Skip to main content
Erschienen in: Inflammation 2/2019

01.02.2019 | ORIGINAL ARTICLE

DPP-4 Inhibition Leads to Decreased Pancreatic Inflammatory Profile and Increased Frequency of Regulatory T Cells in Experimental Type 1 Diabetes

verfasst von: Mariana Rodrigues Davanso, Carolina Caliari-Oliveira, Carlos Eduardo Barra Couri, Dimas Tadeu Covas, Angela Merice de Oliveira Leal, Júlio César Voltarelli, Kelen Cristina Ribeiro Malmegrim, Juliana Navarro Ueda Yaochite

Erschienen in: Inflammation | Ausgabe 2/2019

Einloggen, um Zugang zu erhalten

Abstract

Sitagliptin is a dipeptidyl peptidase-4 inhibitor (iDPP-4), which has been used for type 2 diabetes treatment. Recently, iDPP-4 has been described as a promising treatment of type 1 diabetes (T1D) but is still necessary to evaluate immune effects of sitagliptin. C57BL/6 mice were induced by multiple low doses of streptozotocin. Diabetes incidence, insulin, glucagon, glucagon-like peptide-1 (GLP-1) serum levels, and inflammatory cytokine levels were quantified in pancreas homogenate after 30 and 90 days of treatment. In addition, frequencies of inflammatory and regulatory T cell subsets were determined in the spleen and in the pancreatic lymph nodes. iDPP-4 decreased blood glucose level while increased GLP-1 and insulin levels. After long-term treatment, treated diabetic mice presented decreased frequency of CD4+CD26+ T cells and increased percentage of CD4+CD25hiFoxp3+ T cells in the spleen. Besides, pancreatic lymph nodes from diabetic mice treated with iDPP-4 presented lower percentage of CD11b+ cells and decreased levels of inflammatory cytokines in the pancreas. Treatment of type 1 diabetic mice with iDPP-4 improved metabolic control, decreased inflammatory profile in the pancreatic microenvironment, and increased systemic regulatory T cell frequency. Therefore, we suggest the long-term use of sitagliptin as a feasible and effective therapy for T1D.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Ellis, S.L., E.G. Moser, J.K. Snell-Bergeon, A.S. Rodionova, R.M. Hazenfield, and S.K. Garg. 2011. Effect of sitagliptin on glucose control in adult patients with type 1 diabetes: a pilot, double-blind, randomized, crossover trial. Diabetic Medicine 28 (10): 1176–1181.CrossRefPubMed Ellis, S.L., E.G. Moser, J.K. Snell-Bergeon, A.S. Rodionova, R.M. Hazenfield, and S.K. Garg. 2011. Effect of sitagliptin on glucose control in adult patients with type 1 diabetes: a pilot, double-blind, randomized, crossover trial. Diabetic Medicine 28 (10): 1176–1181.CrossRefPubMed
3.
Zurück zum Zitat Drucker, D.J., and M.A. Nauck. 2006. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368 (9548): 1696–1705.CrossRefPubMed Drucker, D.J., and M.A. Nauck. 2006. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368 (9548): 1696–1705.CrossRefPubMed
4.
Zurück zum Zitat Baggio, L.L., and D.J. Drucker. 2006. Therapeutic approaches to preserve islet mass in type 2 diabetes. Annual Review of Medicine 57: 265–281.CrossRefPubMed Baggio, L.L., and D.J. Drucker. 2006. Therapeutic approaches to preserve islet mass in type 2 diabetes. Annual Review of Medicine 57: 265–281.CrossRefPubMed
5.
Zurück zum Zitat Xue, S., C.H. Wasserfall, M. Parker, T.M. Brusko, S. McGrail, K. McGrail, M. Moore, M. Campbell-Thompson, D.A. Schatz, M.A. Atkinson, and M.J. Haller. 2008. Exendin-4 therapy in NOD mice with new-onset diabetes increases regulatory T cell frequency. Annals of the New York Academy of Sciences 1150: 152–156.CrossRefPubMed Xue, S., C.H. Wasserfall, M. Parker, T.M. Brusko, S. McGrail, K. McGrail, M. Moore, M. Campbell-Thompson, D.A. Schatz, M.A. Atkinson, and M.J. Haller. 2008. Exendin-4 therapy in NOD mice with new-onset diabetes increases regulatory T cell frequency. Annals of the New York Academy of Sciences 1150: 152–156.CrossRefPubMed
6.
Zurück zum Zitat Orskov, C., A. Wettergren, and J.J. Holst. 1993. Biological effects and metabolic rates of glucagonlike peptide-1 7-36 amide and glucagonlike peptide-1 7-37 in healthy subjects are indistinguishable. Diabetes 42 (5): 658–661.CrossRefPubMed Orskov, C., A. Wettergren, and J.J. Holst. 1993. Biological effects and metabolic rates of glucagonlike peptide-1 7-36 amide and glucagonlike peptide-1 7-37 in healthy subjects are indistinguishable. Diabetes 42 (5): 658–661.CrossRefPubMed
7.
Zurück zum Zitat Hopsu-Havu, V.K., and G.G. Glenner. 1966. A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-beta-naphthylamide. Histochemie 7 (3): 197–201.CrossRefPubMed Hopsu-Havu, V.K., and G.G. Glenner. 1966. A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-beta-naphthylamide. Histochemie 7 (3): 197–201.CrossRefPubMed
8.
Zurück zum Zitat Kameoka, J., T. Tanaka, Y. Nojima, S.F. Schlossman, and C. Morimoto. 1993. Direct association of adenosine deaminase with a T cell activation antigen, CD26. Science 261 (5120): 466–469.CrossRefPubMed Kameoka, J., T. Tanaka, Y. Nojima, S.F. Schlossman, and C. Morimoto. 1993. Direct association of adenosine deaminase with a T cell activation antigen, CD26. Science 261 (5120): 466–469.CrossRefPubMed
9.
Zurück zum Zitat Yaron, A., and F. Naider. 1993. Proline-dependent structural and biological properties of peptides and proteins. Critical Reviews in Biochemistry and Molecular Biology 28 (1): 31–81.CrossRefPubMed Yaron, A., and F. Naider. 1993. Proline-dependent structural and biological properties of peptides and proteins. Critical Reviews in Biochemistry and Molecular Biology 28 (1): 31–81.CrossRefPubMed
10.
Zurück zum Zitat Rawlings, N.D., and A.J. Barrett. 1994. Families of serine peptidases. Methods in Enzymology 244: 19–61.CrossRefPubMed Rawlings, N.D., and A.J. Barrett. 1994. Families of serine peptidases. Methods in Enzymology 244: 19–61.CrossRefPubMed
11.
Zurück zum Zitat De Meester, I., S. Korom, J. Van Damme, and S. Scharpe. 1999. CD26, let it cut or cut it down. Immunology Today 20 (8): 367–375.CrossRefPubMed De Meester, I., S. Korom, J. Van Damme, and S. Scharpe. 1999. CD26, let it cut or cut it down. Immunology Today 20 (8): 367–375.CrossRefPubMed
12.
