Skip to main content
Erschienen in: International Journal of Clinical Pharmacy 5/2018

Open Access 01.10.2018 | Research Article

Drug-induced anaphylaxis in China: a 10 year retrospective analysis of the Beijing Pharmacovigilance Database

verfasst von: Ying Zhao, Shusen Sun, Xiaotong Li, Xiang Ma, Huilin Tang, Lulu Sun, Suodi Zhai, Tiansheng Wang

Erschienen in: International Journal of Clinical Pharmacy | Ausgabe 5/2018

Abstract

Background Few studies on the causes of drug-induced anaphylaxis (DIA) in the hospital setting are available. Objective We aimed to use the Beijing Pharmacovigilance Database (BPD) to identify the causes of DIA in Beijing, China. Setting Anaphylactic case reports from the BPD provided by the Beijing Center for Adverse Drug Reaction Monitoring. Method DIA cases collected by the BPD from January 2004 to December 2014 were adjudicated. Cases were analyzed for demographics, causative drugs and route of administration, and clinical signs and outcomes. Main outcome measure Drugs implicated in DIAs were identified and the signs and symptoms of the DIA cases were analyzed. Results A total of 1189 DIA cases were analyzed. The mean age was 47.6 years, and 732 (61.6%) were aged from 18 to 59 years. A total of 627 patients (52.7%) were females. There was a predominance of cardiovascular (83.8%) followed by respiratory (55.4%), central nervous (50.1%), mucocutaneous (47.4%), and gastrointestinal symptoms (31.3%). A total of 249 different drugs were involved. DIAs were mainly caused by antibiotics (39.3%), traditional Chinese medicines (TCM) (11.9%), radiocontrast agents (11.9%), and antineoplastic agents (10.3%). Cephalosporins accounted for majority (34.5%) of antibiotic-induced anaphylaxis, followed by fluoroquinolones (29.6%), beta-lactam/beta-lactamase inhibitors (15.4%) and penicillins (7.9%). Blood products and biological agents (3.1%), and plasma substitutes (2.1%) were also important contributors to DIAs. Conclusion A variety of drug classes were implicated in DIAs. Patients should be closely monitored for signs and symptoms of anaphylaxis when medications are administered especially with antibiotics, TCM, radiocontrast and antineoplastic agents.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1007/​s11096-017-0535-2) contains supplementary material, which is available to authorized users.
Ying Zhao and Shusen Sun have contributed equally to this work.

Impacts on practice

  • Drug-induced anaphylaxis accounts for at least 12% of adverse drug event reports in Chinese hospitals collected by the Beijing Pharmacovigilance Database between 2004 to 2014, and the associated mortality rate is 3.3%.
  • The top four drug categories implicated in drug induced anaphylaxis cases in China are antibiotics, traditional Chinese medicines, radiocontrast media and antineoplastic agents.
  • Drug induced anaphylaxis most often presents with cardiovascular system symptoms, followed by mucocutaneous, respiratory and central nervous system symptoms.

Introduction

Anaphylaxis is a severe, life-threatening, systemic allergic reaction that occurs rapidly after contact with an inducing substance. Common triggers of anaphylaxis include food, insect stings, drugs and latex [1, 2]. Susceptibility (or incidence) of anaphylaxis varies with age, allergen exposure, and predisposing genetic factors [1, 3]. Symptoms of anaphylaxis may progress rapidly and involve multiple target organ systems including the integumentary, respiratory, gastrointestinal, and cardiovascular systems [1].
Of the most common triggers of anaphylaxis [1, 2], drugs are considered to be the primary triggers in adults [1, 4]. Administration of any drug by any route can potentially cause anaphylaxis [2, 5]. According to a retrospective U.S. epidemiology study, medications were the most common cause (58.8%) of 2458 anaphylaxis-related deaths from 1999 to 2010 [6]. Furthermore, a multicenter retrospective study from Korea, drug-induced anaphylaxis (DIA) accounted for 46.5% of all 1806 anaphylaxis cases, becoming the most common trigger of anaphylaxis in Korea [7].
Although the epidemiological data of DIA have been reported in western countries [6, 8, 9], data is limited in Asian population. Most published studies are case reports or case series focused on specific drugs such as antibiotics or special clinical situations for instance during perioperative procedures. Studies are needed to confirm the previous findings and to add new knowledge to this area in Asian population. Our previous study assessed the use of epinephrine in managing patients with DIA through the analysis of the Beijing Pharmacovigilance Database (BPD) [10], and the present study is an extension of this project to provide a detailed analysis of the reported DIA cases.

