Skip to main content
Erschienen in: European Journal of Nutrition 2/2008

01.03.2008 | ORIGINAL CONTRIBUTION

Down-regulation of α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase by polyunsaturated fatty acids in hepatocytes is not mediated by PPARα

verfasst von: Naho Sasaki, Yukari Egashira, Hiroo Sanada

Erschienen in: European Journal of Nutrition | Ausgabe 2/2008

Einloggen, um Zugang zu erhalten

Abstract

Background

α-Amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) is a key enzyme in NAD biosynthesis from tryptophan. Dietary polyunsaturated fatty acids (PUFA) have been shown to suppress hepatic ACMSD activity and its mRNA level in rat. However the mechanism of the suppressive action has not been clarified yet. Although the phenomena that fatty acids suppress the expression of ACMSD in rat liver have been established in vivo experiment, it is still obscure whether the effect of fatty acids on the expression of the enzyme is caused by its direct or indirect action, because there have been very few investigations performed in vitro.

Aim of the study

In this study, to examine whether down-regulation of ACMSD mRNA by PUFA involves peroxisome proliferator-activated receptor (PPAR) α mediated mechanism or not, we investigated the effect of PUFA on the ACMSD expression by using primary cultured rat hepatocytes.

Methods

For this purpose we investigated the effect of PUFA (linoleic acid and eicosapentanoic acid) on the ACMSD mRNA level in primary-cultured rat hepatocytes and compared its effect with that of WY-14,643 (a PPARα agonist). After the incubation of hepatocytes with fatty acids, WY-14,643 and/or MK886 (a PPARα antagonist), mRNA levels of ACMSD and a peroxisome marker enzyme acyl-CoA oxidase (ACO) were determined by competitive reverse transcription-polymerase chain reaction (RT-PCR) method.

Results

ACMSD mRNA level in primary hepatocytes were decreased by the incubation with high concentrations of linoleic acid, eicosapentaenoic acid (EPA) and WY-14,643. The appearance of ACO mRNA by WY-14,643 was remarkably increased, and those by linoleic acid and EPA were increased less than that by WY-14,643. Moreover, the suppression of ACMSD mRNA and the augmentation of ACO mRNA by WY-14,643 were inhibited by MK886, but the suppression by PUFA was not substantially affected by MK886.

Conclusions

The present study suggesting that the mechanism of decrease in ACMSD mRNA level by PUFA was different from that by WY-14,643, and that there would be any pathway other than PPARα mediated one for PUFA to regulate ACMSD expression.
Literatur
1.
Zurück zum Zitat Armstrong MB, Towle HC (2001) Polyunsaturated fatty acids stimulate hepatic UCP-2 expression via a PPARα-mediated pathway. Am J Physiol Endocrinol Metab 281:E1197–E1204 Armstrong MB, Towle HC (2001) Polyunsaturated fatty acids stimulate hepatic UCP-2 expression via a PPARα-mediated pathway. Am J Physiol Endocrinol Metab 281:E1197–E1204
2.
Zurück zum Zitat Berthou L, Saladin R, Yaqoob P et al (1995) Regulation of rat liver apolipoprotein A-I, apolipoprotein A-II and acyl-coenzyme A oxidase gene expression by fibrates and dietary fatty acids. Eur J Biochem 232:179–187CrossRef Berthou L, Saladin R, Yaqoob P et al (1995) Regulation of rat liver apolipoprotein A-I, apolipoprotein A-II and acyl-coenzyme A oxidase gene expression by fibrates and dietary fatty acids. Eur J Biochem 232:179–187CrossRef
3.
Zurück zum Zitat Burns LH, Pakzaban P, Deacon TW et al (1995) Selective putaminal excitotoxic lesions in non-human primates model the movement disorder of Huntington’s desease. Neuroscience 64:1007–1017CrossRef Burns LH, Pakzaban P, Deacon TW et al (1995) Selective putaminal excitotoxic lesions in non-human primates model the movement disorder of Huntington’s desease. Neuroscience 64:1007–1017CrossRef
4.
Zurück zum Zitat Duplus E, Forest C (2002) Is there a single mechanism for fatty acid regulation of gene expression? Biochem Pharmacol 64:893–901CrossRef Duplus E, Forest C (2002) Is there a single mechanism for fatty acid regulation of gene expression? Biochem Pharmacol 64:893–901CrossRef
5.
Zurück zum Zitat Egashira Y, Isagawa A, Komine T et al (1999) Tryptophan-niacin metabolism in liver cirrhosis rat caused by carbon tetrachloride. J Nutr Sci Vitaminol 45:459–469 Egashira Y, Isagawa A, Komine T et al (1999) Tryptophan-niacin metabolism in liver cirrhosis rat caused by carbon tetrachloride. J Nutr Sci Vitaminol 45:459–469
6.
Zurück zum Zitat Egashira Y, Komine T, Ohta T et al (1997) Change of tryptophan-niacin metabolism in D-galactosamine-induced liver injury in rat. J Nutr Sci Vitaminol 43:233–239 Egashira Y, Komine T, Ohta T et al (1997) Change of tryptophan-niacin metabolism in D-galactosamine-induced liver injury in rat. J Nutr Sci Vitaminol 43:233–239
7.
Zurück zum Zitat Egashira Y, Murotani G, Tanabe A et al (2004) Differential effects of dietary fatty acids on rat liver α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase activity and gene expression. Biochim Biophys Acta 1686:118–124 Egashira Y, Murotani G, Tanabe A et al (2004) Differential effects of dietary fatty acids on rat liver α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase activity and gene expression. Biochim Biophys Acta 1686:118–124
8.
Zurück zum Zitat Egashira Y, Yamamiya Y, Sanada H (1992) Effects of various dietary fatty acids on α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase activity in lat liver. Biosci Biotech Biochem 56:2015–2019CrossRef Egashira Y, Yamamiya Y, Sanada H (1992) Effects of various dietary fatty acids on α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase activity in lat liver. Biosci Biotech Biochem 56:2015–2019CrossRef
9.
Zurück zum Zitat Fukuwatari T, Morikawa Y, Hayakawa F et al (2001) Influence of adenine-induced renal failure on tryptophan-niacin metabolism in rats. Biosci Biotech Biochem 65:2154–2161CrossRef Fukuwatari T, Morikawa Y, Hayakawa F et al (2001) Influence of adenine-induced renal failure on tryptophan-niacin metabolism in rats. Biosci Biotech Biochem 65:2154–2161CrossRef
10.
Zurück zum Zitat Fukuwatari T, Ohsaki S, Fukuoka S et al (2004) Phthalate esters enhance quinolinate production by inhibiting α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD), a key enzyme of the tryptophan pathway. Toxicol Sci 81:302–308CrossRef Fukuwatari T, Ohsaki S, Fukuoka S et al (2004) Phthalate esters enhance quinolinate production by inhibiting α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD), a key enzyme of the tryptophan pathway. Toxicol Sci 81:302–308CrossRef
11.
Zurück zum Zitat Guidetti P, Luthi-Carter RE, Augood SJ et al (2004) Neostriatal and cortical quinolinate levels are increased in early grade Huntington’s disease. Neurobiol Dis 17:455–461CrossRef Guidetti P, Luthi-Carter RE, Augood SJ et al (2004) Neostriatal and cortical quinolinate levels are increased in early grade Huntington’s disease. Neurobiol Dis 17:455–461CrossRef
12.
Zurück zum Zitat Ikeda M, Tsuji H, Nakamura S et al (1965) Studies on the biosynthesis of nicotinamide adenine dinucleotide.I i. A role of picolinic carboxylase in the biosynthesis of nicotinamide adenine dinucleotide from tryptophan in mammals. J Biol Chem 240:1395–1401 Ikeda M, Tsuji H, Nakamura S et al (1965) Studies on the biosynthesis of nicotinamide adenine dinucleotide.I i. A role of picolinic carboxylase in the biosynthesis of nicotinamide adenine dinucleotide from tryptophan in mammals. J Biol Chem 240:1395–1401
13.
Zurück zum Zitat Jump DB (1999) Regulation of gene expression by dietary fat. Annu Rev Nutr 19:63–90CrossRef Jump DB (1999) Regulation of gene expression by dietary fat. Annu Rev Nutr 19:63–90CrossRef
14.
Zurück zum Zitat Jump DB (2004) Fatty acid regulation of gene transcription. Crit Rev Clin Lab Sci 41:41–78CrossRef Jump DB (2004) Fatty acid regulation of gene transcription. Crit Rev Clin Lab Sci 41:41–78CrossRef
15.
Zurück zum Zitat Kehrer JP, Biswal SS, La E et al (2001) Inhibition of peroxisome-proliferator-activated receptor (PPAR)α by MK886. Biochem J 356:899–906CrossRef Kehrer JP, Biswal SS, La E et al (2001) Inhibition of peroxisome-proliferator-activated receptor (PPAR)α by MK886. Biochem J 356:899–906CrossRef
16.
Zurück zum Zitat Latruffe N, Vamecq J (1997) Peroxisome proliferators and peroxisome proliferator activated receptors (PPARα) as regulators of lipid metabolism. Biochimie 79:81–94CrossRef Latruffe N, Vamecq J (1997) Peroxisome proliferators and peroxisome proliferator activated receptors (PPARα) as regulators of lipid metabolism. Biochimie 79:81–94CrossRef
17.
Zurück zum Zitat National Research Council (1985) Guide for the care and use of laboratory animals, publication no. 85–23. National Institutes of Health, Washington National Research Council (1985) Guide for the care and use of laboratory animals, publication no. 85–23. National Institutes of Health, Washington
18.
Zurück zum Zitat Pegorier JP, May CL, Girard J (2004) Control of gene expression by fatty acids. J Nutr 134:2444S–2449S Pegorier JP, May CL, Girard J (2004) Control of gene expression by fatty acids. J Nutr 134:2444S–2449S
19.
Zurück zum Zitat Perkins MN, Stone TW (1983) Pharmacology and regional variations of quinolinic acid-evoked excitations in the rat central nervous system. J Phamacol Exp Ther 226:551–557 Perkins MN, Stone TW (1983) Pharmacology and regional variations of quinolinic acid-evoked excitations in the rat central nervous system. J Phamacol Exp Ther 226:551–557
20.
Zurück zum Zitat Sampath H, Natambi JM (2004) Polyunsaturated fatty acid regulation of gene expression. Nutr Rev 62:333–339CrossRef Sampath H, Natambi JM (2004) Polyunsaturated fatty acid regulation of gene expression. Nutr Rev 62:333–339CrossRef
21.
Zurück zum Zitat Sanada H, Miyazaki M (1984) Effect of high-protein diet on liver α-Amino-β-carboxymuconate-ε-semialdehyde decarboxylase in rats. J Nutr Sci Vitaminol 30:113–123 Sanada H, Miyazaki M (1984) Effect of high-protein diet on liver α-Amino-β-carboxymuconate-ε-semialdehyde decarboxylase in rats. J Nutr Sci Vitaminol 30:113–123
22.
Zurück zum Zitat Schwarcz R, Whetsell WO Jr, Mangano RM (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219:316–318CrossRef Schwarcz R, Whetsell WO Jr, Mangano RM (1983) Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain. Science 219:316–318CrossRef
23.
Zurück zum Zitat Shin M, Kim I, Inoue Y et al (2006) Regulation of mouse hepatic α-Amino-β-carboxymuconate-ε-semialdehyde decarboxylase, a key enzyme in the tryptophan-NAD pathway, by hepatocyte nuclear factor 4α and peroxisome proliferator-activated receptor α. Mol Pharmacol 70:1281–1290CrossRef Shin M, Kim I, Inoue Y et al (2006) Regulation of mouse hepatic α-Amino-β-carboxymuconate-ε-semialdehyde decarboxylase, a key enzyme in the tryptophan-NAD pathway, by hepatocyte nuclear factor 4α and peroxisome proliferator-activated receptor α. Mol Pharmacol 70:1281–1290CrossRef
24.
Zurück zum Zitat Shin M, Ohnishi M, Iguchi S et al (1999) Peroxisome-proliferator regulates key enzymes of the tryptophan-NAD+ pathway. Toxicol Appl Pharmacol 158:71–80CrossRef Shin M, Ohnishi M, Iguchi S et al (1999) Peroxisome-proliferator regulates key enzymes of the tryptophan-NAD+ pathway. Toxicol Appl Pharmacol 158:71–80CrossRef
25.
Zurück zum Zitat Sterchele PF, Sun H, Peterson RE et al (1996) Regulation of peroxisome proliferator-activated receptor-α mRNA in rat liver. Arch Biochem Biophys 326:81–289CrossRef Sterchele PF, Sun H, Peterson RE et al (1996) Regulation of peroxisome proliferator-activated receptor-α mRNA in rat liver. Arch Biochem Biophys 326:81–289CrossRef
26.
Zurück zum Zitat Tanabe A, Egashira Y, Fukuoka S et al (2002) Expression of rat hepatic 2-Amino-3-carboxymuconate-6-semialdehyde decarboxylase is affected by a high protein diet and by streptozotocin-induced diabetes. J Nutr 132:1153–1159 Tanabe A, Egashira Y, Fukuoka S et al (2002) Expression of rat hepatic 2-Amino-3-carboxymuconate-6-semialdehyde decarboxylase is affected by a high protein diet and by streptozotocin-induced diabetes. J Nutr 132:1153–1159
27.
Zurück zum Zitat Tanaka K, Sato M, Tomita Y et al (1978) Biochemical studies on liver functions in primary cultured hepatocytes of adult rats. J Biochem 84:937–946 Tanaka K, Sato M, Tomita Y et al (1978) Biochemical studies on liver functions in primary cultured hepatocytes of adult rats. J Biochem 84:937–946
Metadaten
Titel
Down-regulation of α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase by polyunsaturated fatty acids in hepatocytes is not mediated by PPARα
verfasst von
Naho Sasaki
Yukari Egashira
Hiroo Sanada
Publikationsdatum
01.03.2008
Verlag
D. Steinkopff-Verlag
Erschienen in
European Journal of Nutrition / Ausgabe 2/2008
Print ISSN: 1436-6207
Elektronische ISSN: 1436-6215
DOI
https://doi.org/10.1007/s00394-008-0699-6

Weitere Artikel der Ausgabe 2/2008

European Journal of Nutrition 2/2008 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.