Zurück zum Zitat Fisman, E.Z., and A. Tenenbaum. 2015. Antidiabetic treatment with gliptins: focus on cardiovascular effects and outcomes. Cardiovascular Diabetology 14: 129.CrossRefPubMedPubMedCentral Fisman, E.Z., and A. Tenenbaum. 2015. Antidiabetic treatment with gliptins: focus on cardiovascular effects and outcomes. Cardiovascular Diabetology 14: 129.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Kadowaki, T., K. Sasaki, M. Ishii, M. Matsukawa, and Y. Ushirogawa. 2018. Efficacy and safety of teneligliptin 40 mg in type 2 diabetes: a pooled analysis of two phase III clinical studies. Diabetes Therapy 9: 623.CrossRefPubMedPubMedCentral Kadowaki, T., K. Sasaki, M. Ishii, M. Matsukawa, and Y. Ushirogawa. 2018. Efficacy and safety of teneligliptin 40 mg in type 2 diabetes: a pooled analysis of two phase III clinical studies. Diabetes Therapy 9: 623.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Nishio, S., M. Abe, and H. Ito. 2015. Anagliptin in the treatment of type 2 diabetes: safety, efficacy, and patient acceptability. Diabetes, Metabolic Syndrome & Obesity 8: 163–171. Nishio, S., M. Abe, and H. Ito. 2015. Anagliptin in the treatment of type 2 diabetes: safety, efficacy, and patient acceptability. Diabetes, Metabolic Syndrome & Obesity 8: 163–171.
15.
Zurück zum Zitat Li, F.F., L.L. Jiang, R.N. Yan, H.H. Zhu, P.H. Zhou, D.F. Zhang, X.F. Su, J.D. Wu, L. Ye, and J.H. Ma. 2016. Effects of saxagliptin add-on therapy to insulin on blood glycemic fluctuations in patients with type 2 diabetes: a randomized, control, open-labeled trial. Medicine (Baltimore) 95 (43): e5229.CrossRef Li, F.F., L.L. Jiang, R.N. Yan, H.H. Zhu, P.H. Zhou, D.F. Zhang, X.F. Su, J.D. Wu, L. Ye, and J.H. Ma. 2016. Effects of saxagliptin add-on therapy to insulin on blood glycemic fluctuations in patients with type 2 diabetes: a randomized, control, open-labeled trial. Medicine (Baltimore) 95 (43): e5229.CrossRef
17.
Zurück zum Zitat Keating, G.M. 2010. Vildagliptin: a review of its use in type 2 diabetes mellitus. Drugs 70 (16): 2089–2112.CrossRefPubMed Keating, G.M. 2010. Vildagliptin: a review of its use in type 2 diabetes mellitus. Drugs 70 (16): 2089–2112.CrossRefPubMed
18.
Zurück zum Zitat Yang, L.P. 2012. Saxagliptin: a review of its use as combination therapy in the management of type 2 diabetes mellitus in the EU. Drugs 72 (2): 229–248.CrossRefPubMed Yang, L.P. 2012. Saxagliptin: a review of its use as combination therapy in the management of type 2 diabetes mellitus in the EU. Drugs 72 (2): 229–248.CrossRefPubMed
19.
Zurück zum Zitat Deeks, E.D. 2012. Linagliptin: a review of its use in the management of type 2 diabetes mellitus. Drugs 72 (13): 1793–1824.CrossRefPubMed Deeks, E.D. 2012. Linagliptin: a review of its use in the management of type 2 diabetes mellitus. Drugs 72 (13): 1793–1824.CrossRefPubMed
20.
Zurück zum Zitat Scott, L.J. 2010. Alogliptin: a review of its use in the management of type 2 diabetes mellitus. Drugs 70 (15): 2051–2072.CrossRefPubMed Scott, L.J. 2010. Alogliptin: a review of its use in the management of type 2 diabetes mellitus. Drugs 70 (15): 2051–2072.CrossRefPubMed
21.
Zurück zum Zitat Tatosian, D.A., Y. Guo, A.K. Schaeffer, N. Gaibu, S. Popa, A. Stoch, R.B. Langdon, and E.A. Kauh. 2013. Dipeptidyl peptidase-4 inhibition in patients with type 2 diabetes treated with saxagliptin, sitagliptin, or vildagliptin. Diabetes Therapy 4 (2): 431–442.CrossRefPubMedPubMedCentral Tatosian, D.A., Y. Guo, A.K. Schaeffer, N. Gaibu, S. Popa, A. Stoch, R.B. Langdon, and E.A. Kauh. 2013. Dipeptidyl peptidase-4 inhibition in patients with type 2 diabetes treated with saxagliptin, sitagliptin, or vildagliptin. Diabetes Therapy 4 (2): 431–442.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Penno, G., M. Garofolo, and S. Del Prato. 2016. Dipeptidyl peptidase-4 inhibition in chronic kidney disease and potential for protection against diabetes-related renal injury. Nutrition, Metabolism, and Cardiovascular Diseases 26 (5): 361–373.CrossRefPubMed Penno, G., M. Garofolo, and S. Del Prato. 2016. Dipeptidyl peptidase-4 inhibition in chronic kidney disease and potential for protection against diabetes-related renal injury. Nutrition, Metabolism, and Cardiovascular Diseases 26 (5): 361–373.CrossRefPubMed
23.
Zurück zum Zitat Davis, T.M. 2014. Dipeptidyl peptidase-4 inhibitors: pharmacokinetics, efficacy, tolerability and safety in renal impairment. Diabetes, Obesity & Metabolism16 (10): 891–899. Davis, T.M. 2014. Dipeptidyl peptidase-4 inhibitors: pharmacokinetics, efficacy, tolerability and safety in renal impairment. Diabetes, Obesity & Metabolism16 (10): 891–899.
24.
Zurück zum Zitat Zhang, Z., X. Chen, P. Lu, J. Zhang, Y. Xu, W. He, M. Li, S. Zhang, J. Jia, S. Shao, J. Xie, Y. Yang, and X. Yu. 2017. Incretin-based agents in type 2 diabetic patients at cardiovascular risk: compare the effect of GLP-1 agonists and DPP-4 inhibitors on cardiovascular and pancreatic outcomes. Cardiovascular Diabetology16 (1): 31. Zhang, Z., X. Chen, P. Lu, J. Zhang, Y. Xu, W. He, M. Li, S. Zhang, J. Jia, S. Shao, J. Xie, Y. Yang, and X. Yu. 2017. Incretin-based agents in type 2 diabetic patients at cardiovascular risk: compare the effect of GLP-1 agonists and DPP-4 inhibitors on cardiovascular and pancreatic outcomes. Cardiovascular Diabetology16 (1): 31.
25.
Zurück zum Zitat Koska, J., M. Sands, C. Burciu, and P. Reaven. 2015. Cardiovascular effects of dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes. Diabetes & Vascular Disease Research 12 (3): 154–163.CrossRef Koska, J., M. Sands, C. Burciu, and P. Reaven. 2015. Cardiovascular effects of dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes. Diabetes & Vascular Disease Research 12 (3): 154–163.CrossRef
26.
