Skip to main content
Erschienen in: Cardiovascular Toxicology 2/2021

10.09.2020

Doxorubicin Cytotoxicity in Differentiated H9c2 Cardiomyocytes: Evidence for Acute Mitochondrial Superoxide Generation

verfasst von: Muath Helal, Jane Alcorn, Brian Bandy

Erschienen in: Cardiovascular Toxicology | Ausgabe 2/2021

Einloggen, um Zugang zu erhalten

Abstract

Although a mitochondrial redox-cycling superoxide-generating mechanism for the cardiotoxicity of doxorubicin was suggested from experiments with isolated mitochondria, its occurrence and contribution to cytotoxicity in intact cardiomyocytes is not fully established. Therefore, we determined the immediate and delayed effects of doxorubicin on the generation of reactive oxygen species (ROS) and cytotoxicity in differentiated H9c2 cardiomyocytes. Although relatively short incubations (3 or 6 h) with 1 or 5 µM doxorubicin did not acutely decrease cell survival, exposure to 5 µM doxorubicin for 3 h was sufficient to cause a significant delayed decrease in cell survival after an additional 24 h without doxorubicin. Mitochondrial superoxide generation was observed to increase within 30 min of incubation with 5 µM doxorubicin. Increased intracellular ROS generation, decreased mitochondrial metabolic activity, and decreased mitochondrial membrane potential (MMP) were observed after more extended periods (6–12 h). Overall, these observations support that the toxicity of doxorubicin to differentiated cardiomyocytes involves acute mitochondrial superoxide generation with subsequent intracellular ROS generation, mitochondrial dysfunction, and cell death.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., & Gianni, L. (2004). Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological Reviews, 56, 185–229.PubMed Minotti, G., Menna, P., Salvatorelli, E., Cairo, G., & Gianni, L. (2004). Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacological Reviews, 56, 185–229.PubMed
2.
Zurück zum Zitat Tewey, K. M., Rowe, T. C., Yang, L., Halligan, B. D., & Liu, L. F. (1984). Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science, 226, 466–468.PubMed Tewey, K. M., Rowe, T. C., Yang, L., Halligan, B. D., & Liu, L. F. (1984). Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science, 226, 466–468.PubMed
3.
Zurück zum Zitat Gewirtz, D. A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57, 727–741.PubMed Gewirtz, D. A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57, 727–741.PubMed
4.
Zurück zum Zitat Singal, P. K., Deally, C. M., & Weinberg, L. E. (1987). Subcellular effects of adriamycin in the heart: a concise review. Journal of Molecular and Cellular Cardiology, 19, 817–828.PubMed Singal, P. K., Deally, C. M., & Weinberg, L. E. (1987). Subcellular effects of adriamycin in the heart: a concise review. Journal of Molecular and Cellular Cardiology, 19, 817–828.PubMed
5.
Zurück zum Zitat Singal, P. K., & Iliskovic, N. (1998). Doxorubicin-induced cardiomyopathy. New England Journal of Medicine, 339, 900–905. Singal, P. K., & Iliskovic, N. (1998). Doxorubicin-induced cardiomyopathy. New England Journal of Medicine, 339, 900–905.
6.
Zurück zum Zitat Chatterjee, K., Zhang, J., Honbo, N., & Karliner, J. S. (2010). Doxorubicin cardiomyopathy. Cardiology, 115, 155–162.PubMed Chatterjee, K., Zhang, J., Honbo, N., & Karliner, J. S. (2010). Doxorubicin cardiomyopathy. Cardiology, 115, 155–162.PubMed
7.
Zurück zum Zitat Tangpong, J., Miriyala, S., Noel, T., Sinthupibulyakit, C., Jungsuwadee, P., & St Clair, D. K. (2011). Doxorubicin-induced central nervous system toxicity and protection by xanthone derivative of Garcinia mangostana. Neuroscience, 175, 292–299.PubMed Tangpong, J., Miriyala, S., Noel, T., Sinthupibulyakit, C., Jungsuwadee, P., & St Clair, D. K. (2011). Doxorubicin-induced central nervous system toxicity and protection by xanthone derivative of Garcinia mangostana. Neuroscience, 175, 292–299.PubMed
8.
Zurück zum Zitat Berthiaume, J. M., & Wallace, K. B. (2007). Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biology and Toxicology, 23, 15–23.PubMed Berthiaume, J. M., & Wallace, K. B. (2007). Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biology and Toxicology, 23, 15–23.PubMed
9.
Zurück zum Zitat Carvalho, F. S., Burgeiro, A., Garcia, R., Moreno, A. J., Carvalho, R. A., & Oliveira, P. J. (2014). Doxorubicin-induced cardiotoxicity: From bioenergetic failure and cell death to cardiomyopathy. Medical Research Reviews, 3, 106–135. Carvalho, F. S., Burgeiro, A., Garcia, R., Moreno, A. J., Carvalho, R. A., & Oliveira, P. J. (2014). Doxorubicin-induced cardiotoxicity: From bioenergetic failure and cell death to cardiomyopathy. Medical Research Reviews, 3, 106–135.
10.
Zurück zum Zitat Wallace, K. B., Sardão, V. A., & Oliveira, P. J. (2020). Mitochondrial determinants of doxorubicin-induced cardiomyopathy. Circulation Research, 126, 926–941.PubMed Wallace, K. B., Sardão, V. A., & Oliveira, P. J. (2020). Mitochondrial determinants of doxorubicin-induced cardiomyopathy. Circulation Research, 126, 926–941.PubMed
11.
Zurück zum Zitat Minotti, G., Recalcati, S., Menna, P., Salvatorelli, E., Corna, G., & Cairo, G. (2004). Doxorubicin cardiotoxicity and the control of iron metabolism: Quinone-dependent and independent mechanisms. Methods Enzymology, 378, 340–361. Minotti, G., Recalcati, S., Menna, P., Salvatorelli, E., Corna, G., & Cairo, G. (2004). Doxorubicin cardiotoxicity and the control of iron metabolism: Quinone-dependent and independent mechanisms. Methods Enzymology, 378, 340–361.
12.
Zurück zum Zitat Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L. S., Lyu, Y. L., Liu, L. F., et al. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine, 18, 1639–1642.PubMed Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L. S., Lyu, Y. L., Liu, L. F., et al. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine, 18, 1639–1642.PubMed
13.
Zurück zum Zitat Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology, 52, 1213–1225.PubMed Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology, 52, 1213–1225.PubMed
14.
Zurück zum Zitat Kalyanaraman, B. (2020). Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: Have we been barking up the wrong tree? Redox Biology, 29, 101394.PubMed Kalyanaraman, B. (2020). Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: Have we been barking up the wrong tree? Redox Biology, 29, 101394.PubMed
15.
Zurück zum Zitat Doroshow, J. H. (1983). Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase. Cancer Research, 43, 4543–4551.PubMed Doroshow, J. H. (1983). Anthracycline antibiotic-stimulated superoxide, hydrogen peroxide, and hydroxyl radical production by NADH dehydrogenase. Cancer Research, 43, 4543–4551.PubMed
16.
Zurück zum Zitat Davies, K. J., & Doroshow, J. H. (1986). Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. Journal of Biological Chemistry, 261, 3060–3067. Davies, K. J., & Doroshow, J. H. (1986). Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. Journal of Biological Chemistry, 261, 3060–3067.
17.
Zurück zum Zitat Mukhopadhyay, P., Rajesh, M., Yoshihiro, K., Haskó, G., & Pachera, P. (2007). Simple quantitative detection of mitochondrial superoxide production in live cells. Biochemical and Biophysical Research Communications, 358, 203–208.PubMedPubMedCentral Mukhopadhyay, P., Rajesh, M., Yoshihiro, K., Haskó, G., & Pachera, P. (2007). Simple quantitative detection of mitochondrial superoxide production in live cells. Biochemical and Biophysical Research Communications, 358, 203–208.PubMedPubMedCentral
18.
Zurück zum Zitat Mukhopadhyay, P., Rajesh, M., Sándor Bátkai, S., Kashiwaya, Y., György Haskó, G., Liaudet, L., et al. (2009). Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. American Journal of Physiology Heart and Circulatory Physiology, 296, H1466–H1483.PubMedPubMedCentral Mukhopadhyay, P., Rajesh, M., Sándor Bátkai, S., Kashiwaya, Y., György Haskó, G., Liaudet, L., et al. (2009). Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. American Journal of Physiology Heart and Circulatory Physiology, 296, H1466–H1483.PubMedPubMedCentral
19.
Zurück zum Zitat Dong, Q., Chen, L., Lu, Q., Sharma, S., Li, L., Morimoto, S., et al. (2014). Quercetin attenuates doxorubicin cardiotoxicity by modulating Bmi-1 expression. British Journal of Pharmacology, 171, 4440–4454.PubMedPubMedCentral Dong, Q., Chen, L., Lu, Q., Sharma, S., Li, L., Morimoto, S., et al. (2014). Quercetin attenuates doxorubicin cardiotoxicity by modulating Bmi-1 expression. British Journal of Pharmacology, 171, 4440–4454.PubMedPubMedCentral
20.
Zurück zum Zitat Cheung, K. G., Cole, L. K., Xiang, B., Chen, K., Ma, X., Myal, Y., et al. (2015). Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes. Journal of Biological Chemistry, 290, 10981–10993. Cheung, K. G., Cole, L. K., Xiang, B., Chen, K., Ma, X., Myal, Y., et al. (2015). Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes. Journal of Biological Chemistry, 290, 10981–10993.
21.
Zurück zum Zitat Salvatorelli, E., Guarnieri, S., Menna, P., Liberi, G., Calafiore, A. M., Mariggiò, M. A., et al. (2006). Defective one- or two-electron reduction of the anticancer anthracycline epirubicin in human heart. Relative importance of vesicular sequestration and impaired efficiency of electron addition. Journal of Biological Chemistry, 281, 10990–11001. Salvatorelli, E., Guarnieri, S., Menna, P., Liberi, G., Calafiore, A. M., Mariggiò, M. A., et al. (2006). Defective one- or two-electron reduction of the anticancer anthracycline epirubicin in human heart. Relative importance of vesicular sequestration and impaired efficiency of electron addition. Journal of Biological Chemistry, 281, 10990–11001.
22.
Zurück zum Zitat Choi, E. H., Chang, H. J., Cho, J. Y., & Chun, H. S. (2007). Cytoprotective effect of anthocyanins against doxorubicin-induced toxicity in H9c2 cardiomyocytes in relation to their antioxidant activities. Food and Chemical Toxicology, 45, 1873–1881.PubMed Choi, E. H., Chang, H. J., Cho, J. Y., & Chun, H. S. (2007). Cytoprotective effect of anthocyanins against doxorubicin-induced toxicity in H9c2 cardiomyocytes in relation to their antioxidant activities. Food and Chemical Toxicology, 45, 1873–1881.PubMed
23.
Zurück zum Zitat Bernuzzi, F., Recalcati, S., Alberghini, A., & Cairo, G. (2009). Reactive oxygen species-independent apoptosis in doxorubicin-treated H9c2 cardiomyocytes: Role for heme oxygenase-1 down-modulation. Chemico-Biological Interactions, 177, 12–20.PubMed Bernuzzi, F., Recalcati, S., Alberghini, A., & Cairo, G. (2009). Reactive oxygen species-independent apoptosis in doxorubicin-treated H9c2 cardiomyocytes: Role for heme oxygenase-1 down-modulation. Chemico-Biological Interactions, 177, 12–20.PubMed
24.
Zurück zum Zitat Tan, X., Wang, D. B., Lu, X., Wei, H., Zhu, R., Zhu, S. S., et al. (2010). Doxorubicin induces apoptosis in H9c2 cardiomyocytes: Role of overexpressed eukaryotic translation initiation factor 5A. Biological and Pharmaceutical Bulletin, 33, 1666–1672.PubMed Tan, X., Wang, D. B., Lu, X., Wei, H., Zhu, R., Zhu, S. S., et al. (2010). Doxorubicin induces apoptosis in H9c2 cardiomyocytes: Role of overexpressed eukaryotic translation initiation factor 5A. Biological and Pharmaceutical Bulletin, 33, 1666–1672.PubMed
25.
