Skip to main content
Erschienen in: Inflammation 4/2020

09.05.2020 | Original Article

Downregulation of lncRNA NEAT1 Ameliorates LPS-Induced Inflammatory Responses by Promoting Macrophage M2 Polarization via miR-125a-5p/TRAF6/TAK1 Axis

verfasst von: Wei Wang, Zhen-Hui Guo

Erschienen in: Inflammation | Ausgabe 4/2020

Einloggen, um Zugang zu erhalten

Abstract

The lncRNA nuclear enriched abundant transcript 1 (NEAT1) promotes sepsis-inflammatory responses and acute kidney injury (AKI), but little known about the underlying mechanisms. This study aims to investigate the roles of NEAT1 in regulating macrophage polarization and its potential for alleviating inflammatory responses during sepsis pathogenesis. Mouse RAW264.7 macrophages were treated with lipopolysaccharide (LPS) as a cellular inflammatory model. NEAT1 shRNA, miR-125a-5p mimics, and TRAF6-overexpressing vector were used to transfect RAW264.7 cells. NEAT1, miR-125a-5p, and mRNA levels of functional genes were detected by quantitative RT-PCR. Protein abundances were analyzed by western blotting. Macrophage polarization was evaluated by flow cytometry. The bindings of miR-125a-5p with NEAT1 or TRAF6 gene were validated by dual luciferase reporter assay. LPS treatment promoted NEAT1 and suppressed miR-125a-5p expression in mouse macrophage cells. NEAT1 silencing by shRNAs promoted macrophage M2 polarization under LPS treatment, which upregulated miR-125a-5p expression, repressed TRAF6 expression and TAK1 protein phosphorylation in macrophages. These cellular and molecular changes induced by NEAT1 shRNAs were abrogated by miR-125a-5p inhibitors. Moreover, miR-125a-5p mimics suppressed TRAF6 expression and TAK1 protein phosphorylation in LPS-treated macrophages, thus causing macrophage M2 polarization under LPS treatment. TRAF6 overexpression abrogated the miR-125a-5p mimics-induced macrophage M2 polarization. miR-125a-5p could directly bind to NEAT1 or TRAF6 gene in macrophages. lncRNA NEAT1 knockdown ameliorates LPS-induced inflammation by promoting macrophage M2 polarization via miR-125a-5p/TRAF6/TAK1 axis.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Gotts, J.E., and M.A. Matthay. 2016. Sepsis: pathophysiology and clinical management. Bmj 353: i1585.CrossRef Gotts, J.E., and M.A. Matthay. 2016. Sepsis: pathophysiology and clinical management. Bmj 353: i1585.CrossRef
3.
Zurück zum Zitat Hotchkiss, R.S., G. Monneret, and D. Payen. 2013. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nature Reviews Immunology 13: 862–874.CrossRef Hotchkiss, R.S., G. Monneret, and D. Payen. 2013. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nature Reviews Immunology 13: 862–874.CrossRef
11.
Zurück zum Zitat Wang, K.C., and H.Y. Chang. 2011. Molecular mechanisms of long noncoding RNAs. Molecular Cell 43: 904–914.CrossRef Wang, K.C., and H.Y. Chang. 2011. Molecular mechanisms of long noncoding RNAs. Molecular Cell 43: 904–914.CrossRef
12.
Zurück zum Zitat Ahmed, A.S.I., K. Dong, J. Liu, T. Wen, L. Yu, F. Xu, X. Kang, I. Osman, G. Hu, K.M. Bunting, D. Crethers, H. Gao, W. Zhang, Y. Liu, K. Wen, G. Agarwal, T. Hirose, S. Nakagawa, A. Vazdarjanova, and J. Zhou. 2018. Long noncoding RNA NEAT1 (nuclear paraspeckle assembly transcript 1) is critical for phenotypic switching of vascular smooth muscle cells. Proceedings of the National Academy of Sciences of the United States of America 115: E8660–E8667. https://doi.org/10.1073/pnas.1803725115.CrossRefPubMedPubMedCentral Ahmed, A.S.I., K. Dong, J. Liu, T. Wen, L. Yu, F. Xu, X. Kang, I. Osman, G. Hu, K.M. Bunting, D. Crethers, H. Gao, W. Zhang, Y. Liu, K. Wen, G. Agarwal, T. Hirose, S. Nakagawa, A. Vazdarjanova, and J. Zhou. 2018. Long noncoding RNA NEAT1 (nuclear paraspeckle assembly transcript 1) is critical for phenotypic switching of vascular smooth muscle cells. Proceedings of the National Academy of Sciences of the United States of America 115: E8660–E8667. https://​doi.