Zurück zum Zitat Makdissi, A., H. Ghanim, M. Vora, K. Green, S. Abuaysheh, A. Chaudhuri, S. Dhindsa, and P. Dandona. 2012. Sitagliptin exerts an antinflammatory action. The Journal of Clinical Endocrinology and Metabolism 97 (9): 3333–3341.CrossRefPubMedPubMedCentral Makdissi, A., H. Ghanim, M. Vora, K. Green, S. Abuaysheh, A. Chaudhuri, S. Dhindsa, and P. Dandona. 2012. Sitagliptin exerts an antinflammatory action. The Journal of Clinical Endocrinology and Metabolism 97 (9): 3333–3341.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Aroor, A., S. McKarns, R. Nistala, V. Demarco, M. Gardner, M. Garcia-Touza, et al. 2013. DPP-4 inhibitors as therapeutic modulators of immune cell function and associated cardiovascular and renal insulin resistance in obesity and diabetes. Cardiorenal Medicine 3 (1): 48–56.CrossRefPubMedPubMedCentral Aroor, A., S. McKarns, R. Nistala, V. Demarco, M. Gardner, M. Garcia-Touza, et al. 2013. DPP-4 inhibitors as therapeutic modulators of immune cell function and associated cardiovascular and renal insulin resistance in obesity and diabetes. Cardiorenal Medicine 3 (1): 48–56.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Shirakawa, J., T. Okuyama, M. Kyohara, E. Yoshida, Y. Togashi, K. Tajima, S. Yamazaki, M. Kaji, M. Koganei, H. Sasaki, and Y. Terauchi. 2016. DPP-4 inhibition improves early mortality, β cell function, and adipose tissue inflammation in db/db mice fed a diet containing sucrose and linoleic acid. Diabetology and Metabolic Syndrome 8: 16.CrossRefPubMed Shirakawa, J., T. Okuyama, M. Kyohara, E. Yoshida, Y. Togashi, K. Tajima, S. Yamazaki, M. Kaji, M. Koganei, H. Sasaki, and Y. Terauchi. 2016. DPP-4 inhibition improves early mortality, β cell function, and adipose tissue inflammation in db/db mice fed a diet containing sucrose and linoleic acid. Diabetology and Metabolic Syndrome 8: 16.CrossRefPubMed
29.
Zurück zum Zitat He, J., G. Yuan, F. Cheng, J. Zhang, and X. Guo. 2017. Mast cell and M1 macrophage infiltration and local pro-inflammatory factors were attenuated with incretin-based therapies in obesity-related Glomerulopathy. Metabolic Syndrome and Related Disorders 15 (7): 344–353.CrossRefPubMedPubMedCentral He, J., G. Yuan, F. Cheng, J. Zhang, and X. Guo. 2017. Mast cell and M1 macrophage infiltration and local pro-inflammatory factors were attenuated with incretin-based therapies in obesity-related Glomerulopathy. Metabolic Syndrome and Related Disorders 15 (7): 344–353.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Birnbaum, Y., M. Bajaj, H.C. Yang, and Y. Ye. 2018. Combined SGLT2 and DPP4 inhibition reduces the activation of the Nlrp3/ASC Inflammasome and attenuates the development of diabetic nephropathy in mice with type 2 diabetes. Cardiovascular Drugs and Therapy 32: 135–145.CrossRefPubMed Birnbaum, Y., M. Bajaj, H.C. Yang, and Y. Ye. 2018. Combined SGLT2 and DPP4 inhibition reduces the activation of the Nlrp3/ASC Inflammasome and attenuates the development of diabetic nephropathy in mice with type 2 diabetes. Cardiovascular Drugs and Therapy 32: 135–145.CrossRefPubMed
31.
Zurück zum Zitat Zhao, Y., L. Yang, Y. Xiang, L. Liu, G. Huang, Z. Long, X. Li, R.D. Leslie, X. Wang, and Z. Zhou. 2014. Dipeptidyl peptidase 4 inhibitor sitagliptin maintains β-cell function in patients with recent-onset latent autoimmune diabetes in adults: One year prospective study. The Journal of Clinical Endocrinology and Metabolism 99 (5): E876–E880.CrossRefPubMed Zhao, Y., L. Yang, Y. Xiang, L. Liu, G. Huang, Z. Long, X. Li, R.D. Leslie, X. Wang, and Z. Zhou. 2014. Dipeptidyl peptidase 4 inhibitor sitagliptin maintains β-cell function in patients with recent-onset latent autoimmune diabetes in adults: One year prospective study. The Journal of Clinical Endocrinology and Metabolism 99 (5): E876–E880.CrossRefPubMed
32.
Zurück zum Zitat Willheim, M., C. Ebner, K. Baier, W. Kern, K. Schrattbauer, R. Thien, et al. 1997. Cell surface characterization of T lymphocytes and allergen-specific T cell clones: correlation of CD26 expression with T(H1) subsets. The Journal of Allergy and Clinical Immunology 100 (3): 348–355.CrossRefPubMed Willheim, M., C. Ebner, K. Baier, W. Kern, K. Schrattbauer, R. Thien, et al. 1997. Cell surface characterization of T lymphocytes and allergen-specific T cell clones: correlation of CD26 expression with T(H1) subsets. The Journal of Allergy and Clinical Immunology 100 (3): 348–355.CrossRefPubMed
33.
Zurück zum Zitat Cordero, O.J., F.J. Salgado, J.E. Vinuela, and M. Nogueira. 1997. Interleukin-12 enhances CD26 expression and dipeptidyl peptidase IV function on human activated lymphocytes. Immunobiology 197 (5): 522–533.CrossRefPubMed Cordero, O.J., F.J. Salgado, J.E. Vinuela, and M. Nogueira. 1997. Interleukin-12 enhances CD26 expression and dipeptidyl peptidase IV function on human activated lymphocytes. Immunobiology 197 (5): 522–533.CrossRefPubMed
34.
Zurück zum Zitat Pinheiro, M.M., F.M. Pinheiro, and M.A. Torres. 2016. Four-year clinical remission of type 1 diabetes mellitus in two patients treated with sitagliptin and vitamin D3. Endocrinology Diabetes Metabolism Case Reports 2016: 16–0099.CrossRef Pinheiro, M.M., F.M. Pinheiro, and M.A. Torres. 2016. Four-year clinical remission of type 1 diabetes mellitus in two patients treated with sitagliptin and vitamin D3. Endocrinology Diabetes Metabolism Case Reports 2016: 16–0099.CrossRef
35.
Zurück zum Zitat Alonso, N., M.T. Julián, J. Carrascal, R. Colobran, I. Pujol-Autonell, S. Rodriguez-Fernández, A. Teniente, M.A. Fernández, A. Miñarro, M.C. Ruiz de Villa, M. Vives-Pi, and M. Puig-Domingo. 2015. Type 1 diabetes prevention in NOD mice by targeting DPPIV/CD26 is associated with changes in CD8+T effector memory subset. PLoS One 10 (11): e0142186.CrossRefPubMedPubMedCentral Alonso, N., M.T. Julián, J. Carrascal, R. Colobran, I. Pujol-Autonell, S. Rodriguez-Fernández, A. Teniente, M.A. Fernández, A. Miñarro, M.C. Ruiz de Villa, M. Vives-Pi, and M. Puig-Domingo. 2015. Type 1 diabetes prevention in NOD mice by targeting DPPIV/CD26 is associated with changes in CD8+T effector memory subset. PLoS One 10 (11): e0142186.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Vargová, L., K. Zacharovová, E. Dovolilová, L. Vojtová, Z. Cimburek, and F. Saudek. 2013. The effects of DPP-IV inhibition in NOD mice with overt diabetes. Folia Biologica (Praha) 59 (3): 116–122. Vargová, L., K. Zacharovová, E. Dovolilová, L. Vojtová, Z. Cimburek, and F. Saudek. 2013. The effects of DPP-IV inhibition in NOD mice with overt diabetes. Folia Biologica (Praha) 59 (3): 116–122.
37.
Zurück zum Zitat Kim, S.J., C. Nian, and C.H. McIntosh. 2010. Sitagliptin (MK0431) inhibition of dipeptidyl peptidase IV decreases nonobese diabetic mouse CD4+ T-cell migration through incretin-dependent and -independent pathways. Diabetes 59 (7): 1739–1750.CrossRefPubMedPubMedCentral Kim, S.J., C. Nian, and C.H. McIntosh. 2010. Sitagliptin (MK0431) inhibition of dipeptidyl peptidase IV decreases nonobese diabetic mouse CD4+ T-cell migration through incretin-dependent and -independent pathways. Diabetes 59 (7): 1739–1750.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Kodera, R., K. Shikata, T. Takatsuka, K. Oda, S. Miyamoto, N. Kajitani, D. Hirota, T. Ono, H.K. Usui, and H. Makino. 2014. Dipeptidyl peptidase-4 inhibitor ameliorates early renal injury through its anti-inflammatory action in a rat model of type 1 diabetes. Biochemical and Biophysical Research Communications 443 (3): 828–833.CrossRefPubMed Kodera, R., K. Shikata, T. Takatsuka, K. Oda, S. Miyamoto, N. Kajitani, D. Hirota, T. Ono, H.K. Usui, and H. Makino. 2014. Dipeptidyl peptidase-4 inhibitor ameliorates early renal injury through its anti-inflammatory action in a rat model of type 1 diabetes. Biochemical and Biophysical Research Communications 443 (3): 828–833.CrossRefPubMed
39.
Zurück zum Zitat Awata, T., A. Shimada, T. Maruyama, Y. Oikawa, N. Yasukawa, S. Kurihara, Y. Miyashita, M. Hatano, Y. Ikegami, M. Matsuda, M. Niwa, Y. Kazama, S. Tanaka, and T. Kobayashi. 2017. Possible Long-term efficacy of sitagliptin, a dipeptidyl peptidase-4 inhibitor, for slowly progressive type 1 diabetes (SPIDDM) in the stage of non-insulin-dependency: an open-label randomized controlled pilot trial (SPAN-S). Diabetes Therapy 8 (5): 1123–1134.CrossRefPubMedPubMedCentral Awata, T., A. Shimada, T. Maruyama, Y. Oikawa, N. Yasukawa, S. Kurihara, Y. Miyashita, M. Hatano, Y. Ikegami, M. Matsuda, M. Niwa, Y. Kazama, S. Tanaka, and T. Kobayashi. 2017. Possible Long-term efficacy of sitagliptin, a dipeptidyl peptidase-4 inhibitor, for slowly progressive type 1 diabetes (SPIDDM) in the stage of non-insulin-dependency: an open-label randomized controlled pilot trial (SPAN-S). Diabetes Therapy 8 (5): 1123–1134.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Lima-Martínez, M.M., E. Guerra-Alcalá, M. Contreras, J. Nastasi, J.A. Noble, and C. Polychronakos. 2014. One year remission of type 1 diabetes mellitus in a patient treated with sitagliptin. Endocrinology Diabetes Metabolism Case Report 2014: 140072. Lima-Martínez, M.M., E. Guerra-Alcalá, M. Contreras, J. Nastasi, J.A. Noble, and C. Polychronakos. 2014. One year remission of type 1 diabetes mellitus in a patient treated with sitagliptin. Endocrinology Diabetes Metabolism Case Report 2014: 140072.
41.
Zurück zum Zitat Schopman, J.E., J.B. Hoekstra, B.M. Frier, M.T. Ackermans, J.J. de Sonnaville, A.M. Stades, et al. 2015. Effects of sitagliptin on counter-regulatory and incretin hormones during acute hypoglycaemia in patients with type 1 diabetes: a randomized double-blind placebo-controlled crossover study. Diabetes, Obesity & Metabolism 17 (6): 546–553.CrossRef Schopman, J.E., J.B. Hoekstra, B.M. Frier, M.T. Ackermans, J.J. de Sonnaville, A.M. Stades, et al. 2015. Effects of sitagliptin on counter-regulatory and incretin hormones during acute hypoglycaemia in patients with type 1 diabetes: a randomized double-blind placebo-controlled crossover study. Diabetes, Obesity & Metabolism 17 (6): 546–553.CrossRef
42.
Zurück zum Zitat Couri, C.E., M.C. Oliveira, A.B. Stracieri, D.A. Moraes, F. Pieroni, G.M. Barros, M.I. Madeira, K.C. Malmegrim, M.C. Foss-Freitas, B.P. Simões, E.Z. Martinez, M.C. Foss, R.K. Burt, and J.C. Voltarelli. 2009. C-peptide levels and insulin independence following autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. Journal of the American Medical Association 301 (15): 1573–1579.CrossRefPubMed Couri, C.E., M.C. Oliveira, A.B. Stracieri, D.A. Moraes, F. Pieroni, G.M. Barros, M.I. Madeira, K.C. Malmegrim, M.C. Foss-Freitas, B.P. Simões, E.Z. Martinez, M.C. Foss, R.K. Burt, and J.C. Voltarelli. 2009. C-peptide levels and insulin independence following autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. Journal of the American Medical Association 301 (15): 1573–1579.CrossRefPubMed
43.
Zurück zum Zitat Reeves, P.G., F.H. Nielsen, and G.C. Fahey Jr. 1993. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. The Journal of Nutrition 123 (11): 1939–1951.CrossRefPubMed Reeves, P.G., F.H. Nielsen, and G.C. Fahey Jr. 1993. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. The Journal of Nutrition 123 (11): 1939–1951.CrossRefPubMed
44.
Zurück zum Zitat Yaochite, J.N., C. Caliari-Oliveira, M.R. Davanso, D. Carlos, K.C. Malmegrim, C.R. Cardoso, et al. 2013. Dynamic changes of the Th17/Tc17 and regulatory T cell populations interfere in the experimental autoimmune diabetes pathogenesis. Immunobiology 218 (3): 338–352.CrossRefPubMed Yaochite, J.N., C. Caliari-Oliveira, M.R. Davanso, D. Carlos, K.C. Malmegrim, C.R. Cardoso, et al. 2013. Dynamic changes of the Th17/Tc17 and regulatory T cell populations interfere in the experimental autoimmune diabetes pathogenesis. Immunobiology 218 (3): 338–352.CrossRefPubMed
45.
Zurück zum Zitat Hadjiyanni, I., L.L. Baggio, P. Poussier, and D.J. Drucker. 2008. Exendin-4 modulates diabetes onset in nonobese diabetic mice. Endocrinology 149 (3): 1338–1349.CrossRefPubMed Hadjiyanni, I., L.L. Baggio, P. Poussier, and D.J. Drucker. 2008. Exendin-4 modulates diabetes onset in nonobese diabetic mice. Endocrinology 149 (3): 1338–1349.CrossRefPubMed
46.
Zurück zum Zitat Tian, L., J. Gao, J. Hao, Y. Zhang, H. Yi, T.D. O'Brien, R. Sorenson, J. Luo, and Z. Guo. 2010. Reversal of new-onset diabetes through modulating inflammation and stimulating beta-cell replication in nonobese diabetic mice by a dipeptidyl peptidase IV inhibitor. Endocrinology 151 (7): 3049–3060.CrossRefPubMed Tian, L., J. Gao, J. Hao, Y. Zhang, H. Yi, T.D. O'Brien, R. Sorenson, J. Luo, and Z. Guo. 2010. Reversal of new-onset diabetes through modulating inflammation and stimulating beta-cell replication in nonobese diabetic mice by a dipeptidyl peptidase IV inhibitor. Endocrinology 151 (7): 3049–3060.CrossRefPubMed
47.
Zurück zum Zitat Keenan, H.A., J.K. Sun, J. Levine, A. Doria, L.P. Aiello, G. Eisenbarth, S. Bonner-Weir, and G.L. King. 2010. Residual insulin production and pancreatic ss-cell turnover after 50 years of diabetes: Joslin medalist study. Diabetes 59 (11): 2846–2853.CrossRefPubMedPubMedCentral Keenan, H.A., J.K. Sun, J. Levine, A. Doria, L.P. Aiello, G. Eisenbarth, S. Bonner-Weir, and G.L. King. 2010. Residual insulin production and pancreatic ss-cell turnover after 50 years of diabetes: Joslin medalist study. Diabetes 59 (11): 2846–2853.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Perl, S., J.A. Kushner, B.A. Buchholz, A.K. Meeker, G.M. Stein, M. Hsieh, M. Kirby, S. Pechhold, E.H. Liu, D.M. Harlan, and J.F. Tisdale. 2010. Significant human beta-cell turnover is limited to the first three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating. The Journal of Clinical Endocrinology and Metabolism 95 (10): E234–E239.CrossRefPubMedPubMedCentral Perl, S., J.A. Kushner, B.A. Buchholz, A.K. Meeker, G.M. Stein, M. Hsieh, M. Kirby, S. Pechhold, E.H. Liu, D.M. Harlan, and J.F. Tisdale. 2010. Significant human beta-cell turnover is limited to the first three decades of life as determined by in vivo thymidine analog incorporation and radiocarbon dating. The Journal of Clinical Endocrinology and Metabolism 95 (10): E234–E239.CrossRefPubMedPubMedCentral
49.
50.
Zurück zum Zitat Baggio, L.L., and D.J. Drucker. 2007. Biology of incretins: GLP-1 and GIP. Gastroenterology 132 (6): 2131–2157.CrossRef Baggio, L.L., and D.J. Drucker. 2007. Biology of incretins: GLP-1 and GIP. Gastroenterology 132 (6): 2131–2157.CrossRef
51.
Zurück zum Zitat Pospisilik, J.A., S.G. Stafford, H.U. Demuth, C.H. McIntosh, and R.A. Pederson. 2002. Long-term treatment with dipeptidyl peptidase IV inhibitor improves hepatic and peripheral insulin sensitivity in the VDF Zucker rat: a euglycemic-hyperinsulinemic clamp study. Diabetes 51 (9): 2677–2683.CrossRefPubMed Pospisilik, J.A., S.G. Stafford, H.U. Demuth, C.H. McIntosh, and R.A. Pederson. 2002. Long-term treatment with dipeptidyl peptidase IV inhibitor improves hepatic and peripheral insulin sensitivity in the VDF Zucker rat: a euglycemic-hyperinsulinemic clamp study. Diabetes 51 (9): 2677–2683.CrossRefPubMed
52.
Zurück zum Zitat Pospisilik, J.A., S.G. Stafford, H.U. Demuth, R. Brownsey, W. Parkhouse, D.T. Finegood, C.H.S. McIntosh, and R.A. Pederson. 2002. Long-term treatment with the dipeptidyl peptidase IV inhibitor P32/98 causes sustained improvements in glucose tolerance, insulin sensitivity, hyperinsulinemia, and beta-cell glucose responsiveness in VDF (fa/fa) Zucker rats. Diabetes 51 (4): 943–950.CrossRefPubMed Pospisilik, J.A., S.G. Stafford, H.U. Demuth, R. Brownsey, W. Parkhouse, D.T. Finegood, C.H.S. McIntosh, and R.A. Pederson. 2002. Long-term treatment with the dipeptidyl peptidase IV inhibitor P32/98 causes sustained improvements in glucose tolerance, insulin sensitivity, hyperinsulinemia, and beta-cell glucose responsiveness in VDF (fa/fa) Zucker rats. Diabetes 51 (4): 943–950.CrossRefPubMed
53.
Zurück zum Zitat Atkin, S.L., N. Katsiki, M. Banach, D.P. Mikhailidis, M. Pirro, and A. Sahebkar. 2017. Effect of dipeptidyl peptidase-4 inhibitors on circulating tumor necrosis factor-α concentrations: a systematic review and meta-analysis of controlled trials. Journal of Diabetes and its Complications 31 (9): 1458–1464.CrossRefPubMed Atkin, S.L., N. Katsiki, M. Banach, D.P. Mikhailidis, M. Pirro, and A. Sahebkar. 2017. Effect of dipeptidyl peptidase-4 inhibitors on circulating tumor necrosis factor-α concentrations: a systematic review and meta-analysis of controlled trials. Journal of Diabetes and its Complications 31 (9): 1458–1464.CrossRefPubMed
54.
Zurück zum Zitat Hattori, A., M. Takemoto, H. Tokuyama, M. Koshizaka, and K. Yokote. 2017. Sitagliptin but not alpha glucosidase inhibitor reduced the serum soluble CD163, a marker for activated macrophage, in individuals with type 2 diabetes mellitus. Diabetes Research and Clinical Practice 126: 138–143.CrossRefPubMed Hattori, A., M. Takemoto, H. Tokuyama, M. Koshizaka, and K. Yokote. 2017. Sitagliptin but not alpha glucosidase inhibitor reduced the serum soluble CD163, a marker for activated macrophage, in individuals with type 2 diabetes mellitus. Diabetes Research and Clinical Practice 126: 138–143.CrossRefPubMed
55.
Zurück zum Zitat Brubaker, P.L., and D.J. Drucker. 2004. Minireview: glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology 145 (6): 2653–2659.CrossRefPubMed Brubaker, P.L., and D.J. Drucker. 2004. Minireview: glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology 145 (6): 2653–2659.CrossRefPubMed
57.
Zurück zum Zitat Ding, L., C.A. Gysemans, G. Stangé, Y. Heremans, Y. Yuchi, T. Takiishi, H. Korf, M. Chintinne, R.D. Carr, H. Heimberg, D. Pipeleers, and C. Mathieu. 2014. Combining MK626, a novel DPP-4 inhibitor, and low-dose monoclonal CD3 antibody for stable remission of new-onset diabetes in mice. PLoS One 9 (9): e107935.CrossRefPubMedPubMedCentral Ding, L., C.A. Gysemans, G. Stangé, Y. Heremans, Y. Yuchi, T. Takiishi, H. Korf, M. Chintinne, R.D. Carr, H. Heimberg, D. Pipeleers, and C. Mathieu. 2014. Combining MK626, a novel DPP-4 inhibitor, and low-dose monoclonal CD3 antibody for stable remission of new-onset diabetes in mice. PLoS One 9 (9): e107935.CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Gonçalves, A., C. Marques, E. Leal, C.F. Ribeiro, F. Reis, A.F. Ambrósio, and R. Fernandes. 2014. Dipeptidyl peptidase-IV inhibition prevents blood-retinal barrier breakdown, inflammation and neuronal cell death in the retina of type 1 diabetic rats. Biochimica et Biophysica Acta 1842 (9): 1454–1463.CrossRefPubMed Gonçalves, A., C. Marques, E. Leal, C.F. Ribeiro, F. Reis, A.F. Ambrósio, and R. Fernandes. 2014. Dipeptidyl peptidase-IV inhibition prevents blood-retinal barrier breakdown, inflammation and neuronal cell death in the retina of type 1 diabetic rats. Biochimica et Biophysica Acta 1842 (9): 1454–1463.CrossRefPubMed
59.
Zurück zum Zitat Wang, Q., M. Long, H. Qu, R. Shen, R. Zhang, J. Xu, et al. 2018. DPP-4 inhibitors as treatments for type 1 diabetes mellitus: a systematic review and meta-analysis. Journal Diabetes Research 2018: 5308582. Wang, Q., M. Long, H. Qu, R. Shen, R. Zhang, J. Xu, et al. 2018. DPP-4 inhibitors as treatments for type 1 diabetes mellitus: a systematic review and meta-analysis. Journal Diabetes Research 2018: 5308582.
60.
Zurück zum Zitat Cho, J.M., H.W. Jang, H. Cheon, Y.T. Jeong, D.H. Kim, Y.M. Lim, S.H. Choi, E.K. Yang, C.Y. Shin, M.H. Son, S.H. Kim, H.J. Kim, and M.S. Lee. 2011. A novel dipeptidyl peptidase IV inhibitor DA-1229 ameliorates streptozotocin-induced diabetes by increasing β-cell replication and neogenesis. Diabetes Research and Clinical Practice 91 (1): 72–79.CrossRefPubMed Cho, J.M., H.W. Jang, H. Cheon, Y.T. Jeong, D.H. Kim, Y.M. Lim, S.H. Choi, E.K. Yang, C.Y. Shin, M.H. Son, S.H. Kim, H.J. Kim, and M.S. Lee. 2011. A novel dipeptidyl peptidase IV inhibitor DA-1229 ameliorates streptozotocin-induced diabetes by increasing β-cell replication and neogenesis. Diabetes Research and Clinical Practice 91 (1): 72–79.CrossRefPubMed
61.
Zurück zum Zitat Pospisilik, J.A., J. Martin, T. Doty, J.A. Ehses, N. Pamir, F.C. Lynn, S. Piteau, H.U. Demuth, C.H.S. McIntosh, and R.A. Pederson. 2003. Dipeptidyl peptidase IV inhibitor treatment stimulates beta-cell survival and islet neogenesis in streptozotocin-induced diabetic rats. Diabetes 52 (3): 741–750.CrossRefPubMed Pospisilik, J.A., J. Martin, T. Doty, J.A. Ehses, N. Pamir, F.C. Lynn, S. Piteau, H.U. Demuth, C.H.S. McIntosh, and R.A. Pederson. 2003. Dipeptidyl peptidase IV inhibitor treatment stimulates beta-cell survival and islet neogenesis in streptozotocin-induced diabetic rats. Diabetes 52 (3): 741–750.CrossRefPubMed
62.
Zurück zum Zitat Kim, S.J., C. Nian, D.J. Doudet, and C.H. McIntosh. 2008. Inhibition of dipeptidyl peptidase IV with sitagliptin (MK0431) prolongs islet graft survival in streptozotocin-induced diabetic mice. Diabetes 57 (5): 1331–1339.CrossRefPubMed Kim, S.J., C. Nian, D.J. Doudet, and C.H. McIntosh. 2008. Inhibition of dipeptidyl peptidase IV with sitagliptin (MK0431) prolongs islet graft survival in streptozotocin-induced diabetic mice. Diabetes 57 (5): 1331–1339.CrossRefPubMed
63.
Zurück zum Zitat Cabrera, S.M., S.C. Colvin, S.A. Tersey, B. Maier, J.L. Nadler, and R.G. Mirmira. 2013. Effects of combination therapy with dipeptidyl peptidase-IV and histone deacetylase inhibitors in the non-obese diabetic mouse model of type 1 diabetes. Clinical and Experimental Immunology 172 (3): 375–382.CrossRefPubMedPubMedCentral Cabrera, S.M., S.C. Colvin, S.A. Tersey, B. Maier, J.L. Nadler, and R.G. Mirmira. 2013. Effects of combination therapy with dipeptidyl peptidase-IV and histone deacetylase inhibitors in the non-obese diabetic mouse model of type 1 diabetes. Clinical and Experimental Immunology 172 (3): 375–382.CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Creutzfeldt, W.O., N. Kleine, B. Willms, C. Orskov, J.J. Holst, and M.A. Nauck. 1996. Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon-like peptide I(7-36) amide in type I diabetic patients. Diabetes Care 19 (6): 580–586.CrossRefPubMed Creutzfeldt, W.O., N. Kleine, B. Willms, C. Orskov, J.J. Holst, and M.A. Nauck. 1996. Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon-like peptide I(7-36) amide in type I diabetic patients. Diabetes Care 19 (6): 580–586.CrossRefPubMed
65.
Zurück zum Zitat Liu, W., D.O. Son, H.K. Lau, Y. Zhou, G.J. Prud'homme, T. Jin, et al. 2017. Combined oral administration of GABA and DPP-4 inhibitor prevents Beta cell damage and promotes beta cell regeneration in mice. Frontiers in Pharmacology 8: 362.CrossRefPubMedPubMedCentral Liu, W., D.O. Son, H.K. Lau, Y. Zhou, G.J. Prud'homme, T. Jin, et al. 2017. Combined oral administration of GABA and DPP-4 inhibitor prevents Beta cell damage and promotes beta cell regeneration in mice. Frontiers in Pharmacology 8: 362.CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Tourrel, C., D. Bailbé, M.J. Meile, M. Kergoat, and B. Portha. 2001. Glucagon-like peptide-1 and exendin-4 stimulate beta-cell neogenesis in streptozotocin-treated newborn rats resulting in persistently improved glucose homeostasis at adult age. Diabetes 50 (7): 1562–1570.CrossRefPubMed Tourrel, C., D. Bailbé, M.J. Meile, M. Kergoat, and B. Portha. 2001. Glucagon-like peptide-1 and exendin-4 stimulate beta-cell neogenesis in streptozotocin-treated newborn rats resulting in persistently improved glucose homeostasis at adult age. Diabetes 50 (7): 1562–1570.CrossRefPubMed
67.
Zurück zum Zitat Reinhold, D., B. Hemmer, B. Gran, I. Born, J. Faust, K. Neubert, H.F. McFarland, R. Martin, and S. Ansorge. 1998. Inhibitors of dipeptidyl peptidase IV/CD26 suppress activation of human MBP-specific CD4+ T cell clones. Journal of Neuroimmunology 87 (1–2): 203–209.CrossRefPubMed Reinhold, D., B. Hemmer, B. Gran, I. Born, J. Faust, K. Neubert, H.F. McFarland, R. Martin, and S. Ansorge. 1998. Inhibitors of dipeptidyl peptidase IV/CD26 suppress activation of human MBP-specific CD4+ T cell clones. Journal of Neuroimmunology 87 (1–2): 203–209.CrossRefPubMed
68.
Zurück zum Zitat Dobrian, A.D., Q. Ma, J.W. Lindsay, K.A. Leone, K. Ma, J. Coben, et al. 2010. Dipeptidyl peptidase IV inhibitor sitagliptin reduces local inflammation in adipose tissue and in pancreatic islets of obese mice. American Journal of Physiology. Endocrinology and Metabolism 300 (2): E410–E421.CrossRefPubMedPubMedCentral Dobrian, A.D., Q. Ma, J.W. Lindsay, K.A. Leone, K. Ma, J. Coben, et al. 2010. Dipeptidyl peptidase IV inhibitor sitagliptin reduces local inflammation in adipose tissue and in pancreatic islets of obese mice. American Journal of Physiology. Endocrinology and Metabolism 300 (2): E410–E421.CrossRefPubMedPubMedCentral
69.
70.
Zurück zum Zitat Ohnuma, K., M. Uchiyama, T. Yamochi, K. Nishibashi, O. Hosono, N. Takahashi, S. Kina, H. Tanaka, X. Lin, N.H. Dang, and C. Morimoto. 2007. Caveolin-1 triggers T-cell activation via CD26 in association with CARMA1. The Journal of Biological Chemistry 282 (13): 10117–10131. Ohnuma, K., M. Uchiyama, T. Yamochi, K. Nishibashi, O. Hosono, N. Takahashi, S. Kina, H. Tanaka, X. Lin, N.H. Dang, and C. Morimoto. 2007. Caveolin-1 triggers T-cell activation via CD26 in association with CARMA1. The Journal of Biological Chemistry 282 (13): 10117–10131.
71.
Zurück zum Zitat Fan, H., S. Yan, S. Stehling, D. Marguet, D. Schuppaw, and W. Reutter. 2003. Dipeptidyl peptidase IV/CD26 in T cell activation, cytokine secretion and immunoglobulin production. Advances in Experimental Medicine and Biology 524: 165–174.CrossRefPubMed Fan, H., S. Yan, S. Stehling, D. Marguet, D. Schuppaw, and W. Reutter. 2003. Dipeptidyl peptidase IV/CD26 in T cell activation, cytokine secretion and immunoglobulin production. Advances in Experimental Medicine and Biology 524: 165–174.CrossRefPubMed
72.
Zurück zum Zitat Reinhold, D., U. Bank, F. Buhling, M. Tager, I. Born, J. Faust, et al. 1997. Inhibitors of dipeptidyl peptidase IV (DP IV, CD26) induces secretion of transforming growth factor-beta 1 (TGF-beta 1) in stimulated mouse splenocytes and thymocytes. Immunology Letters 58 (1): 29–35.CrossRefPubMed Reinhold, D., U. Bank, F. Buhling, M. Tager, I. Born, J. Faust, et al. 1997. Inhibitors of dipeptidyl peptidase IV (DP IV, CD26) induces secretion of transforming growth factor-beta 1 (TGF-beta 1) in stimulated mouse splenocytes and thymocytes. Immunology Letters 58 (1): 29–35.CrossRefPubMed
73.
Zurück zum Zitat Reinhold, D., T. Kahne, M. Tager, U. Lendeckel, F. Buhling, U. Bank, et al. 1997. The effect of anti-CD26 antibodies on DNA synthesis and cytokine production (IL-2, IL-10 and IFN-gamma) depends on enzymatic activity of DP IV/CD26. Advances in Experimental Medicine and Biology 421: 149–155.CrossRefPubMed Reinhold, D., T. Kahne, M. Tager, U. Lendeckel, F. Buhling, U. Bank, et al. 1997. The effect of anti-CD26 antibodies on DNA synthesis and cytokine production (IL-2, IL-10 and IFN-gamma) depends on enzymatic activity of DP IV/CD26. Advances in Experimental Medicine and Biology 421: 149–155.CrossRefPubMed
74.
Zurück zum Zitat Kim, S.J., C. Nian, D.J. Doudet, and C.H. McIntosh. 2009. Dipeptidyl peptidase IV inhibition with MK0431 improves islet graft survival in diabetic NOD mice partially via T-cell modulation. Diabetes 58 (3): 641–651.CrossRefPubMedPubMedCentral Kim, S.J., C. Nian, D.J. Doudet, and C.H. McIntosh. 2009. Dipeptidyl peptidase IV inhibition with MK0431 improves islet graft survival in diabetic NOD mice partially via T-cell modulation. Diabetes 58 (3): 641–651.CrossRefPubMedPubMedCentral
75.
Zurück zum Zitat Jelsing, J., N. Vrang, S.B. van Witteloostuijn, M. Mark, and T. Klein. 2012. The DPP4 inhibitor linagliptin delays the onset of diabetes and preserves β-cell mass in non-obese diabetic mice. The Journal of Endocrinology 214 (3): 381–387.CrossRefPubMed Jelsing, J., N. Vrang, S.B. van Witteloostuijn, M. Mark, and T. Klein. 2012. The DPP4 inhibitor linagliptin delays the onset of diabetes and preserves β-cell mass in non-obese diabetic mice. The Journal of Endocrinology 214 (3): 381–387.CrossRefPubMed
76.
Zurück zum Zitat Lee, S.A., Y.R. Kim, E.J. Yang, E.J. Kwon, S.H. Kim, S.H. Kang, D.B. Park, B.C. Oh, J. Kim, S.T. Heo, G. Koh, and D.H. Lee. 2013. CD26/DPP4 levels in peripheral blood and T cells in patients with type 2 diabetes mellitus. The Journal of Clinical Endocrinology and Metabolism 98 (6): 2553–2561.CrossRefPubMed Lee, S.A., Y.R. Kim, E.J. Yang, E.J. Kwon, S.H. Kim, S.H. Kang, D.B. Park, B.C. Oh, J. Kim, S.T. Heo, G. Koh, and D.H. Lee. 2013. CD26/DPP4 levels in peripheral blood and T cells in patients with type 2 diabetes mellitus. The Journal of Clinical Endocrinology and Metabolism 98 (6): 2553–2561.CrossRefPubMed
77.
Zurück zum Zitat Aso, Y., M. Fukushima, M. Sagara, T. Jojima, T. Iijima, K. Suzuki, A. Momobayashi, K. Kasai, and T. Inukai. 2015. Sitagliptin, a DPP-4 inhibitor, alters the subsets of circulating CD4+ T cells in patients with type 2 diabetes. Diabetes Research and Clinical Practice 110 (3): 250–256.CrossRefPubMed Aso, Y., M. Fukushima, M. Sagara, T. Jojima, T. Iijima, K. Suzuki, A. Momobayashi, K. Kasai, and T. Inukai. 2015. Sitagliptin, a DPP-4 inhibitor, alters the subsets of circulating CD4+ T cells in patients with type 2 diabetes. Diabetes Research and Clinical Practice 110 (3): 250–256.CrossRefPubMed
78.
Zurück zum Zitat Pinheiro, M.M., C.L. Stoppa, C.J. Valduga, C.E. Okuyama, R. Gorjão, R.M. Pereira, et al. 2017. Sitagliptin inhibit human lymphocytes proliferation and Th1/Th17 differentiation in vitro. European Journal of Pharmaceutical Sciences 100: 17–24.CrossRefPubMed Pinheiro, M.M., C.L. Stoppa, C.J. Valduga, C.E. Okuyama, R. Gorjão, R.M. Pereira, et al. 2017. Sitagliptin inhibit human lymphocytes proliferation and Th1/Th17 differentiation in vitro. European Journal of Pharmaceutical Sciences 100: 17–24.CrossRefPubMed
79.
Zurück zum Zitat Rabinovitch, A. 1998. An update on cytokines in the pathogenesis of insulin-dependent diabetes mellitus. Diabetes/Metabolism Reviews 14 (2): 129–151.CrossRefPubMed Rabinovitch, A. 1998. An update on cytokines in the pathogenesis of insulin-dependent diabetes mellitus. Diabetes/Metabolism Reviews 14 (2): 129–151.CrossRefPubMed
80.
Zurück zum Zitat van Belle, T.L., K.T. Coppieters, and M.G. von Herrath. 2011. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiological Reviews 91 (1): 79–118.CrossRefPubMed van Belle, T.L., K.T. Coppieters, and M.G. von Herrath. 2011. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiological Reviews 91 (1): 79–118.CrossRefPubMed
81.
Zurück zum Zitat Baharlou, R., A. Ahmadi-Vasmehjani, M.H. Davami, F. Faraji, M.R. Atashzar, F. Karimipour, A. Sadeghi, M.A. Asadi, and M. Khoubyari. 2016. Elevated levels of T-helper 17-associated cytokines in diabetes type I patients: indicators for following the course of disease. Immunological Investigations 45 (7): 641–651.CrossRefPubMed Baharlou, R., A. Ahmadi-Vasmehjani, M.H. Davami, F. Faraji, M.R. Atashzar, F. Karimipour, A. Sadeghi, M.A. Asadi, and M. Khoubyari. 2016. Elevated levels of T-helper 17-associated cytokines in diabetes type I patients: indicators for following the course of disease. Immunological Investigations 45 (7): 641–651.CrossRefPubMed
82.
Zurück zum Zitat Bellemore, S.M., E. Nikoopour, O. Krougly, E. Lee-Chan, L.A. Fouser, and B. Singh. 2016. Pathogenic T helper type 17 cells contribute to type 1 diabetes independently of interleukin-22. Clinical and Experimental Immunology 183 (3): 380–388.CrossRefPubMed Bellemore, S.M., E. Nikoopour, O. Krougly, E. Lee-Chan, L.A. Fouser, and B. Singh. 2016. Pathogenic T helper type 17 cells contribute to type 1 diabetes independently of interleukin-22. Clinical and Experimental Immunology 183 (3): 380–388.CrossRefPubMed
83.
Zurück zum Zitat Kuriya, G., T. Uchida, S. Akazawa, M. Kobayashi, K. Nakamura, T. Satoh, I. Horie, E. Kawasaki, H. Yamasaki, L. Yu, Y. Iwakura, H. Sasaki, Y. Nagayama, A. Kawakami, and N. Abiru. 2013. Double deficiency in IL-17 and IFN-γ signalling significantly suppresses the development of diabetes in the NOD mouse. Diabetologia 56 (8): 1773–1780.CrossRefPubMed Kuriya, G., T. Uchida, S. Akazawa, M. Kobayashi, K. Nakamura, T. Satoh, I. Horie, E. Kawasaki, H. Yamasaki, L. Yu, Y. Iwakura, H. Sasaki, Y. Nagayama, A. Kawakami, and N. Abiru. 2013. Double deficiency in IL-17 and IFN-γ signalling significantly suppresses the development of diabetes in the NOD mouse. Diabetologia 56 (8): 1773–1780.CrossRefPubMed
84.
Zurück zum Zitat Bellemore, S.M., E. Nikoopour, J.A. Schwartz, O. Krougly, E. Lee-Chan, and B. Singh. 2015. Preventative role of interleukin-17 producing regulatory T helper type 17 (Treg 17) cells in type 1 diabetes in non-obese diabetic mice. Clinical and Experimental Immunology 182 (3): 261–269.CrossRefPubMedPubMedCentral Bellemore, S.M., E. Nikoopour, J.A. Schwartz, O. Krougly, E. Lee-Chan, and B. Singh. 2015. Preventative role of interleukin-17 producing regulatory T helper type 17 (Treg 17) cells in type 1 diabetes in non-obese diabetic mice. Clinical and Experimental Immunology 182 (3): 261–269.CrossRefPubMedPubMedCentral
Metadaten
Titel
DPP-4 Inhibition Leads to Decreased Pancreatic Inflammatory Profile and Increased Frequency of Regulatory T Cells in Experimental Type 1 Diabetes
verfasst von
Mariana Rodrigues Davanso
Carolina Caliari-Oliveira
Carlos Eduardo Barra Couri
Dimas Tadeu Covas
Angela Merice de Oliveira Leal
Júlio César Voltarelli
Kelen Cristina Ribeiro Malmegrim
Juliana Navarro Ueda Yaochite
Publikationsdatum
01.02.2019
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-018-00954-3

Weitere Artikel der Ausgabe 2/2019

Inflammation 2/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.