Skip to main content
Erschienen in: Cancer Chemotherapy and Pharmacology 4/2009

01.09.2009 | Original Article

Doxorubicin-induced mitochondrial dysfunction is secondary to nuclear p53 activation in H9c2 cardiomyoblasts

verfasst von: Vilma A. Sardão, Paulo J. Oliveira, Jon Holy, Catarina R. Oliveira, Kendall B. Wallace

Erschienen in: Cancer Chemotherapy and Pharmacology | Ausgabe 4/2009

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Doxorubicin (DOX) is a widely prescribed chemotherapeutic. The hypothesis for the present study is that DOX-induced myocyte apoptosis involves mitochondrial dysfunction that is a consequence of nuclear DOX effects.

Methods

H9c2 myoblasts were incubated with 0, 0.5 and 1 μM DOX and nuclear and mitochondrial alterations were determined.

Results

Doxorubicin accumulation in the nucleus was detected after 3 h treatment, followed by an increase in p53 and a decrease in mitochondrial membrane potential. Apoptotic markers, such as caspase activation and chromatin condensation were detected after 24 h of DOX treatment. Bax and p53 translocation to mitochondria as well as the formation of Bax clusters in the cytosol were observed. Importantly, pifithrin-alpha, a p53 inhibitor, protected against DOX-induced mitochondrial depolarization, caspase activation and cell death.

Conclusion

Mitochondrial dysfunction in H9c2 myoblasts treated with DOX is a consequence of nuclear p53 activation rather than a direct effect of the drug on mitochondria.
Literatur
1.
Zurück zum Zitat Doroshow JH, Davies KJ (1986) Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J Biol Chem 261:3068–3074PubMed Doroshow JH, Davies KJ (1986) Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J Biol Chem 261:3068–3074PubMed
2.
Zurück zum Zitat Davies KJ, Doroshow JH (1986) Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J Biol Chem 261:3060–3067PubMed Davies KJ, Doroshow JH (1986) Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J Biol Chem 261:3060–3067PubMed
3.
Zurück zum Zitat Wallace KB (2003) Doxorubicin-induced cardiac mitochondrionopathy. Pharmacol Toxicol 93:105–115PubMedCrossRef Wallace KB (2003) Doxorubicin-induced cardiac mitochondrionopathy. Pharmacol Toxicol 93:105–115PubMedCrossRef
4.
Zurück zum Zitat Goormaghtigh E, Pollakis G, Ruysschaert JM (1983) Mitochondrial membrane modifications induced by adriamycin-mediated electron transport. Biochem Pharmacol 32:889–893PubMedCrossRef Goormaghtigh E, Pollakis G, Ruysschaert JM (1983) Mitochondrial membrane modifications induced by adriamycin-mediated electron transport. Biochem Pharmacol 32:889–893PubMedCrossRef
5.
Zurück zum Zitat Mimnaugh EG, Trush MA, Gram TE (1983) Enhancement of rat heart microsomal lipid peroxidation following doxorubicin treatment in vivo. Cancer Treat Rep 67:731–733PubMed Mimnaugh EG, Trush MA, Gram TE (1983) Enhancement of rat heart microsomal lipid peroxidation following doxorubicin treatment in vivo. Cancer Treat Rep 67:731–733PubMed
6.
Zurück zum Zitat Palmeira CM, Serrano J, Kuehl DW et al (1997) Preferential oxidation of cardiac mitochondrial DNA following acute intoxication with doxorubicin. Biochim Biophys Acta 1321:101–106PubMedCrossRef Palmeira CM, Serrano J, Kuehl DW et al (1997) Preferential oxidation of cardiac mitochondrial DNA following acute intoxication with doxorubicin. Biochim Biophys Acta 1321:101–106PubMedCrossRef
7.
Zurück zum Zitat Solem LE, Wallace KB (1993) Selective activation of the sodium-independent, cyclosporin A-sensitive calcium pore of cardiac mitochondria by doxorubicin. Toxicol Appl Pharmacol 121:50–57PubMedCrossRef Solem LE, Wallace KB (1993) Selective activation of the sodium-independent, cyclosporin A-sensitive calcium pore of cardiac mitochondria by doxorubicin. Toxicol Appl Pharmacol 121:50–57PubMedCrossRef
8.
Zurück zum Zitat Bernardi P (1996) The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death. Biochim Biophys Acta 1275:5–9PubMedCrossRef Bernardi P (1996) The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death. Biochim Biophys Acta 1275:5–9PubMedCrossRef
9.
Zurück zum Zitat Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(Pt 2):233–249PubMedCrossRef Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(Pt 2):233–249PubMedCrossRef
10.
Zurück zum Zitat Di Lisa F (2001) Mitochondrial contribution in the progression of cardiac ischemic injury. IUBMB Life 52:255–261PubMedCrossRef Di Lisa F (2001) Mitochondrial contribution in the progression of cardiac ischemic injury. IUBMB Life 52:255–261PubMedCrossRef
11.
Zurück zum Zitat Childs AC, Phaneuf SL, Dirks AJ et al (2002) Doxorubicin treatment in vivo causes cytochrome c release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio. Cancer Res 62:4592–4598PubMed Childs AC, Phaneuf SL, Dirks AJ et al (2002) Doxorubicin treatment in vivo causes cytochrome c release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio. Cancer Res 62:4592–4598PubMed
12.
Zurück zum Zitat Yamanaka S, Tatsumi T, Shiraishi J et al (2003) Amlodipine inhibits doxorubicin-induced apoptosis in neonatal rat cardiac myocytes. J Am Coll Cardiol 41:870–878PubMedCrossRef Yamanaka S, Tatsumi T, Shiraishi J et al (2003) Amlodipine inhibits doxorubicin-induced apoptosis in neonatal rat cardiac myocytes. J Am Coll Cardiol 41:870–878PubMedCrossRef
13.
Zurück zum Zitat Cutts SM, Nudelman A, Rephaeli A et al (2005) The power and potential of doxorubicin-DNA adducts. IUBMB Life 57:73–81PubMedCrossRef Cutts SM, Nudelman A, Rephaeli A et al (2005) The power and potential of doxorubicin-DNA adducts. IUBMB Life 57:73–81PubMedCrossRef
14.
Zurück zum Zitat Cutts SM, Parsons PG, Sturm RA et al (1996) Adriamycin-induced DNA adducts inhibit the DNA interactions of transcription factors and RNA polymerase. J Biol Chem 271:5422–5429PubMedCrossRef Cutts SM, Parsons PG, Sturm RA et al (1996) Adriamycin-induced DNA adducts inhibit the DNA interactions of transcription factors and RNA polymerase. J Biol Chem 271:5422–5429PubMedCrossRef
15.
Zurück zum Zitat L’Ecuyer T, Sanjeev S, Thomas R et al (2006) DNA damage is an early event in doxorubicin-induced cardiac myocyte death. Am J Physiol Heart Circ Physiol 291:H1273–H1280PubMedCrossRef L’Ecuyer T, Sanjeev S, Thomas R et al (2006) DNA damage is an early event in doxorubicin-induced cardiac myocyte death. Am J Physiol Heart Circ Physiol 291:H1273–H1280PubMedCrossRef
16.
Zurück zum Zitat Chua CC, Liu X, Gao J et al (2006) Multiple actions of pifithrin-alpha on doxorubicin-induced apoptosis in rat myoblastic H9c2 cells. Am J Physiol Heart Circ Physiol 290:H2606–H2613PubMedCrossRef Chua CC, Liu X, Gao J et al (2006) Multiple actions of pifithrin-alpha on doxorubicin-induced apoptosis in rat myoblastic H9c2 cells. Am J Physiol Heart Circ Physiol 290:H2606–H2613PubMedCrossRef
17.
Zurück zum Zitat Liu X, Chua CC, Gao J et al (2004) Pifithrin-alpha protects against doxorubicin-induced apoptosis and acute cardiotoxicity in mice. Am J Physiol Heart Circ Physiol 286:H933–H939PubMedCrossRef Liu X, Chua CC, Gao J et al (2004) Pifithrin-alpha protects against doxorubicin-induced apoptosis and acute cardiotoxicity in mice. Am J Physiol Heart Circ Physiol 286:H933–H939PubMedCrossRef
18.
Zurück zum Zitat Shizukuda Y, Matoba S, Mian OY et al (2005) Targeted disruption of p53 attenuates doxorubicin-induced cardiac toxicity in mice. Mol Cell Biochem 273:25–32PubMedCrossRef Shizukuda Y, Matoba S, Mian OY et al (2005) Targeted disruption of p53 attenuates doxorubicin-induced cardiac toxicity in mice. Mol Cell Biochem 273:25–32PubMedCrossRef
19.
Zurück zum Zitat Marchenko ND, Zaika A, Moll UM (2000) Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 275:16202–16212PubMedCrossRef Marchenko ND, Zaika A, Moll UM (2000) Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 275:16202–16212PubMedCrossRef
20.
Zurück zum Zitat Moll UM, Zaika A (2001) Nuclear and mitochondrial apoptotic pathways of p53. FEBS Lett 493:65–69PubMedCrossRef Moll UM, Zaika A (2001) Nuclear and mitochondrial apoptotic pathways of p53. FEBS Lett 493:65–69PubMedCrossRef
21.
Zurück zum Zitat Schuler M, Green DR (2001) Mechanisms of p53-dependent apoptosis. Biochem Soc Trans 29:684–688PubMedCrossRef Schuler M, Green DR (2001) Mechanisms of p53-dependent apoptosis. Biochem Soc Trans 29:684–688PubMedCrossRef
22.
Zurück zum Zitat Nithipongvanitch R, Ittarat W, Cole MP et al (2007) Mitochondrial and nuclear p53 localization in cardiomyocytes: redox modulation by doxorubicin (Adriamycin)? Antioxid Redox Signal 9:1001–1008PubMedCrossRef Nithipongvanitch R, Ittarat W, Cole MP et al (2007) Mitochondrial and nuclear p53 localization in cardiomyocytes: redox modulation by doxorubicin (Adriamycin)? Antioxid Redox Signal 9:1001–1008PubMedCrossRef
23.
Zurück zum Zitat Nithipongvanitch R, Ittarat W, Velez JM et al (2007) Evidence for p53 as guardian of the cardiomyocyte mitochondrial genome following acute adriamycin treatment. J Histochem Cytochem 55:629–639PubMedCrossRef Nithipongvanitch R, Ittarat W, Velez JM et al (2007) Evidence for p53 as guardian of the cardiomyocyte mitochondrial genome following acute adriamycin treatment. J Histochem Cytochem 55:629–639PubMedCrossRef
24.
Zurück zum Zitat Kimes BW, Brandt BL (1976) Properties of a clonal muscle cell line from rat heart. Exp Cell Res 98:367–381PubMedCrossRef Kimes BW, Brandt BL (1976) Properties of a clonal muscle cell line from rat heart. Exp Cell Res 98:367–381PubMedCrossRef
25.
Zurück zum Zitat L’Ecuyer T, Horenstein MS, Thomas R et al (2001) Anthracycline-induced cardiac injury using a cardiac cell line: potential for gene therapy studies. Mol Genet Metab 74:370–379PubMedCrossRef L’Ecuyer T, Horenstein MS, Thomas R et al (2001) Anthracycline-induced cardiac injury using a cardiac cell line: potential for gene therapy studies. Mol Genet Metab 74:370–379PubMedCrossRef
26.
Zurück zum Zitat Frost BM, Eksborg S, Bjork O et al (2002) Pharmacokinetics of doxorubicin in children with acute lymphoblastic leukemia: multi-institutional collaborative study. Med Pediatr Oncol 38:329–337PubMedCrossRef Frost BM, Eksborg S, Bjork O et al (2002) Pharmacokinetics of doxorubicin in children with acute lymphoblastic leukemia: multi-institutional collaborative study. Med Pediatr Oncol 38:329–337PubMedCrossRef
27.
Zurück zum Zitat Klein D, Kern RM, Sokol RZ (1995) A method for quantification and correction of proteins after transfer to immobilization membranes. Biochem Mol Biol Int 36:59–66PubMed Klein D, Kern RM, Sokol RZ (1995) A method for quantification and correction of proteins after transfer to immobilization membranes. Biochem Mol Biol Int 36:59–66PubMed
28.
Zurück zum Zitat Broekemeier KM, Dempsey ME, Pfeiffer DR (1989) Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J Biol Chem 264:7826–7830PubMed Broekemeier KM, Dempsey ME, Pfeiffer DR (1989) Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J Biol Chem 264:7826–7830PubMed
29.
Zurück zum Zitat Berthiaume JM, Wallace KB (2007) Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol Toxicol 23:15–25PubMedCrossRef Berthiaume JM, Wallace KB (2007) Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol Toxicol 23:15–25PubMedCrossRef
30.
Zurück zum Zitat Hamza A, Amin A, Daoud S (2008) The protective effect of a purified extract of Withania somnifera against doxorubicin-induced cardiac toxicity in rats. Cell Biol Toxicol 24:63–73PubMedCrossRef Hamza A, Amin A, Daoud S (2008) The protective effect of a purified extract of Withania somnifera against doxorubicin-induced cardiac toxicity in rats. Cell Biol Toxicol 24:63–73PubMedCrossRef
31.
Zurück zum Zitat Box VG (2007) The intercalation of DNA double helices with doxorubicin and nagalomycin. J Mol Graph Model 26:14–19PubMedCrossRef Box VG (2007) The intercalation of DNA double helices with doxorubicin and nagalomycin. J Mol Graph Model 26:14–19PubMedCrossRef
32.
Zurück zum Zitat Kaufmann WK, Paules RS (1996) DNA damage and cell cycle checkpoints. FASEB J 10:238–247PubMed Kaufmann WK, Paules RS (1996) DNA damage and cell cycle checkpoints. FASEB J 10:238–247PubMed
33.
Zurück zum Zitat Gomez-Lazaro M, Fernandez-Gomez FJ, Jordan J (2004) p53: twenty-five years understanding the mechanism of genome protection. J Physiol Biochem 60:287–307PubMedCrossRef Gomez-Lazaro M, Fernandez-Gomez FJ, Jordan J (2004) p53: twenty-five years understanding the mechanism of genome protection. J Physiol Biochem 60:287–307PubMedCrossRef
34.