Zurück zum Zitat Ma, J., Wang, Y., Zheng, D., Wei, M., Xu, H., & Peng, T. (2013). Rac1 signalling mediates doxorubicin-induced cardiotoxicity through both reactive oxygen species-dependent and -independent pathways. Cardiovascular Research, 97, 77–87.PubMed Ma, J., Wang, Y., Zheng, D., Wei, M., Xu, H., & Peng, T. (2013). Rac1 signalling mediates doxorubicin-induced cardiotoxicity through both reactive oxygen species-dependent and -independent pathways. Cardiovascular Research, 97, 77–87.PubMed
26.
Zurück zum Zitat Chen, Q., Chai, Y. C., Mazumder, S., Jiang, C., Macklis, R. M., Chisolm, G. M., et al. (2003). The late increase in intracellular free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction. Cell Death and Differentiation, 10, 323–334.PubMedPubMedCentral Chen, Q., Chai, Y. C., Mazumder, S., Jiang, C., Macklis, R. M., Chisolm, G. M., et al. (2003). The late increase in intracellular free radical oxygen species during apoptosis is associated with cytochrome c release, caspase activation, and mitochondrial dysfunction. Cell Death and Differentiation, 10, 323–334.PubMedPubMedCentral
27.
Zurück zum Zitat Zorov, D. B., Juhaszova, M., & Sollott, S. J. (2006). Mitochondrial ROS-induced ROS release: An update and review. Biochimica Biophysica Acta, 1757, 509–517. Zorov, D. B., Juhaszova, M., & Sollott, S. J. (2006). Mitochondrial ROS-induced ROS release: An update and review. Biochimica Biophysica Acta, 1757, 509–517.
28.
Zurück zum Zitat Branco, A. F., Sampaio, S. F., Moreira, A. C., Holy, J., Wallace, K. B., Baldeiras, I., et al. (2012). Differentiation-dependent doxorubicin toxicity on H9c2 cardiomyoblasts. Cardiovascular Toxicology, 12, 326–340.PubMed Branco, A. F., Sampaio, S. F., Moreira, A. C., Holy, J., Wallace, K. B., Baldeiras, I., et al. (2012). Differentiation-dependent doxorubicin toxicity on H9c2 cardiomyoblasts. Cardiovascular Toxicology, 12, 326–340.PubMed
29.
Zurück zum Zitat Kimes, B., & Brandt, B. (1976). Properties of a clonal muscle cell line from rat heart. Experimental Cell Research, 98, 367–381.PubMed Kimes, B., & Brandt, B. (1976). Properties of a clonal muscle cell line from rat heart. Experimental Cell Research, 98, 367–381.PubMed
30.
Zurück zum Zitat Pereira, S. L., Ramalho-Santos, J., Branco, A. F., Sardão, V. A., Oliveira, P. J., & Carvalho, R. A. (2011). Metabolic remodeling during H9c2 myoblast differentiation: Relevance for in vitro toxicity studies. Cardiovascular Toxicology, 11, 180–190.PubMed Pereira, S. L., Ramalho-Santos, J., Branco, A. F., Sardão, V. A., Oliveira, P. J., & Carvalho, R. A. (2011). Metabolic remodeling during H9c2 myoblast differentiation: Relevance for in vitro toxicity studies. Cardiovascular Toxicology, 11, 180–190.PubMed
31.
Zurück zum Zitat Vichai, V., & Kirtikara, K. (2006). Sulforhodamine B colorimetric assay for cytotoxicity screening. Nature Protocols, 1, 1112–1116.PubMed Vichai, V., & Kirtikara, K. (2006). Sulforhodamine B colorimetric assay for cytotoxicity screening. Nature Protocols, 1, 1112–1116.PubMed
32.
Zurück zum Zitat Orellana, E. A., & Kasinski, A. L. (2016). Sulforhodamine B (SRB) Assay in cell culture to investigate cell proliferation. Bio-protocol, 6, 1984–1993. Orellana, E. A., & Kasinski, A. L. (2016). Sulforhodamine B (SRB) Assay in cell culture to investigate cell proliferation. Bio-protocol, 6, 1984–1993.
33.
Zurück zum Zitat Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63.PubMed Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63.PubMed
34.
Zurück zum Zitat Sardão, V. A., Oliveira, P. J., Holy, J., Oliveira, C. R., & Wallace, K. B. (2009). Morphological alterations induced by doxorubicin on H9c2 myoblasts: Nuclear, mitochondrial, and cytoskeletal targets. Cell Biology and Toxicology, 25, 227–243.PubMed Sardão, V. A., Oliveira, P. J., Holy, J., Oliveira, C. R., & Wallace, K. B. (2009). Morphological alterations induced by doxorubicin on H9c2 myoblasts: Nuclear, mitochondrial, and cytoskeletal targets. Cell Biology and Toxicology, 25, 227–243.PubMed
35.
Zurück zum Zitat Branco, A. F., Pereira, S. P., Gonzalez, S., Gusev, O., Rizvanov, A. A., & Oliveira, P. J. (2015). Gene expression profiling of H9c2 myoblast differentiation towards a cardiac-like phenotype. PLoS ONE, 10, e0129303.PubMedPubMedCentral Branco, A. F., Pereira, S. P., Gonzalez, S., Gusev, O., Rizvanov, A. A., & Oliveira, P. J. (2015). Gene expression profiling of H9c2 myoblast differentiation towards a cardiac-like phenotype. PLoS ONE, 10, e0129303.PubMedPubMedCentral
36.
Zurück zum Zitat Liu, J., Mao, W., Ding, B., & Liang, C. S. (2008). ERKs/p53 signal transduction pathway is involved in doxorubicin-induced apoptosis in H9c2 cells and cardiomyocytes. American Journal of Physiology Heart and Circulatory Physiology, 295, H1956–H1965.PubMedPubMedCentral Liu, J., Mao, W., Ding, B., & Liang, C. S. (2008). ERKs/p53 signal transduction pathway is involved in doxorubicin-induced apoptosis in H9c2 cells and cardiomyocytes. American Journal of Physiology Heart and Circulatory Physiology, 295, H1956–H1965.PubMedPubMedCentral
37.
Zurück zum Zitat Greene, R. F., Collins, J. M., Jenkins, J. F., Speyer, J. L., & Myers, C. E. (1983). Plasma pharmacokinetics of adriamycin and adriamycinol: Implications for the design of in vitro experiments and treatment protocols. Cancer Research, 43, 3417–3421.PubMed Greene, R. F., Collins, J. M., Jenkins, J. F., Speyer, J. L., & Myers, C. E. (1983). Plasma pharmacokinetics of adriamycin and adriamycinol: Implications for the design of in vitro experiments and treatment protocols. Cancer Research, 43, 3417–3421.PubMed
38.
Zurück zum Zitat Rahman, A., Carmichael, D., Harris, M., & Roh, J. K. (1986). Comparative pharmacokinetics of free doxorubicin and doxorubicin entrapped in cardiolipin liposomes. Cancer Research, 46, 2295–2299.PubMed Rahman, A., Carmichael, D., Harris, M., & Roh, J. K. (1986). Comparative pharmacokinetics of free doxorubicin and doxorubicin entrapped in cardiolipin liposomes. Cancer Research, 46, 2295–2299.PubMed
39.
Zurück zum Zitat Speth, P. A., van Hoesel, Q. G., & Haanen, C. (1988). Clinical pharmacokinetics of doxorubicin. Clinical Pharmacokinetics, 15, 15–31.PubMed Speth, P. A., van Hoesel, Q. G., & Haanen, C. (1988). Clinical pharmacokinetics of doxorubicin. Clinical Pharmacokinetics, 15, 15–31.PubMed
40.
Zurück zum Zitat Patten, V., Chabaesele, I., Sishi, B., & Van Vuuren, D. (2012). Cardiomyocyte differentiation: Experience and observations from 2 laboratories. Journal of the South African Heart Association, 14, 96–107. Patten, V., Chabaesele, I., Sishi, B., & Van Vuuren, D. (2012). Cardiomyocyte differentiation: Experience and observations from 2 laboratories. Journal of the South African Heart Association, 14, 96–107.
41.
Zurück zum Zitat Hosseinzadeh, L., Behravan, J., Mosaffa, F., Bahrami, G., Bahrami, A., & Karimi, G. (2011). Curcumin potentiates doxorubicin-induced apoptosis in H9c2 cardiac muscle cells through generation of reactive oxygen species. Food and Chemical Toxicology, 49, 1102–1109.PubMed Hosseinzadeh, L., Behravan, J., Mosaffa, F., Bahrami, G., Bahrami, A., & Karimi, G. (2011). Curcumin potentiates doxorubicin-induced apoptosis in H9c2 cardiac muscle cells through generation of reactive oxygen species. Food and Chemical Toxicology, 49, 1102–1109.PubMed
42.
Zurück zum Zitat Wang, G. W., Klein, J. B., & Kang, Y. J. (2001). Metallothionein inhibits doxorubicin-induced mitochondrial cytochrome c release and caspase-3 activation in cardiomyocytes. Journal of Pharmacology and Experimental Therapeutics, 298, 461–468. Wang, G. W., Klein, J. B., & Kang, Y. J. (2001). Metallothionein inhibits doxorubicin-induced mitochondrial cytochrome c release and caspase-3 activation in cardiomyocytes. Journal of Pharmacology and Experimental Therapeutics, 298, 461–468.
43.
Zurück zum Zitat Wu, C. C., & Bratton, S. B. (2013). Regulation of the intrinsic apoptosis pathway by reactive oxygen species. Antioxidants and Redox Signaling, 19, 546–558.PubMed Wu, C. C., & Bratton, S. B. (2013). Regulation of the intrinsic apoptosis pathway by reactive oxygen species. Antioxidants and Redox Signaling, 19, 546–558.PubMed
44.
Zurück zum Zitat Doroshow, J. H., & Davies, K. J. (1986). Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. Journal of Biological Chemistry, 261, 3068–3074. Doroshow, J. H., & Davies, K. J. (1986). Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. Journal of Biological Chemistry, 261, 3068–3074.
45.
Zurück zum Zitat Dickey, J. S., Gonzalez, Y., Aryal, B., et al. (2013). Mito-tempol and dexrazoxane exhibit cardioprotective and chemotherapeutic effects through specific protein oxidation and autophagy in a syngeneic breast tumor preclinical model. PLoS ONE, 8, e70575.PubMedPubMedCentral Dickey, J. S., Gonzalez, Y., Aryal, B., et al. (2013). Mito-tempol and dexrazoxane exhibit cardioprotective and chemotherapeutic effects through specific protein oxidation and autophagy in a syngeneic breast tumor preclinical model. PLoS ONE, 8, e70575.PubMedPubMedCentral
46.
Zurück zum Zitat Rocha, V. C., França, L. S., de Araújo, C. F., et al. (2016). Protective effects of mito-TEMPO against doxorubicin cardiotoxicity in mice. Cancer Chemotherapy and Pharmacology, 77, 659–662.PubMed Rocha, V. C., França, L. S., de Araújo, C. F., et al. (2016). Protective effects of mito-TEMPO against doxorubicin cardiotoxicity in mice. Cancer Chemotherapy and Pharmacology, 77, 659–662.PubMed
47.
Zurück zum Zitat Cadenas, E., & Davies, K. J. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biology and Medicine, 29, 222–230.PubMed Cadenas, E., & Davies, K. J. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biology and Medicine, 29, 222–230.PubMed
48.
Zurück zum Zitat Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. Biochemical Journal, 417, 1–13. Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. Biochemical Journal, 417, 1–13.
49.
Zurück zum Zitat Larosa, V., & Remacle, C. (2018). Insights into the respiratory chain and oxidative stress. Bioscience Reports, 38, BSR20171492.PubMedPubMedCentral Larosa, V., & Remacle, C. (2018). Insights into the respiratory chain and oxidative stress. Bioscience Reports, 38, BSR20171492.PubMedPubMedCentral
Metadaten
Titel
Doxorubicin Cytotoxicity in Differentiated H9c2 Cardiomyocytes: Evidence for Acute Mitochondrial Superoxide Generation
verfasst von
Muath Helal
Jane Alcorn
Brian Bandy
Publikationsdatum
10.09.2020
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 2/2021
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-020-09606-1

Weitere Artikel der Ausgabe 2/2021

Cardiovascular Toxicology 2/2021 Zur Ausgabe