​org/​10.​1073/​pnas.​1803725115.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Cai, Z., Li, J., Zhuang, Q., Zhang, X. & Shen, J. MiR-125a-5p ameliorates monocrotaline-induced pulmonary arterial hypertension by targeting the TGF-β1 and IL-6/STAT3 signaling pathways. Experimental & Molecular Medicine50 (2018). Cai, Z., Li, J., Zhuang, Q., Zhang, X. & Shen, J. MiR-125a-5p ameliorates monocrotaline-induced pulmonary arterial hypertension by targeting the TGF-β1 and IL-6/STAT3 signaling pathways. Experimental & Molecular Medicine50 (2018).
19.
Zurück zum Zitat Nicoletta, P. et al. Human microRNA hsa-miR-125a-5p interferes with expression of hepatitis B virus surface antigen. Nucleic Acids Research, 12 (2011). Nicoletta, P. et al. Human microRNA hsa-miR-125a-5p interferes with expression of hepatitis B virus surface antigen. Nucleic Acids Research, 12 (2011).
20.
Zurück zum Zitat Banerjee, S., et al. 2013. miR-125a-5p regulates differential activation of macrophages and inflammation. Journal of Biological Chemistry288: 35428–35436.CrossRef Banerjee, S., et al. 2013. miR-125a-5p regulates differential activation of macrophages and inflammation. Journal of Biological Chemistry288: 35428–35436.CrossRef
21.
Zurück zum Zitat Banerjee, S., H. Cui, N. Xie, Z. Tan, S. Yang, M. Icyuz, V.J. Thannickal, E. Abraham, and G. Liu. 2013. miR-125a-5p regulates differential activation of macrophages and inflammation. Journal of Biological Chemistry 288: 35428–35436.CrossRef Banerjee, S., H. Cui, N. Xie, Z. Tan, S. Yang, M. Icyuz, V.J. Thannickal, E. Abraham, and G. Liu. 2013. miR-125a-5p regulates differential activation of macrophages and inflammation. Journal of Biological Chemistry 288: 35428–35436.CrossRef
22.
Zurück zum Zitat Xia, X., J. Cui, H.Y. Wang, L. Zhu, S. Matsueda, Q. Wang, X. Yang, J. Hong, Z. Songyang, Z.J. Chen, and R.F. Wang. 2011. NLRX1 negatively regulates TLR-induced NF-κB signaling by targeting TRAF6 and IKK. Immunity 34: 843–853.CrossRef Xia, X., J. Cui, H.Y. Wang, L. Zhu, S. Matsueda, Q. Wang, X. Yang, J. Hong, Z. Songyang, Z.J. Chen, and R.F. Wang. 2011. NLRX1 negatively regulates TLR-induced NF-κB signaling by targeting TRAF6 and IKK. Immunity 34: 843–853.CrossRef
23.
Zurück zum Zitat Gao, M., X. Wang, X. Zhang, T. Ha, H. Ma, L. Liu, J.H. Kalbfleisch, X. Gao, R.L. Kao, D.L. Williams, and C. Li. 2015. Attenuation of cardiac dysfunction in polymicrobial sepsis by microRNA-146a is mediated via targeting of IRAK1 and TRAF6 expression. Journal of Immunology 195: 672–682. https://doi.org/10.4049/jimmunol.1403155.CrossRef Gao, M., X. Wang, X. Zhang, T. Ha, H. Ma, L. Liu, J.H. Kalbfleisch, X. Gao, R.L. Kao, D.L. Williams, and C. Li. 2015. Attenuation of cardiac dysfunction in polymicrobial sepsis by microRNA-146a is mediated via targeting of IRAK1 and TRAF6 expression. Journal of Immunology 195: 672–682. https://​doi.​org/​10.​4049/​jimmunol.​1403155.CrossRef
25.
Zurück zum Zitat Oya, A., E. Katsuyama, M. Morita, Y. Sato, T. Kobayashi, K. Miyamoto, T. Nishiwaki, A. Funayama, Y. Fujita, T. Kobayashi, M. Matsumoto, M. Nakamura, A. Kanaji, and T. Miyamoto. 2018. Tumor necrosis factor receptor-associated factor 6 is required to inhibit foreign body giant cell formation and activate osteoclasts under inflammatory and infectious conditions. Journal of Bone & Mineral Metabolism 36: 679–690.CrossRef Oya, A., E. Katsuyama, M. Morita, Y. Sato, T. Kobayashi, K. Miyamoto, T. Nishiwaki, A. Funayama, Y. Fujita, T. Kobayashi, M. Matsumoto, M. Nakamura, A. Kanaji, and T. Miyamoto. 2018. Tumor necrosis factor receptor-associated factor 6 is required to inhibit foreign body giant cell formation and activate osteoclasts under inflammatory and infectious conditions. Journal of Bone & Mineral Metabolism 36: 679–690.CrossRef
26.