Zurück zum Zitat Miyashita T, Krajewski S, Krajewska M et al (1994) Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9:1799–1805PubMed Miyashita T, Krajewski S, Krajewska M et al (1994) Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9:1799–1805PubMed
35.
Zurück zum Zitat Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299PubMedCrossRef Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299PubMedCrossRef
36.
Zurück zum Zitat Brady NR, Hamacher-Brady A, Gottlieb RA (2006) Proapoptotic BCL-2 family members and mitochondrial dysfunction during ischemia/reperfusion injury, a study employing cardiac HL-1 cells and GFP biosensors. Biochim Biophys Acta 1757:667–678PubMedCrossRef Brady NR, Hamacher-Brady A, Gottlieb RA (2006) Proapoptotic BCL-2 family members and mitochondrial dysfunction during ischemia/reperfusion injury, a study employing cardiac HL-1 cells and GFP biosensors. Biochim Biophys Acta 1757:667–678PubMedCrossRef
37.
Zurück zum Zitat Capano M, Crompton M (2002) Biphasic translocation of Bax to mitochondria. Biochem J 367:169–178PubMedCrossRef Capano M, Crompton M (2002) Biphasic translocation of Bax to mitochondria. Biochem J 367:169–178PubMedCrossRef
38.
Zurück zum Zitat Suzuki M, Youle RJ, Tjandra N (2000) Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103:645–654PubMedCrossRef Suzuki M, Youle RJ, Tjandra N (2000) Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103:645–654PubMedCrossRef
39.
Zurück zum Zitat Nakamura T, Ueda Y, Juan Y et al (2000) Fas-mediated apoptosis in adriamycin-induced cardiomyopathy in rats: in vivo study. Circulation 102:572–578PubMed Nakamura T, Ueda Y, Juan Y et al (2000) Fas-mediated apoptosis in adriamycin-induced cardiomyopathy in rats: in vivo study. Circulation 102:572–578PubMed
40.
Zurück zum Zitat Berthiaume JM, Oliveira PJ, Fariss MW et al (2005) Dietary vitamin E decreases doxorubicin-induced oxidative stress without preventing mitochondrial dysfunction. Cardiovasc Toxicol 5:257–267PubMedCrossRef Berthiaume JM, Oliveira PJ, Fariss MW et al (2005) Dietary vitamin E decreases doxorubicin-induced oxidative stress without preventing mitochondrial dysfunction. Cardiovasc Toxicol 5:257–267PubMedCrossRef
41.
Zurück zum Zitat Wattanapitayakul SK, Chularojmontri L, Herunsalee A et al (2005) Screening of antioxidants from medicinal plants for cardioprotective effect against doxorubicin toxicity. Basic Clin Pharmacol Toxicol 96:80–87PubMedCrossRef Wattanapitayakul SK, Chularojmontri L, Herunsalee A et al (2005) Screening of antioxidants from medicinal plants for cardioprotective effect against doxorubicin toxicity. Basic Clin Pharmacol Toxicol 96:80–87PubMedCrossRef
42.
Zurück zum Zitat Albertini R, Abuja PM (1999) Prooxidant and antioxidant properties of Trolox C, analogue of vitamin E, in oxidation of low-density lipoprotein. Free Radic Res 30:181–188PubMedCrossRef Albertini R, Abuja PM (1999) Prooxidant and antioxidant properties of Trolox C, analogue of vitamin E, in oxidation of low-density lipoprotein. Free Radic Res 30:181–188PubMedCrossRef
43.
Zurück zum Zitat Fariss MW, Zhang JG (2003) Vitamin E therapy in Parkinson’s disease. Toxicology 189:129–146PubMedCrossRef Fariss MW, Zhang JG (2003) Vitamin E therapy in Parkinson’s disease. Toxicology 189:129–146PubMedCrossRef
44.
Zurück zum Zitat Sardão VA, Oliveira PJ, Holy J et al (2007) Vital imaging of H9c2 myoblasts exposed to tert-butylhydroperoxide—characterization of morphological features of cell death. BMC Cell Biol 8:11PubMedCrossRef Sardão VA, Oliveira PJ, Holy J et al (2007) Vital imaging of H9c2 myoblasts exposed to tert-butylhydroperoxide—characterization of morphological features of cell death. BMC Cell Biol 8:11PubMedCrossRef
45.
Zurück zum Zitat Flora SJ (2007) Role of free radicals and antioxidants in health and disease. Cell Mol Biol 53:1–2PubMed Flora SJ (2007) Role of free radicals and antioxidants in health and disease. Cell Mol Biol 53:1–2PubMed
46.
Zurück zum Zitat Kelly GS (1998) Clinical applications of N-acetylcysteine. Altern Med Rev 3:114–127PubMed Kelly GS (1998) Clinical applications of N-acetylcysteine. Altern Med Rev 3:114–127PubMed
47.
Zurück zum Zitat Neuzil J, Wang XF, Dong LF et al (2006) Molecular mechanism of ‘mitocan’-induced apoptosis in cancer cells epitomizes the multiple roles of reactive oxygen species and Bcl-2 family proteins. FEBS Lett 580:5125–5129PubMedCrossRef Neuzil J, Wang XF, Dong LF et al (2006) Molecular mechanism of ‘mitocan’-induced apoptosis in cancer cells epitomizes the multiple roles of reactive oxygen species and Bcl-2 family proteins. FEBS Lett 580:5125–5129PubMedCrossRef
48.
Zurück zum Zitat Halestrap AP (2006) Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans 34:232–237PubMedCrossRef Halestrap AP (2006) Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans 34:232–237PubMedCrossRef
49.
Zurück zum Zitat Zhou S, Starkov A, Froberg MK et al (2001) Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res 61:771–777PubMed Zhou S, Starkov A, Froberg MK et al (2001) Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res 61:771–777PubMed
50.
Zurück zum Zitat Oliveira PJ, Bjork JA, Santos MS et al (2004) Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity. Toxicol Appl Pharmacol 200:159–168PubMedCrossRef Oliveira PJ, Bjork JA, Santos MS et al (2004) Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity. Toxicol Appl Pharmacol 200:159–168PubMedCrossRef
51.
Zurück zum Zitat Narula J, Haider N, Virmani R et al (1996) Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335:1182–1189PubMedCrossRef Narula J, Haider N, Virmani R et al (1996) Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335:1182–1189PubMedCrossRef
52.
Zurück zum Zitat Kang PM, Izumo S (2003) Apoptosis in heart: basic mechanisms and implications in cardiovascular diseases. Trends Mol Med 9:177–182PubMedCrossRef Kang PM, Izumo S (2003) Apoptosis in heart: basic mechanisms and implications in cardiovascular diseases. Trends Mol Med 9:177–182PubMedCrossRef
53.
Zurück zum Zitat Haunstetter A, Izumo S (1998) Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res 82:1111–1129PubMed Haunstetter A, Izumo S (1998) Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res 82:1111–1129PubMed
54.
Zurück zum Zitat Kalyanaraman B, Joseph J, Kalivendi S et al (2002) Doxorubicin-induced apoptosis: implications in cardiotoxicity. Mol Cell Biochem 234–235:119–124PubMedCrossRef Kalyanaraman B, Joseph J, Kalivendi S et al (2002) Doxorubicin-induced apoptosis: implications in cardiotoxicity. Mol Cell Biochem 234–235:119–124PubMedCrossRef
55.
Zurück zum Zitat Youn HJ, Kim HS, Jeon MH et al (2005) Induction of caspase-independent apoptosis in H9c2 cardiomyocytes by adriamycin treatment. Mol Cell Biochem 270:13–19PubMedCrossRef Youn HJ, Kim HS, Jeon MH et al (2005) Induction of caspase-independent apoptosis in H9c2 cardiomyocytes by adriamycin treatment. Mol Cell Biochem 270:13–19PubMedCrossRef
Metadaten
Titel
Doxorubicin-induced mitochondrial dysfunction is secondary to nuclear p53 activation in H9c2 cardiomyoblasts
verfasst von
Vilma A. Sardão
Paulo J. Oliveira
Jon Holy
Catarina R. Oliveira
Kendall B. Wallace
Publikationsdatum
01.09.2009
Verlag
Springer-Verlag
Erschienen in
Cancer Chemotherapy and Pharmacology / Ausgabe 4/2009
Print ISSN: 0344-5704
Elektronische ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-009-0932-x

Weitere Artikel der Ausgabe 4/2009

Cancer Chemotherapy and Pharmacology 4/2009 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.