Aim of the study

The objective of this study was to contribute to a better understanding of DIAs in Beijing, China, based on anaphylaxis case reports by the BPD over a decade period. The following information was extracted and analyzed: causative drugs, clinical features and severities of DIA cases.

Ethics approval

This study was considered to be exempt from further review by the Institutional Review Board, Peking University Third Hospital. Patient informed consent was not required because this was a retrospective study using only de-identified data.

Method

Using a structured database inquiry, extraction, and case adjudication methodology as reported in our previous study [10], we performed a detailed analysis on DIA cases. The cases were reported to the BPD from January 1, 2004 to December 31, 2014.
In contrast with our previous study [10], anaphylaxis-inducing drugs were classified into various pharmacotherapeutic groups according to the Martindale—The Complete Drug Reference (37th edition) [11], World Health Organization (WHO) Model Formulary (2008) [12], and Chinese Pharmacopoeia (ChP) [13]. Within each group there were several subgroups. Previously, cases in which more than one drug was suspected were defined as “Associations” [10]. In this study, we further classified drugs under the “Associations” according to the original judgments of physicians when information is available. For example, a case was reported in which two drugs were administered to a patient-Ambroxol injection and Lomefloxacin injection. Clinicians filing the report deemed that Lomefloxacin injection was more likely to induce anaphylaxis. Accordingly, we classified this case into “Antibiotics” instead of “Associations”. For each DIA case, we assessed the case severity into three grades: grade 1 category was patients with only cutaneous involvement, grade 2 included patients with mild-to-moderate manifestations of anaphylaxis, and those with grade 3 reactions had severe presentations with cutaneous, gastrointestinal, and potentially life-threatening respiratory or cardiovascular signs and symptoms [14].

Statistical analysis

The statistical analysis was performed using the SPSS version 22 (SPSS Inc., IL, USA). Continuous variables were subjected to normality tests using the single sample Kolmogorov–Smirnov test, where data in accordance with normal distribution was expressed as mean ± standard deviation, while those in accordance with the non-normal distribution was expressed as median (min, max), and the dichotomous variables were described as frequency (percentage).

Results

Demographic and clinical characteristics

A total of 9425 patients with drug-induced hypersensitivity reactions were identified from the BPD. After initial screening and adjudication, 1189 patients were ultimately included in our analysis [10]. Of these patients, the mean age was 47.6 years, 732 (61.6%) were aged from 18 to 59 years. A total of 627 (52.7%) were female patients (Table 1).
Table 1
Demographics, clinical characteristics and outcome of patients with drug-induced anaphylaxis
Variable
Value, no. (%)
95% CI
Demographics
 Age
  Mean—year
47.6 ± 20.1
 
  < 18 year
91 (7.7)
6.2–9.3
  18–59 year
732 (61.6)
58.8–64.4
  ≥60 year
366 (30.8)
28.2–33.5
 Female
627(52.7)
50.0–55.5
 Male
562(47.3)
44.5–50.0
Organ system involvement
 Cardiovascular
996 (83.8)
81.3–85.8
 Respiratory
659 (55.4)
52.5–58.3
 Central nervous system
596 (50.1)
47.4–53.1
 Mucocutaneous
563 (47.4)
44.6–50.5
 Gastrointestinal tract
372 (31.3)
28.8–33.9
Severity of anaphylaxis
 Mild to moderate
160 (13.5)
11.5–15.6
 Severe
1029 (86.5)
84.4–88.5
Outcome
 ICU admission
73 (6.1)
4.9–7.8
 Death
39 (3.3)
2.3–4.3
ED emergency department, ICU intensive care unit
The majority of patients (83.8%) experienced cardiovascular anaphylactic symptoms; the percentage of patients who developed mucocutaneous compromise, respiratory compromise, central nervous symptoms were 47.4, 55.4, and 50.1%, respectively. Gastrointestinal anaphylactic symptoms occurred in 31.3% of the cases. Overall, 73 (6.1%) of the patients were admitted to intensive care units (ICU), and 39 (3.3%) patients died during their hospitalizations as a result of anaphylaxis.

Drug triggers

A total of 249 individual drugs were involved in the anaphylactic cases analyzed, classified into 23 pharmacotherapeutic groups and 53 subgroups. A total of 1145 (96.3%) cases were attributed to single drugs, and 44 (3.7%) were attributed to “Associations” (Table 2). While various drug triggers were reported, the main four general categories for DIAs were antibiotics (39.3%), traditional Chinese medicines (TCM, 11.9%), radiocontrast agents (11.9%) and antineoplastic agents (10.3%).
Table 2
Pharmacotherapeutic groups and subgroups involved of drug-induced anaphylaxis
Drugs
Value, no. (%)
95% CI
Total
1189
 
Antibiotics
467 (39.3)
36.7–42.1
 β-lactams
275 (23.1)
21.0–25.5
 Fluoroquinolones
138 (11.6)
9.8–13.4
 Macrolides
28 (2.4)
1.6–3.3
 Other antibioticsa
26 (2.2)
1.3–3.0
TCM
141 (11.9)
10.2–14.3
 TCM (injection)
135 (11.4)
9.5–13.2
 TCM (oral)
5 (0.4)
0.1–0.8
 TCM (topical)
1 (0.1)
0.0–0.3
Radiocontrast agents
141 (11.9)
10.2–14.3
 X-ray contrast media, iodinated
113 (9.5)
7.8–11.3
 MRI contrast media
12 (1.0)
0.5–1.6
 Ophthalmic medicines
10 (0.8)
0.3–1.4
 Ultrasound contrast agents
4 (0.3)
0.1–0.8
 Otherb
2 (0.2)
0.0–0.4
Antineoplastics
122 (10.3)
8.8–12.4
 Taxanes
73 (6.1)
4.9–7.6
 Platinum compounds
40 (3.4)
2.4–4.5
 Cytotoxic antibiotics
5 (0.4)
0.1–0.8
 Alkylating agents
2 (0.2)
0.0–0.4
 Teniposide
1 (0.1)
0.0–0.3
 Asparaginase
1 (0.1)
0.0–0.3
Blood products, Biologics and plasma substitutes
74 (6.2)
4.9–7.7
 Blood products and Biologics
37 (3.1)
2.2–4.2
 Plasma substitutes
25 (2.1)
1.3–3.0
 Monoclonal antibodies
12 (1.0)
0.5–1.6
Anesthetics
25 (2.1)
1.3–3.0
 Local anesthetics
10 (0.8)
0.3–1.4
 NMBAs
12 (1.0)
0.5–1.6
 General anesthetics
3 (0.3)
0.0–0.6
 Vaccines, immunoglobulins and antiserums
23 (1.9)
1.2–2.8
 Immunoglobulins and antiserums
19 (1.6)
0.9–2.4
 Vaccines
4 (0.3)
0.1–0.7
Nutrition and vitamins
22 (1.9)
1.1–2.7
 Vitamins and minerals
16 (1.3)
0.8–2.1
 Amino acids and fat emulsions
6 (0.5)
0.2–0.9
Immune-modulators
21 (1.8)
1.0–2.5
 Immunostimulants
16 (1.3)
0.8–1.9
 Immunosuppressants
5 (0.4)
0.1–0.8
Blood system medications
20 (1.7)
0.9–2.4
 Antifibrinolytic agents and hemostatics
11 (0.9)
0.4–1.5
 Iron (injection)
6 (0.5)
0.2–1.0
 Anticoagulants
2 (0.2)
0.0–0.4
 Antiplatelet agents
1 (0.1)
0.0–0.3
Analgesics, anti-inflammatory drugs and antipyretics
17 (1.4)
0.8–2.2
 NSAIDs
11 (0.9)
0.4–1.6
 Opioids
5 (0.4)
0.1–0.8
 Paracetamol
1 (0.1)
0.0–0.3
Hormones, other endocrine medicines
16 (1.3)
0.8–2.1
 Corticosteroids
11 (0.9)
0.4–1.5
 Hypothalamic and pituitary hormones
4 (0.3)
0.1–0.7
 Insulins
1 (0.1)
0.0–0.3
Prostaglandins
10 (0.8)
0.3–1.4
Cardiovascular medications
11 (0.9)
0.4–1.5
 Vasodilators
5 (0.4)
0.1–0.8
 Antiarrhythmics
3 (0.3)
0.0–0.6
 ACEI/BB
2 (0.2)
0.0–0.4
 Statins
1 (0.1)
0.0–0.3
Gastrointestinal medicines
8 (0.7)
0.3–1.1
 H2 receptor blockers
3 (0.3)
0.0–0.6
 Laxatives
2 (0.2)
0.0–0.4
 PPI
1 (0.1)
0.0–0.3
 Antacids
1 (0.1)
0.0–0.3
 Antiemetics
1 (0.1)
0.0–0.3
Antidotes
7 (0.6)
0.3–1.1
Antivirals
5 (0.4)
0.1–0.8
Antifungals
3 (0.3)
0.0–0.6
Psychotherapeutic medicines
3 (0.3)
0.0–0.6
 Antidementia medicines
2 (0.2)
0.0–0.4
 Antipsychotic medications
1 (0.1)
0.0–0.3
Respiratory medications
3 (0.3)
0.0–0.6
 Expectorants
2 (0.2)
0.0–0.4
 Bronchodilators
1 (0.1)
0.0–0.3
Calcium regulating drugs
1 (0.1)
0.0–0.3
Associationsc
44 (3.7)
2.7–4.9
Othersd
5 (0.4)
0.1–0.8
TCM traditional Chinese medicine, NSAIDs non-steroidal anti-inflammatory drugs, MRI magnetic resonance imaging, NMBAs neuromuscular blocking agents, ACEI angiotensin converting enzyme inhibitor; BB beta-blocker, PPI proton pump inhibitor
aOther antibiotics included aminoglycosides, clindamycin, vancomycin, and metronidazole
bOther radiocontrast agent was indocyanine green injection
cAssociations were defined as those cases in which more than one medication was suspected to cause the anaphylaxis. Details of anaphylaxis induced by associations were listed in Appendix 3
d“Others” category included monosialotetrahexosylganglioside sodium for injection, sodium deoxyribonucleotide injection, cerebroprotein hydrolysate for injection, and coenzyme A for injection
Antibiotics held the leading trigger medications of drug-induced anaphylaxis (467/1189, 39.3%). Among the antibiotics, the top three sub-groups included beta-lactams (275/467, 58.9%), fluoroquinolones (138/467, 29.6%), and macrolides (28/467, 6.0%) (Table 3). Within the beta lactams in particular, cephalosporins (161/275, 58.5%) were identified the most followed by beta-lactam/beta-lactamase inhibitors (72/275, 26.2%) and penicillins (37/275, 13.5%) (Table 3).
Table 3
Drugs of antibiotic-induced anaphylaxis
Antibiotics
ATC-codes
All Patients (n = 467) Value, no. (%)
β-Lactam antibiotics
 
275 (58.9)
 Cephalosporins
 
161 (34.5)
  First-generation
J01DB
13 (2.8)
   cefradine
J01DB09
4 (0.9)
   cefalexin
J01DB01
4 (0.9)
   cefazolin
J01DB04
3 (0.6)
   cefadroxil
J01DB05
1 (0.2)
   cefathiamidine
NA
1 (0.2)
  Second-generation
J01DC
86 (18.4)
   cefuroxime
J01DC02
54 (11.6)
   cefmetazole
J01DC09
18 (3.9)
   cefoxitin
J01DC01
6 (1.3)
   cefotiam
J01DC07
3 (0.6)
   cefminox
J01DC12
2 (0.4)
   cefamandole
J01DC03
2 (0.4)
   cefaclor
J01DC04
1 (0.2)
  Third-generation
J01DD
58 (12.4)
   ceftriaxone
J01DD04
35 (7.5)
   ceftazidime
J01DD02
10 (2.1)
   ceftizoxime
J01DD07
6 (1.3)
   cefoperazone
J01DD12
4 (0.9)
   cefotaxime
J01DD01
2 (0.4)
   cefdinir
J01DD15
1 (0.2)
  Fourth-generation
J01DE
4 (0.9)
   cefepime
J01DE01
4 (0.9)
β-lactam + β-lactamase inhibitors
 
72 (15.4)
  cefoperazone + sulbactam
J01DD62
45 (9.6)
  piperacillin + sulbactam
J01CR05
12 (2.6)
  piperacillin + tazobactam
J01CR05
5 (1.1)
  ampicillin + sulbactam
J01CA51
5 (1.1)
  amoxicillin + clavulanic acid
J01CR02
3 (0.6)
  imipenem + cilastatin
J01DH51
1 (0.2)
  amoxicillin + sulbactam
J01CR02
1 (0.2)
Penicillins
J01C
37 (7.9)
 benzylpenicillin
J01CE01
23 (4.9)
 Penicillins with extended spectrum (aminopenicillins)
J01CA
14 (3.0)
   azlocillin
J01CA09
5 (1.1)
   amoxicillin
J01CA04
5 (1.1)
   mezlocillin
J01CA10
4 (0.9)
Others
 
5 (1.1)
  aztreonam
J01DF01
3 (0.6)
  latamoxef
J01DD06
2 (0.4)
Fluoroquinolones
J01MA
138 (29.6)
 levofloxacin
J01MA12
82 (17.6)
 moxifloxacin
J01MA14
23 (4.9)
 gatifloxacin
J01MA16
14 (3.0)
 pefloxacin
J01MA03
5 (1.1)
 ofloxacin
J01MA01
4 (0.9)
 fleroxacin
J01MA08
4 (0.9)
 ciprofloxacin
J01MA02
4 (0.9)
 lomefloxacin
J01MA07
2 (0.4)
Macrolides
J01FA
28 (6.0)
 azithromycin
J01FA10
28 (6.0)
clindamycin
J01FF01
14 (3.0)
Aminoglycosides
J01G
8 (1.7)
 etimicin
NA
7 (1.5)
 gentamicin
J01GB03
1 (0.2)
vancomycin
J01XA01
3 (0.6)
metronidazole
J01XD01
1 (0.2)
ATC anatomical therapeutic chemical, NA not available
There were 141 DIA cases (11.9%) induced by TCMs, most cases involving TCM injections (135/141, 95.7%), with the remaining cases including oral or topical TCM formulations. A total of 36 different TCM injections were identified. These injections were mainly used for the treatment of cardiovascular and cerebrovascular disease, digestive system disease, respiratory system disease, and cancer. Ciwujia was the leading cause followed by Qingkailing, Houttuynia cordata, Shuxuening, Shuanghuanglian, Chuanhuning, Safflower and Yinxingdamo (Tables 2, 4). Other TCM injections (53 cases) were listed in Appendix 1 in the electronic supplementary materials.
Table 4
Drugs of radiocontrast-induced anaphylaxis, TCM injection-induced anaphylaxis, and antineoplastics-induced anaphylaxis
Drugs
ATC-codes
Value, no. (%)
Radiocontrast agents (n = 141)
 iopromide 
V08AB05
52 (36.9)
 iohexol
V08AB02
26 (18.4)
 iopamidol
V08AB04
16 (11.3)
 fluorescein sodium
NA
10 (7.1)
 gadopentetic acid (gadopentetate dimeglumine)
V08CA01
9 (6.4)
 ioversol
V08AB07
7 (5.0)
 iobitridol
V08AB11
5 (3.5)
 iodixanol
V08AB09
5 (3.5)
 sulfur hexafluoride
V08DA05
4 (2.8)
 diatrizoic acid (meglumine diatrizoate)
V08AA01
2 (1.4)
 indocyanine green
NA
2 (1.4)
 gadobenic acid (gadobenate dimeglumine)
V08CA08
1 (0.7)
 gadodiamide
V08CA03
1 (0.7)
 gadoteric acid (gadoterate meglumine)
V08CA02
1 (0.7)
TCM injections (n = 135)
 Ciwujia
NA
21 (15.6)
 Qingkailing
NA
16 (11.9)
 Houttuynia cordata
NA
12 (8.9)
 Shuxuening
NA
11 (8.1)
 Shuanghuanglian
NA
6 (4.4)
 Chuanhuning
NA
6 (4.4)
 Safflower
NA
5 (3.7)
 Yinxingdamo
NA
5 (3.7)
 Othersa
NA
53 (39.3)
Antineoplastics (n = 122)
 paclitaxel
L01CD01
68 (55.7)
 oxaliplatin
L01XA03
18 (14.8)
 carboplatin
L01XA02
13 (10.7)
 cisplatin
L01XA01
7 (5.7)
 docetaxel
L01CD02
5 (4.1)
 cyclophosphamide
L01AA01
2 (1.6)
 doxorubicin 
L01DB01
2 (1.6)
 nedaplatin
NA
2 (1.6)
 topotecan 
L01XX17
1 (0.8)
 epirubicin
L01DB03
1 (0.8)
 bleomycin A5
NA
1 (0.8)
 mitomycin
L01DC03
1 (0.8)
 asparaginase
L01XX02
1 (0.8)
TCM traditional Chinese medicine, ATC anatomical therapeutic chemical, NA not available
aOnly the top 8 common TCMs were listed; detailed information on the Others category was presented in Appendix 1 in the electronic supplementary materials
Radiocontrast agents were reported 141 times, and the top three were contrast media used in X-ray (113/141, 80.1%), magnetic resonance imaging (12/141, 8.5%) and ophthalmic procedures (10/141, 7.1%) (Tables 2, 4).
Among the DIA cases caused by antineoplastic drugs (122/1189, 10.3%), paclitaxel (68/122, 55.7%) and platinum-based antineoplastics (40/122, 32.8%) were important contributors (Tables 2, 4). The remaining identified DIA cases (274) were listed in Table 2.
There were 149 anaphylaxis cases occurred during perioperative procedures, and the top three drug groups involved were antibiotics (43.0%), radiocontrast agents (14.8%) and plasma substitutes (9.4%) (Appendix 2).
Most causative drugs were administered by the intravenous route (86.4%), oral route (5.4%), intramuscular route (3.0%), subcutaneous route (1.6%), and intra-arterial route (1.4%). There were 12 cases of anaphylactic reactions occurred during intradermal tests.
Of the 44 DIA cases caused by the association of two or more drugs, 14 (31.8%) anaphylaxis cases involved one or more TCM combined with one or more other non-TCM, 12 (27.3%) occurred during general anesthesia, and 21 (47.7%) included antibiotics (Appendix 3).

Severity and anaphylaxis-related deaths

Among the 1189 DIA cases, 1029 (86.5%) were considered as severe (grade 3) and 39 (3.3%) were fatal. Mortality was due mainly to the following top four medication groups: antibiotics (13/39, 33.3%), radiocontrast agents (12/39, 30.8%), antineoplastic agents (4/39, 10.3%), TCM injections (3/39, 7.7%). The detailed information was listed in Table 5.
Table 5
Description of the anaphylaxis-related deaths
Variable
ATC-codes
All patients (n = 39) value, no. (%)
Age
  
 Mean—year
 
53.8 ± 19.1
 < 18 year
 
1 (2.6)
 18–59 year
 
20 (51.3)
 ≥60 year
 
18 (46.1)
Female
 
14 (35.9)
Antibiotics
 
13 (33.3)
 cefuroxime
J01DC02
5 (12.8)
 levofloxacin
J01MA12
3 (7.7)
 ceftriaxone
J01DD04
1 (2.6)
 ceftizoxime
J01DD07
1 (2.6)
 cefepime
J01DE01
1 (2.6)
 piperacillin + sulbactam
J01CR05
1 (2.6)
 clindamycin
J01FF01
1 (2.6)
Radiocontrast agents
 
12 (30.8)
 ioversol
V08AB07
4 (10.3)
 iohexol
V08AB02
3 (7.7)
 iopromide 
V08AB05
2 (5.1)
 iopamidol
V08AB04
1 (2.6)
 gadopentetic acid (gadopentetate dimeglumine)
V08CA01
1 (2.6)
 fluorescein sodium
NA
1 (2.6)
Antineoplastics
 
4 (10.3)
 paclitaxel
L01CD01
2 (5.1)
 oxaliplatin
L01XA03
1 (2.6)
 asparaginase
L01XX02
1 (2.6)
TCM injections
 
3 (7.7)
 Houttuynia cordata
NA
2 (5.1)
 Chuanhuning
NA
1 (2.6)
plasma substitutes
 
2 (5.1)
 hydroxyethyl starch
B05AA07
1 (2.6)
 dextran
B05AA05
1 (2.6)
Vaccine
J07BB03
1 (2.6)
protamine
V03AB14
1 (2.6)
articaine
N01BB08
1 (2.6)
doxofylline
R03DA11
1 (2.6)
Associationsa
 
1 (2.6)
TCM traditional Chinese medicine, ATC anatomical therapeutic chemical, NA not available
aAssociations were Moxifloxacin hydrochloride and sodium chloride injection, and Ambroxol hydrochloride for injection

Discussion

To our knowledge, this is the first analysis of drug-induced anaphylaxis in the hospital setting in China. Using the Beijing Pharmacovigilance Database, our study shows that there were 1189 DIA cases in clinical settings over a decade in Beijing, China, accounting for 12.6% of all ADE reports collected by the BPD. The percentage of DIA in Beijing, China is higher than the percentage of DIA in Portugal (5–7%) spanning over a decade [8]. Patients aged between 18 and 59 years (61.6%) had the highest frequency of DIA among all three age groups, which is consistent with a recent study in China by Jiang et al. [15]. Similar to most studies [8, 9, 16], females had a higher frequency of anaphylaxis compared to males in our analysis. A high proportion of patients developed cardiovascular symptoms (83.8%), and the mortality rate of 3.3% is comparable to previous studies [17, 18].

Antibiotic-induced anaphylaxis

Of all DIAs reported in BPD and included within our analysis, antibiotics attributed to the most common cause of DIA (39.3%), comparable to the incidence of antibiotic-induced anaphylaxis within the U.S. (40.5%) [6]. However, antibiotic-induced anaphylaxis occurred more frequently than reports from Korea (10.5%) [7] and Portugal (16.7%) [8]. In agreement with previous reports, anaphylaxis from β-lactam antibiotics (58.9%) were reported more frequently than non-β-lactam antibiotics [19]. Cephalosporins accounted for the majority of β-lactam antibiotic-related anaphylaxis followed by beta-lactam/beta-lactamase inhibitors and penicillins. This may be explained partly by the greater use of cephalosporins in Chinese hospitals [20]. The likelihood of anaphylaxis from penicillins can be assessed by skin tests [19]. However, routine intradermal skin testing of a cephalosporin may not be useful for predicting an immediate hypersensitivity because of the extremely low test sensitivity, which was confirmed by a recent retrospective study conducted by Yoon et al. [21]. Fluoroquinolone antibiotics also accounted for a high proportion of all 1189 anaphylaxis cases (11.6%), which is consistent with the frequency (11.7%) found by Faria et al. [16]. The high frequency of anaphylaxis from fluoroquinolones maybe due to the overuse of fluoroquinolone antibiotics in China [20], and the hypersensitivity to quinolones is less likely to be determined from skin testing [2].
Given that antibiotics are the most common trigger for anaphylaxis, the importance of inquiring and documenting patient’s medication allergic history cannot be underestimated. This is the area pharmacists could contribute to patient safety. Clinical symptoms and signs related to anaphylaxis should be closely monitored when antibiotics, especially cephalosporins and fluoroquinolones, are administered to patients in the hospital setting.

TCM-induced anaphylaxis

The use of TCM was the second most common drug trigger in our analysis, and almost all (95.7%) TCM-related anaphylactic cases were from injectable TCM formulations. The result is similar to a study reported by Jiang et al. [15]. TCM is unique to the Chinese population and therefore the DIAs associated with TCM is unique to that population as a result. Along with extensive indications for TCM, there is greater use of TCM injections compared to other countries. In our review, 36 different TCM injections were identified resulting in 11.4% of the anaphylaxis cases, among which three cases were fatal. The four most common triggers were injections of Ciwujia, Qingkailing, Houttuynia cordata and Shuxuening. The results were similar to those of Jiang et al., who found the most common triggers were injections of Qingkailing, Shuanghuanglian and Houttuynia cordata [15].
TCM injection is extracted from Chinese herbs, which may contain one or several active ingredients. The high frequency of anaphylactic cases related to TCM injections may be explained as follows: (1) the components of a TCM injection are relatively complex and most formulations have not been thoroughly analyzed and identified; (2) a TCM injection also contains various additives, such as pigment, tannin, starch and protein, and these additives may trigger the body’s immune system and cause anaphylaxis [22]; (3) quality control of TCM injections is relatively difficult due to the formulation complexity, and impurities may cause anaphylaxis as well; and (4) drug interactions between TCM injections and other medications should also be considered. Of the 135 patients who suffered anaphylaxis induced by TCM injections, patients’ age ranged from 4 to 90 years: children under 18 years (5%), adults between 18 and 59 years (58.6%), and adults over 60 years (36.4%). This is consistent with a previous study reporting that patient of any age can suffer anaphylaxis induced by TCM injections [22]. Therefore, caution should be exercised before considering the use of TCM and all patients regardless of age should be closely monitored during TCM administration.

Radiocontrast-induced anaphylaxis

Our study found that radiocontrast agents were the third most common cause (11.9%) of DIA, coinciding with the frequency of previous studies in Korea (12.0%) [7]. However DIA through radiocontrast agents was reported less frequently than that in the United States (30.4%) [6]. Of these radiocontrast-induced anaphylaxis cases, the majority (80.1%) were caused by iodine-based contrast agents. The number of anaphylaxis cases induced by iopromide (36.9%) were greater than any other non-ionic iodinated contrast agents, which is similar to the results from a previous study [23]. A recent retrospective study from Korea indicated that among the anaphylactic patients, iopromide was associated with more severe anaphylaxis with hypotension [24].
Patients with allergies, asthma, renal insufficiency, anxiety, significant cardiac disease and other miscellaneous risk factors may be at an increased risk for anaphylactoid contrast reactions [25]. Patient’s medical history should be collected and the risk of contrast media induced anaphylactic reactions should be assessment before contrast media administration. More importantly, appropriate resuscitative equipment should be available to treat anaphylactic reactions promptly. Premedications such as corticosteroids should also be used for pretreatment of “at-risk” patients who require a contrast-enhanced examination [25].

Antineoplastics-induced anaphylaxis

Antineoplastic agents were another frequent cause of DIA in the current study, consistent with those reported in literature [6, 8]. This may be related to the increasing chemotherapy use with ever increasing cancer prevalence in Beijing, China [26]. Paclitaxel accounted for 55.7% of antineoplastics-induced anaphylaxis, and the high frequency may be related to the solubilizer, polyoxyethylene castor oil, which can induce anaphylaxis [27]. We also found that platinum-based agents accounted for 32.8% of all antineoplastics-induced anaphylaxis cases. Among these agents, oxaliplatin was a major trigger accounting for 1.5% of all 1189 DIA cases, and this finding is consistent with a published study [28].
Although a recent study from Nonna et al. found that for patients with carboplatin induced hypersensitivity reaction, the use of oxaliplatin maybe a safer alternative [29], patients should be carefully monitored for signs and symptoms of anaphylaxis with any platinum-based chemotherapeutic agent.

Limitations

Our retrospective analysis was based on self-reported cases by health care professionals from the BPD, and therefore our study has the following limitations: (1) lack of the frequency of causative drug use as we could not obtain either prescription or reimbursement data; (2) we could not assess the prevalence of DIA in the region studied as we do not have the information of the total patient base; (3) potential reporting bias may exist: majority of reported cases were hospitalized patients in the non-ED setting, and only severe anaphylactic cases may have been reported; (4) we may not have included all DIA cases in the BPD: cases missed if clinicians did not report using the terms related to allergy or anaphylaxis or hypersensitivity (e.g. a patient with wheeze, vomiting, bronchospasm but was not described as “allergy” by clinicians when reporting to the BPD). In addition, some reported cases were not included due to insufficient information. Despite these limitations, the method we have taken should be robust against a range of potential biases: rigorous inclusion/exclusion criteria were utilized and all potential anaphylaxis cases were adjudicated by trained physician/allergists; and only patients with confirmed anaphylaxis and complete data record were included in the analysis.

Conclusion

This first detailed analysis of DIA case reports from 2004 to 2014 in Chinese patients provides valuable information to clinicians. Antibiotics, TCM, radiocontrast media and antineoplastic agents are the most common causes of DIA cases. The majority of DIA cases are considered to be severe with a high mortality rate of 3.3%. Pharmacists should be working closely with prescribers to assess each patient’s risks of developing anaphylaxis when drug therapy is involved, and to provide prompt treatment and resuscitations to reduce the morbidity and mortality when anaphylaxis occurs.

Acknowledgements

The authors would like to thank the Beijing Pharmacovigilance Database for providing data.

Funding

This research is partially supported by the Research Grant 892FY60221022 from School of Pharmaceutical Sciences, Peking University.

Conflicts of interest

The authors have no conflicts of interest to declare.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Dent – Das Online-Abo der Zahnmedizin

Online-Abonnement

Mit e.Dent erhalten Sie Zugang zu allen zahnmedizinischen Fortbildungen und unseren zahnmedizinischen und ausgesuchten medizinischen Zeitschriften.

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Muraro A, Roberts G, Worm M, Bilo MB, Brockow K, Fernandez Rivas M, et al. Anaphylaxis: guidelines from the European academy of allergy and clinical immunology. Allergy. 2014;69(8):1026–45.CrossRef Muraro A, Roberts G, Worm M, Bilo MB, Brockow K, Fernandez Rivas M, et al. Anaphylaxis: guidelines from the European academy of allergy and clinical immunology. Allergy. 2014;69(8):1026–45.CrossRef
2.
Zurück zum Zitat Simons FE, Ebisawa M, Sanchez-Borges M, Thong BY, Worm M, Tanno LK, et al. 2015 update of the evidence base: World Allergy Organization anaphylaxis guidelines. World Allergy Organ J. 2015;8(1):32.CrossRef Simons FE, Ebisawa M, Sanchez-Borges M, Thong BY, Worm M, Tanno LK, et al. 2015 update of the evidence base: World Allergy Organization anaphylaxis guidelines. World Allergy Organ J. 2015;8(1):32.CrossRef
3.
Zurück zum Zitat Panesar SS, Javad S, de Silva D, Nwaru BI, Hickstein L, Muraro A, et al. The epidemiology of anaphylaxis in Europe: a systematic review. Allergy. 2013;68(11):1353–61.CrossRef Panesar SS, Javad S, de Silva D, Nwaru BI, Hickstein L, Muraro A, et al. The epidemiology of anaphylaxis in Europe: a systematic review. Allergy. 2013;68(11):1353–61.CrossRef
4.
Zurück zum Zitat Cianferoni A, Novembre E, