarteten Bewegungserfolgs für sportmotorisches Lernen. Sportwissenschaft, 40 (1), 19–25.
8.
Zurück zum Zitat Beck, F. & Beckmann, J. (2010b). Die Rolle hippokampaler und striataler Plastizitätsvorgänge für motorisches Lernen. Deutsche Zeitschrift für Sportmedizin. 61 (7–8), 157–162. Beck, F. & Beckmann, J. (2010b). Die Rolle hippokampaler und striataler Plastizitätsvorgänge für motorisches Lernen. Deutsche Zeitschrift für Sportmedizin. 61 (7–8), 157–162.
9.
Zurück zum Zitat Belin, D. & Everitt, B.J. (2008). Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron, 57, 432–441. Belin, D. & Everitt, B.J. (2008). Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron, 57, 432–441.
10.
Zurück zum Zitat Berns, G.S., McClure, S.M., Pagnoni, G. & Montague, P.R. (2001). Predictability modulates human brain response to reward. Journal of Neuroscience, 21, 2793–2798. Berns, G.S., McClure, S.M., Pagnoni, G. & Montague, P.R. (2001). Predictability modulates human brain response to reward. Journal of Neuroscience, 21, 2793–2798.
11.
Zurück zum Zitat Berridge, K.C. (2007). The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology (Berl), 191 (3), 391–431. Berridge, K.C. (2007). The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology (Berl), 191 (3), 391–431.
12.
Zurück zum Zitat Bi, G.O. & Poo, M.M. (2001). Synaptic modification by correlated activity: Hebb’s postulate revisited. Annual Review of Neuroscience, 24, 139–166. Bi, G.O. & Poo, M.M. (2001). Synaptic modification by correlated activity: Hebb’s postulate revisited. Annual Review of Neuroscience, 24, 139–166.
13.
Zurück zum Zitat Blischke, K. (2001). Automatisierung einer großmotorischen Kalibrierungsaufgabe durch Prozeduralisierung. psychologie und sport, 8, 19–38. Blischke, K. (2001). Automatisierung einer großmotorischen Kalibrierungsaufgabe durch Prozeduralisierung. psychologie und sport, 8, 19–38.
14.
Zurück zum Zitat Blischke, K. (2002). Automatisierung und Langzeit-Behalten motorischer Fertigkeiten. psychologie und sport, 9 (3), 97–109. Blischke, K. (2002). Automatisierung und Langzeit-Behalten motorischer Fertigkeiten. psychologie und sport, 9 (3), 97–109.
15.
Zurück zum Zitat Blischke, K. (2010). Motorik, Diagnostik und Intervention bei Morbus Parkinson. In N. Schott & J. Munzert (Hrsg.), Motorische Entwicklung (S. 207–229). [Reihe Sportpsychologie, Hrsg. von B. Strauß, W. Schlicht, J. Munzert & R. Fuchs] Göttingen, Bern, Wien, Paris u. a.: Hogrefe. Blischke, K. (2010). Motorik, Diagnostik und Intervention bei Morbus Parkinson. In N. Schott & J. Munzert (Hrsg.), Motorische Entwicklung (S. 207–229). [Reihe Sportpsychologie, Hrsg. von B. Strauß, W. Schlicht, J. Munzert & R. Fuchs] Göttingen, Bern, Wien, Paris u. a.: Hogrefe.
16.
Zurück zum Zitat Bliss, T.V.P. & Collingridge, G.L. (1993). A synaptic model of memory: Long term potentiation in the hippocampus. Nature, 361, 31–39. Bliss, T.V.P. & Collingridge, G.L. (1993). A synaptic model of memory: Long term potentiation in the hippocampus. Nature, 361, 31–39.
17.
Zurück zum Zitat Bolam, J.P., Hanley, J.J., Booth, P.A. & Bevan, M.D. (2000). Synaptic organisation of the basal ganglia. Journal of Anatomy, 196, 527–542. Bolam, J.P., Hanley, J.J., Booth, P.A. & Bevan, M.D. (2000). Synaptic organisation of the basal ganglia. Journal of Anatomy, 196, 527–542.
18.
Zurück zum Zitat Breiter, H.C., Aharon, I., Kahneman, D., Dale, A. & Shizgal, P. (2001). Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron, 30, 619–639. Breiter, H.C., Aharon, I., Kahneman, D., Dale, A. & Shizgal, P. (2001). Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron, 30, 619–639.
19.
Zurück zum Zitat Bush, G., Vogt, B.A., Holmes, J., Dale, A.M., Greve, D., Jenike, M.A. & Rosen, B.R. (2002). Dorsal anterior congulate cortex: a role in reward-based decision making. Proceedings of the National Academy of Science of the USA, 99, 523–528. Bush, G., Vogt, B.A., Holmes, J., Dale, A.M., Greve, D., Jenike, M.A. & Rosen, B.R. (2002). Dorsal anterior congulate cortex: a role in reward-based decision making. Proceedings of the National Academy of Science of the USA, 99, 523–528.
20.
Zurück zum Zitat Charron, S. & Koechlin, E. (2010). Divided representation of concurrent goals in the human frontal lobes. Science, 328, 360–363. Charron, S. & Koechlin, E. (2010). Divided representation of concurrent goals in the human frontal lobes. Science, 328, 360–363.
21.
Zurück zum Zitat Cohen, M.X. & Frank, M.J. (2009). Neurocomputational models of basal ganglia function in learning, memory and choice. Behavioural Brain Research, 199, 141–156. Cohen, M.X. & Frank, M.J. (2009). Neurocomputational models of basal ganglia function in learning, memory and choice. Behavioural Brain Research, 199, 141–156.
22.
Zurück zum Zitat Coynel, D., Marrelec, G., Perlbarg, V., Pélégrini-Issac, M., Van de Moortele, P.-F., Ugurbil, K., Doyon, J., Benali, H. & Lehéricy, S. (2010). Dynamics of motor-related functional integration during motor sequence learning. Neuroimage, 49 (1), 759–766. Coynel, D., Marrelec, G., Perlbarg, V., Pélégrini-Issac, M., Van de Moortele, P.-F., Ugurbil, K., Doyon, J., Benali, H. & Lehéricy, S. (2010). Dynamics of motor-related functional integration during motor sequence learning. Neuroimage, 49 (1), 759–766.
23.
Zurück zum Zitat Dan, Y. & Poo, M. (2004). Spike timing-dependent plasticity of neural circuits. Neuron, 44, 22–30. Dan, Y. & Poo, M. (2004). Spike timing-dependent plasticity of neural circuits. Neuron, 44, 22–30.
24.
Zurück zum Zitat Darvas, M. & Palmiter, R.D. (2010). Restricting dopaminergic signalling to either dorsolateral or medial striatum facilitates cognition. Journal of Neuroscience, 30, 1158–1165. Darvas, M. & Palmiter, R.D. (2010). Restricting dopaminergic signalling to either dorsolateral or medial striatum facilitates cognition. Journal of Neuroscience, 30, 1158–1165.
25.
Zurück zum Zitat DeLong, M.R. (2000). The Basal Ganglia. In E.R. Kandel, J.H. Schwartz & T.M. Jessel (Eds.), Principles of neural science. 4th edition (pp. 853–867). New York: McGraw-Hill. DeLong, M.R. (2000). The Basal Ganglia. In E.R. Kandel, J.H. Schwartz & T.M. Jessel (Eds.), Principles of neural science. 4th edition (pp. 853–867). New York: McGraw-Hill.
26.
Zurück zum Zitat Domenger, D. & Schwarting, R.K.W. (2008). Effects of neostriatal 6-OHDA lesion on performance in a rat sequential reaction time task. Neuroscience Letters, 444, 212–216. Domenger, D. & Schwarting, R.K.W. (2008). Effects of neostriatal 6-OHDA lesion on performance in a rat sequential reaction time task. Neuroscience Letters, 444, 212–216.
27.
Zurück zum Zitat Doyon, J., Penhune, V. & Ungerleider, L.G. (2003). Distinct contribution of the cortico-striatal and cortico-cerebellar system to motor skill learning. Neuropsychologia, 41, 252–262. Doyon, J., Penhune, V. & Ungerleider, L.G. (2003). Distinct contribution of the cortico-striatal and cortico-cerebellar system to motor skill learning. Neuropsychologia, 41, 252–262.
28.
Zurück zum Zitat Doyon, J. & Benali, H. (2005). Reorganization and plasticity in the adult brain during learning of motor skills. Current Opinion in Neurobiology, 15, 161–167. Doyon, J. & Benali, H. (2005). Reorganization and plasticity in the adult brain during learning of motor skills. Current Opinion in Neurobiology, 15, 161–167.
29.
Zurück zum Zitat Doyon, J., Bellec, P., Amsel, R., Penhune, V., Monchi, O., Carrier, J., Lehéricy & Benali, H. (2009). Contributions of the basal ganglia and functionally related brain structures to motor learning. Behavioral Brain Research, 199, 61–75. Doyon, J., Bellec, P., Amsel, R., Penhune, V., Monchi, O., Carrier, J., Lehéricy & Benali, H. (2009). Contributions of the basal ganglia and functionally related brain structures to motor learning. Behavioral Brain Research, 199, 61–75.
30.
Zurück zum Zitat Draganski, B., Kherif, F., Klöppel, S., Cook, P.A., Alexander, D.C., Parker, G.J.M., Deichmann, R., Ashburner, J. & Frackowiak, R.S.J. (2008). Evidence for segregated and integrative connectivity patterns in the human basal ganglia. Journal of Neuroscience, 28, 7143–7152. Draganski, B., Kherif, F., Klöppel, S., Cook, P.A., Alexander, D.C., Parker, G.J.M., Deichmann, R., Ashburner, J. & Frackowiak, R.S.J. (2008). Evidence for segregated and integrative connectivity patterns in the human basal ganglia. Journal of Neuroscience, 28, 7143–7152.
31.
Zurück zum Zitat Drechsler, R. (2007). Exekutive Funktionen – Übersicht und Taxonomie. Zeitschrift für Neuropsychologie, 18, 233–248. Drechsler, R. (2007). Exekutive Funktionen – Übersicht und Taxonomie. Zeitschrift für Neuropsychologie, 18, 233–248.
32.
Zurück zum Zitat Dux, P.E., Ivanoff, J., Asplund, C.L. & Marois, R. (2006). Isolation of a central bottleneck of information processing with time-resolved fMRI. Neuron, 52, 1109–1120. Dux, P.E., Ivanoff, J., Asplund, C.L. & Marois, R. (2006). Isolation of a central bottleneck of information processing with time-resolved fMRI. Neuron, 52, 1109–1120.
33.
Zurück zum Zitat Eyny, Y.S. & Horvitz, J.C. (2003). Opposing roles of D1 and D2 receptors in appetitive conditioning. Journal of neuroscience, 23, 1584–1587. Eyny, Y.S. & Horvitz, J.C. (2003). Opposing roles of D1 and D2 receptors in appetitive conditioning. Journal of neuroscience, 23, 1584–1587.
34.
Zurück zum Zitat Fauvre, A., Haberland, U., Condé, F. & El Massioui, N. (2005). Lesion to the nigrostriatal dopamine system disrupts stimulus-response habit formation. Journal of Neuroscience, 25, 2771–2780. Fauvre, A., Haberland, U., Condé, F. & El Massioui, N. (2005). Lesion to the nigrostriatal dopamine system disrupts stimulus-response habit formation. Journal of Neuroscience, 25, 2771–2780.
35.
Zurück zum Zitat Feldman, D.E. (2000). Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron, 27, 45–56. Feldman, D.E. (2000). Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron, 27, 45–56.
36.
Zurück zum Zitat Flöel, A., Breitenstein, C., Hummel, F., Celnik, P., Gingert, C., Sawaki, L., Knecht, S. & Cohen, L.G. (2005). Dopaminergic influences on formation of a motor memory. Annals of Neurology, 58, 121–130. Flöel, A., Breitenstein, C., Hummel, F., Celnik, P., Gingert, C., Sawaki, L., Knecht, S. & Cohen, L.G. (2005). Dopaminergic influences on formation of a motor memory. Annals of Neurology, 58, 121–130.
37.
Zurück zum Zitat Floyer-Lea, A. & Matthews, P.M. (2005). Distinguishable brain activation networks for short- and long-term motor skill learning. Journal of Neurophysiology, 94, 512–518. Floyer-Lea, A. & Matthews, P.M. (2005). Distinguishable brain activation networks for short- and long-term motor skill learning. Journal of Neurophysiology, 94, 512–518.
38.
Zurück zum Zitat Garraux, G., Peigneux, P., Carson, R.E. & Hallett, M. (2007). Task-related interaction between basal ganglia and cortical dopamine release. Journal of Neuroscience, 27, 14434–14441. Garraux, G., Peigneux, P., Carson, R.E. & Hallett, M. (2007). Task-related interaction between basal ganglia and cortical dopamine release. Journal of Neuroscience, 27, 14434–14441.
39.
Zurück zum Zitat Gonon, F. (1997). Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo. Journal of Neuroscience, 17, 5972–5978. Gonon, F. (1997). Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo. Journal of Neuroscience, 17, 5972–5978.
40.
Zurück zum Zitat Grafton, S.T., Hazeltine, E. & Ivry, R.B. (1995). Functional mapping of sequence learning in normal humans. Journal of Cognitive Neuroscience, 7, 497–510. Grafton, S.T., Hazeltine, E. & Ivry, R.B. (1995). Functional mapping of sequence learning in normal humans. Journal of Cognitive Neuroscience, 7, 497–510.
41.
Zurück zum Zitat Graybiel, A. (1995). The basal ganglia. Trends in Neuroscience, 18, 60–62. Graybiel, A. (1995). The basal ganglia. Trends in Neuroscience, 18, 60–62.
42.
Zurück zum Zitat Grefen, C.R. (2010). Functional neuroanatomy of dopamine in the striatum. In L.L. Iversen, S.D.Iversen, S.B. Dunnett & A. Björklund (Eds.), Dopamine Handbook (pp. 11–21). New York: Oxford University Press. Grefen, C.R. (2010). Functional neuroanatomy of dopamine in the striatum. In L.L. Iversen, S.D.Iversen, S.B. Dunnett & A. Björklund (Eds.), Dopamine Handbook (pp. 11–21). New York: Oxford University Press.
43.
Zurück zum Zitat Haber, S. (2010). Convergence of limbic, cognitive, and motor cortico-striatal circuits with dopamine pathways in the primate brain. In L.L. Iversen, S.D. Iversen, S. B. Dunnett & A. Björklund (Eds.), Dopamine Handbook (pp. 38–48). New York: Oxford University Press. Haber, S. (2010). Convergence of limbic, cognitive, and motor cortico-striatal circuits with dopamine pathways in the primate brain. In L.L. Iversen, S.D. Iversen, S. B. Dunnett & A. Björklund (Eds.), Dopamine Handbook (pp. 38–48). New York: Oxford University Press.
44.
Zurück zum Zitat Haruno, M., Kuroda, T., Doya, K., Toyama, K., Kimura, M., Samejima, K., Imamizu, H. & Kawato, M. (2004). A neural correlate of reward-based behavioural learning in caudate nucleus: a functional magnetic resonance imaging study of a stochastic decision task. Journal of Neuroscience, 24, 1660–1665. Haruno, M., Kuroda, T., Doya, K., Toyama, K., Kimura, M., Samejima, K., Imamizu, H. & Kawato, M. (2004). A neural correlate of reward-based behavioural learning in caudate nucleus: a functional magnetic resonance imaging study of a stochastic decision task. Journal of Neuroscience, 24, 1660–1665.
45.
Zurück zum Zitat Haruno, M. & Kawato, M. (2006). Heterarchical reinforcement-learning model for integration of multiple cortico-striatal loops: fMRI examination in stimulus-action-reward association learning. Neural Network, 19, 1242–1254. Haruno, M. & Kawato, M. (2006). Heterarchical reinforcement-learning model for integration of multiple cortico-striatal loops: fMRI examination in stimulus-action-reward association learning. Neural Network, 19, 1242–1254.
46.
Zurück zum Zitat Ikemoto, S. (2007). Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Research Reviews, 56, 27–78. Ikemoto, S. (2007). Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Research Reviews, 56, 27–78.
47.
Zurück zum Zitat Izhikevich, E.M. (2007). Solving the distal reward problem through linkage of STDP and dopamine signalling. Cerebral Cortex, 17, 2443–2452. Izhikevich, E.M. (2007). Solving the distal reward problem through linkage of STDP and dopamine signalling. Cerebral Cortex, 17, 2443–2452.
48.
Zurück zum Zitat Jacob, V., Brasier, D.J., Erchova, I., Feldman, D. & Shulz, D. E. (2007). Spike timing-dependent synaptic depression in the in vivo barrel cortex of the rat. Journal of Neuroscience, 27, 1271–1284. Jacob, V., Brasier, D.J., Erchova, I., Feldman, D. & Shulz, D. E. (2007). Spike timing-dependent synaptic depression in the in vivo barrel cortex of the rat. Journal of Neuroscience, 27, 1271–1284.
49.
Zurück zum Zitat Jueptner, M., Frith, C.D., Brooks, D.J., Frackowiak, R.S. & Passingham, R.E. (1997a). Anatomy of motor learning. II. Subcortical structures and learning by trail and error. Journal of Neurophysiology, 77, 1325–1337. Jueptner, M., Frith, C.D., Brooks, D.J., Frackowiak, R.S. & Passingham, R.E. (1997a). Anatomy of motor learning. II. Subcortical structures and learning by trail and error. Journal of Neurophysiology, 77, 1325–1337.
50.
Zurück zum Zitat Jueptner, M., Stephan, K.M., Frith, C.D., Brooks, D.J., Frackowiak, R.S. & Passingham, R.E. (1997b). Anatomy of motor learning. I. Frontal cortex and attention to action. Journal of Neurophysiology, 77, 1313–1324. Jueptner, M., Stephan, K.M., Frith, C.D., Brooks, D.J., Frackowiak, R.S. & Passingham, R.E. (1997b). Anatomy of motor learning. I. Frontal cortex and attention to action. Journal of Neurophysiology, 77, 1313–1324.
51.
Zurück zum Zitat Keele, S.W., Ivry, R., Mayr, U., Hazeltine, E. & Heuer, H. (2003). The cognitive and neural architecture of sequence representation. Psychological Review, 110 (2), 316–339. Keele, S.W., Ivry, R., Mayr, U., Hazeltine, E. & Heuer, H. (2003). The cognitive and neural architecture of sequence representation. Psychological Review, 110 (2), 316–339.
52.
Zurück zum Zitat Kelley, A.E. (2004). Ventral striatal control of appetitive motivation: role in ingestive behaviour and reward-related learning. Neuroscience Biobehavior Reviews, 27, 765–776. Kelley, A.E. (2004). Ventral striatal control of appetitive motivation: role in ingestive behaviour and reward-related learning. Neuroscience Biobehavior Reviews, 27, 765–776.
53.
Zurück zum Zitat Krakauer, J.W., Ghilardi, M.F. & Ghez, C. (1999). Independent learning of internal models for kinematic and dynamic control of reaching. Nature neuroscience, 2 (11), 1026–1031. Krakauer, J.W., Ghilardi, M.F. & Ghez, C. (1999). Independent learning of internal models for kinematic and dynamic control of reaching. Nature neuroscience, 2 (11), 1026–1031.
54.
Zurück zum Zitat Lehéricy, S., Benali, H., Van de Moortele, P.-F., Pélégrini-Issac, M., Waechter, T., Ugurbil, K. & Doyon, J. (2005). Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proceedings of the National Academy of Science of the United States of America, 102, 12566–12571. Lehéricy, S., Benali, H., Van de Moortele, P.-F., Pélégrini-Issac, M., Waechter, T., Ugurbil, K. & Doyon, J. (2005). Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proceedings of the National Academy of Science of the United States of America, 102, 12566–12571.
55.
Zurück zum Zitat Levy, J., Pashler, H. & Boer, E. (2006). Central interference in driving – Is there any stopping the Psychological Refractory Period? Psychological Science, 17, 228–235. Levy, J., Pashler, H. & Boer, E. (2006). Central interference in driving – Is there any stopping the Psychological Refractory Period? Psychological Science, 17, 228–235.
56.
Zurück zum Zitat Lisman, J.E. & Grace, A.A. (2005). The hippocampal-ATV loop: controlling the entry of information into long-term memory. Neuron, 46, 703–713. Lisman, J.E. & Grace, A.A. (2005). The hippocampal-ATV loop: controlling the entry of information into long-term memory. Neuron, 46, 703–713.
57.
Zurück zum Zitat Maquestiaux, F., Lague-Beauvais, M., Ruthruff, E. & Bherer, L. (2008). Bypassing the central bottleneck after single-task practice in the psychological refractory period paradigm: Evidence for task automatization and greedy resource recruitment. Memory & Cognition, 36 (7), 1262–1282 Maquestiaux, F., Lague-Beauvais, M., Ruthruff, E. & Bherer, L. (2008). Bypassing the central bottleneck after single-task practice in the psychological refractory period paradigm: Evidence for task automatization and greedy resource recruitment. Memory & Cognition, 36 (7), 1262–1282
58.
Zurück zum Zitat Markram, H., Lübke, J., Frotscher, M. & Sakmann, B. (1997). Regulation of synaptic between efficacy by coincidence of postsynaptic Aps and EPSPs. Science, 275, 213–215. Markram, H., Lübke, J., Frotscher, M. & Sakmann, B. (1997). Regulation of synaptic between efficacy by coincidence of postsynaptic Aps and EPSPs. Science, 275, 213–215.
59.
Zurück zum Zitat McClure, S.M., Berns, Montague, P.R. (2003). Temporal prediction errors in a passive learning task activate human striatum. Neuron, 38, 339–346. McClure, S.M., Berns, Montague, P.R. (2003). Temporal prediction errors in a passive learning task activate human striatum. Neuron, 38, 339–346.
60.
Zurück zum Zitat Mink, J.W. (1996). The basal ganglia: focused selection and inhibition of competing motor programs. Progress in Neurobiology, 10, 317–356. Mink, J.W. (1996). The basal ganglia: focused selection and inhibition of competing motor programs. Progress in Neurobiology, 10, 317–356.
61.
Zurück zum Zitat Miyake, A., Friedman, N.P., Emerson, M.J., Witzki, A.H., Howerter, A. & Wager, T.D. (2000). Cognitive Psychology, 41, 49–100. Miyake, A., Friedman, N.P., Emerson, M.J., Witzki, A.H., Howerter, A. & Wager, T.D. (2000). Cognitive Psychology, 41, 49–100.
62.
Zurück zum Zitat Müller, H. & Blischke, K. (2009). Motorisches Lernen. In B. Strauß & W. Schlicht (Hrsg.), Grundlagen der Sportpsychologie (S. 159–228). Göttingen, Bern, Toronto, Seattle: Hogrefe. Müller, H. & Blischke, K. (2009). Motorisches Lernen. In B. Strauß & W. Schlicht (Hrsg.), Grundlagen der Sportpsychologie (S. 159–228). Göttingen, Bern, Toronto, Seattle: Hogrefe.
63.
Zurück zum Zitat O’Doherty, J.P., Dayan, P., Friston, K., Critchley, H. & Dolan, R.J. (2003). Temporal difference models and reward-related learning in the human brain. Neuron, 38, 329–337. O’Doherty, J.P., Dayan, P., Friston, K., Critchley, H. & Dolan, R.J. (2003). Temporal difference models and reward-related learning in the human brain. Neuron, 38, 329–337.
64.
Zurück zum Zitat Palminteri, S., Lebreton, M., Worbe, Y., Grabli, D., Hartmann, A. & Pessiglione, M. (2009). Pharmacological modulation of subliminal learning in Parkinson’s and Tourette’s syndromes. Proceedings of the National Academy of Science of the United States of America, 106, 19179–19184. Palminteri, S., Lebreton, M., Worbe, Y., Grabli, D., Hartmann, A. & Pessiglione, M. (2009). Pharmacological modulation of subliminal learning in Parkinson’s and Tourette’s syndromes. Proceedings of the National Academy of Science of the United States of America, 106, 19179–19184.
65.
Zurück zum Zitat Pashler, H. & Johnston, J.C. (1998). Attentional limitations in dual-task performance. In H. Pashler (Ed.), Attention (pp. 155–189). Hove, UK: Psychology Press. Pashler, H. & Johnston, J.C. (1998). Attentional limitations in dual-task performance. In H. Pashler (Ed.), Attention (pp. 155–189). Hove, UK: Psychology Press.
66.
Zurück zum Zitat Pawlak, V. & Kerr, J.N.D. (2008). Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. Journal of Neuroscience, 28, 2435–2446. Pawlak, V. & Kerr, J.N.D. (2008). Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. Journal of Neuroscience, 28, 2435–2446.
67.
Zurück zum Zitat Pessiglione, M, Seymour, B., Flandin, G. Dolan, R.J. & Frith, C.D. (2006). Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature, 442, 1042–1045. Pessiglione, M, Seymour, B., Flandin, G. Dolan, R.J. & Frith, C.D. (2006). Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature, 442, 1042–1045.
68.
Zurück zum Zitat Poldrack, R.A., Sabb, F.W., Foerde, K., Tom, S.M., Asarnow, R.F., Bookheimer, S.Y. & Knowlton, B.J. (2005). The neural correlates of motor skill automaticity. Journal of Neuroscience, 25, 5356–5364. Poldrack, R.A., Sabb, F.W., Foerde, K., Tom, S.M., Asarnow, R.F., Bookheimer, S.Y. & Knowlton, B.J. (2005). The neural correlates of motor skill automaticity. Journal of Neuroscience, 25, 5356–5364.
69.
Zurück zum Zitat Repovs, G., & Baddeley, A. (2006). The multi-component model of working memory: Explorations in experimental cognitive Psychology. Neuroscience, 139, 5–21. Repovs, G., & Baddeley, A. (2006). The multi-component model of working memory: Explorations in experimental cognitive Psychology. Neuroscience, 139, 5–21.
70.
Zurück zum Zitat Robinson, T.E. & Berridge, K.C. (1993). The neural basis of drug craving. An incentive-sensitization theory of addiction. Brain Research Reviews, 18, 247–291. Robinson, T.E. & Berridge, K.C. (1993). The neural basis of drug craving. An incentive-sensitization theory of addiction. Brain Research Reviews, 18, 247–291.
71.
Zurück zum Zitat Roth, G. (2001). Fühlen, Denken, Handeln – wie das Gehirn unser Verhalten steuert. Frankfurt am Main: Suhrkamp. Roth, G. (2001). Fühlen, Denken, Handeln – wie das Gehirn unser Verhalten steuert. Frankfurt am Main: Suhrkamp.
72.
Zurück zum Zitat Schonberg, T., Daw, N.D., Joel, D. & O’Doherty, J.P. (2007). Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making. Journal of Neuroscience, 27, 12860–12867. Schonberg, T., Daw, N.D., Joel, D. & O’Doherty, J.P. (2007). Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making. Journal of Neuroscience, 27, 12860–12867.
73.
Zurück zum Zitat Schultz, W. (2000). Multiple reward signals in the brain. Nature Reviews Neuroscience, 1, 199–207. Schultz, W. (2000). Multiple reward signals in the brain. Nature Reviews Neuroscience, 1, 199–207.
74.
Zurück zum Zitat Schultz, W. (2007). Multiple dopamine functions at different time courses. Annual Review of Neuroscience, 30, 259–288. Schultz, W. (2007). Multiple dopamine functions at different time courses. Annual Review of Neuroscience, 30, 259–288.
75.
Zurück zum Zitat Shaw, C. & McEachern, J. (2001). Toward a theory of neuroplasticity. Hove: Psychology Press. Shaw, C. & McEachern, J. (2001). Toward a theory of neuroplasticity. Hove: Psychology Press.
76.
Zurück zum Zitat Shen, W., Flajolet, M., Greengard, P. & Surmeier, D.J. (2008). Dichotomous dopaminergic control of striatal synaptic plasticity. Science, 321, 848–851. Shen, W., Flajolet, M., Greengard, P. & Surmeier, D.J. (2008). Dichotomous dopaminergic control of striatal synaptic plasticity. Science, 321, 848–851.
77.
Zurück zum Zitat Soechting, J. F. & Terzuolo, C. A. (1990). Sensorimotor transformations and the kinematics of arm movements in three-dimensional space. In M. Jeannerod (Ed.), Attention and performance XIII: Motor representation and control (pp. 479–494). Hillsdale, NJ: Erlbaum. Soechting, J. F. & Terzuolo, C. A. (1990). Sensorimotor transformations and the kinematics of arm movements in three-dimensional space. In M. Jeannerod (Ed.), Attention and performance XIII: Motor representation and control (pp. 479–494). Hillsdale, NJ: Erlbaum.
78.
Zurück zum Zitat Tricomi, E., Balleine, B.W. & O’Doherty, J.P. (2009). A specific role of posterior dorsolateral striatum in human habit learning. Cognitive Neuroscience, 29, 2225–2232. Tricomi, E., Balleine, B.W. & O’Doherty, J.P. (2009). A specific role of posterior dorsolateral striatum in human habit learning. Cognitive Neuroscience, 29, 2225–2232.
79.
Zurück zum Zitat Tsai, H.-C., Zhang, F., Adamantidis, A., Stuber, G.D., Bonci, A., Lecea, L. & Deisseroth, K. (2009). Phasic firning in dopaminergic neurons is sufficient for behavioural conditioning. Science, 324, 1080–1084. Tsai, H.-C., Zhang, F., Adamantidis, A., Stuber, G.D., Bonci, A., Lecea, L. & Deisseroth, K. (2009). Phasic firning in dopaminergic neurons is sufficient for behavioural conditioning. Science, 324, 1080–1084.
80.
Zurück zum Zitat Valentin, V.V. & O’Doherty, J.P. (2009). Overlapping prediction errors in dorsal striatum during instrumental learning with juice and money reward in the human brain. Journal of Neurophysiology, 102, 3384–3391. Valentin, V.V. & O’Doherty, J.P. (2009). Overlapping prediction errors in dorsal striatum during instrumental learning with juice and money reward in the human brain. Journal of Neurophysiology, 102, 3384–3391.
81.
Zurück zum Zitat Verwey, W.B. (1994). Mechanisms in skilled motor behavior. Hilversum: Van der Weij. Verwey, W.B. (1994). Mechanisms in skilled motor behavior. Hilversum: Van der Weij.
82.
Zurück zum Zitat Williams, S.M. & Goldman-Rakic, P.S. (1998). Widespread origin of the primate mesofrontal dopamine system. Cerebral Cortex, 8, 321–45. Williams, S.M. & Goldman-Rakic, P.S. (1998). Widespread origin of the primate mesofrontal dopamine system. Cerebral Cortex, 8, 321–45.
83.
Zurück zum Zitat Willuhn, I. & Steiner, H. (2008). Motor-skill learning in a novel running-wheel task is dependent on D1 dopamine receptors in the striatum. Neuroscience, 153, 249–258. Willuhn, I. & Steiner, H. (2008). Motor-skill learning in a novel running-wheel task is dependent on D1 dopamine receptors in the striatum. Neuroscience, 153, 249–258.
84.
Zurück zum Zitat Wu, T., Kansaku, K. & Hallett, M. (2004). How self-initiated memorized movements become automatic: a fMRT study. Journal of Neurophysiology, 91, 1690–1698. Wu, T., Kansaku, K. & Hallett, M. (2004). How self-initiated memorized movements become automatic: a fMRT study. Journal of Neurophysiology, 91, 1690–1698.
85.
Zurück zum Zitat Zweifel, L.S., Parker, J.G., Lobb, C.J., Rainwater, A., Wall, V.Z., Fadok, V.Z., Darvas, M., Kim, M.J., Mizumori, Paladini, C.A., Phillips, P.E.M. & Palmiter, R.D. (2009). Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behaviour. Proceedings of the National Academy of Science of the United States of America, 106, 7281–7288. Zweifel, L.S., Parker, J.G., Lobb, C.J., Rainwater, A., Wall, V.Z., Fadok, V.Z., Darvas, M., Kim, M.J., Mizumori, Paladini, C.A., Phillips, P.E.M. & Palmiter, R.D. (2009). Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behaviour. Proceedings of the National Academy of Science of the United States of America, 106, 7281–7288.
Metadaten
Titel
Dopaminerge Modulation striataler Plastizität
Türöffnerfunktion in der Automatisierung von Willkürbewegungen
verfasst von
Frieder Beck
Klaus Blischke
Birgit Abler
Publikationsdatum
01.12.2012
Verlag
Springer-Verlag
Erschienen in
German Journal of Exercise and Sport Research / Ausgabe 4/2012
Print ISSN: 2509-3142
Elektronische ISSN: 2509-3150
DOI
https://doi.org/10.1007/s12662-012-0230-3

Weitere Artikel der Ausgabe 4/2012

German Journal of Exercise and Sport Research 4/2012 Zur Ausgabe

dvs Informationen

dvs-Informationen

BISp Informationen

BISp Informationen

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.