Zurück zum Zitat Sorrentino, A., N. Thakur, S. Grimsby, A. Marcusson, V. von Bulow, N. Schuster, S. Zhang, C.H. Heldin, and M. Landström. 2008. The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nature Cell Biology 10: 1199–1207. https://doi.org/10.1038/ncb1780.CrossRefPubMed Sorrentino, A., N. Thakur, S. Grimsby, A. Marcusson, V. von Bulow, N. Schuster, S. Zhang, C.H. Heldin, and M. Landström. 2008. The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nature Cell Biology 10: 1199–1207. https://​doi.​org/​10.​1038/​ncb1780.CrossRefPubMed
27.
Zurück zum Zitat Gallot, Y.S., J. McMillan, G. Xiong, K.R. Bohnert, A.R. Straughn, B.G. Hill, and A. Kumar. 2017. Distinct roles of TRAF6 and TAK1 in the regulation of adipocyte survival, thermogenesis program, and high-fat diet-induced obesity. Oncotarget 8: 112565–112583.CrossRef Gallot, Y.S., J. McMillan, G. Xiong, K.R. Bohnert, A.R. Straughn, B.G. Hill, and A. Kumar. 2017. Distinct roles of TRAF6 and TAK1 in the regulation of adipocyte survival, thermogenesis program, and high-fat diet-induced obesity. Oncotarget 8: 112565–112583.CrossRef
28.
Zurück zum Zitat Yamada, H., T. Umemoto, M. Kakei, S.I. Momomura, M. Kawakami, S.E. Ishikawa, and K. Hara. 2017. Eicosapentaenoic acid shows anti-inflammatory effect via GPR120 in 3T3-L1 adipocytes and attenuates adipose tissue inflammation in diet-induced obese mice. Nutrition & Metabolism (London) 14: 33. https://doi.org/10.1186/s12986-017-0188-0.CrossRef Yamada, H., T. Umemoto, M. Kakei, S.I. Momomura, M. Kawakami, S.E. Ishikawa, and K. Hara. 2017. Eicosapentaenoic acid shows anti-inflammatory effect via GPR120 in 3T3-L1 adipocytes and attenuates adipose tissue inflammation in diet-induced obese mice. Nutrition & Metabolism (London) 14: 33. https://​doi.​org/​10.​1186/​s12986-017-0188-0.CrossRef
30.
Zurück zum Zitat Ke, H., L. Zhao, X. Feng, H. Xu, L. Zou, Q. Yang, X. Su, L. Peng, and B. Jiao. 2016. NEAT1 is required for survival of breast cancer cells through FUS and miR-548. Gene Regulation & Systems Biology 10: 11–17. Ke, H., L. Zhao, X. Feng, H. Xu, L. Zou, Q. Yang, X. Su, L. Peng, and B. Jiao. 2016. NEAT1 is required for survival of breast cancer cells through FUS and miR-548. Gene Regulation & Systems Biology 10: 11–17.
31.
Zurück zum Zitat Sun, W., X. Lan, H. Zhang, Z. Wang, W. Dong, L. He, T. Zhang, P. Zhang, J. Liu, and Y. Qin. 2018. NEAT1_2 functions as a competing endogenous RNA to regulate ATAD2 expression by sponging microRNA-106b-5p in papillary thyroid cancer. Cell Death & Disease 9: 380. https://doi.org/10.1038/s41419-018-0418-z.CrossRef Sun, W., X. Lan, H. Zhang, Z. Wang, W. Dong, L. He, T. Zhang, P. Zhang, J. Liu, and Y. Qin. 2018. NEAT1_2 functions as a competing endogenous RNA to regulate ATAD2 expression by sponging microRNA-106b-5p in papillary thyroid cancer. Cell Death & Disease 9: 380. https://​doi.​org/​10.​1038/​s41419-018-0418-z.CrossRef
32.
Zurück zum Zitat Zhang, F., et al. 2016. Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus. Journal of Autoimmunity 75: 96.CrossRef Zhang, F., et al. 2016. Identification of the long noncoding RNA NEAT1 as a novel inflammatory regulator acting through MAPK pathway in human lupus. Journal of Autoimmunity 75: 96.CrossRef
33.
Zurück zum Zitat Ha, M., and V.N. Kim. 2014. Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology 15: 509–524.CrossRef Ha, M., and V.N. Kim. 2014. Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology 15: 509–524.CrossRef
34.
35.
Metadaten
Titel
Downregulation of lncRNA NEAT1 Ameliorates LPS-Induced Inflammatory Responses by Promoting Macrophage M2 Polarization via miR-125a-5p/TRAF6/TAK1 Axis
verfasst von
Wei Wang
Zhen-Hui Guo
Publikationsdatum
09.05.2020
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2020
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-020-01231-y

Weitere Artikel der Ausgabe 4/2020

Inflammation 4/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.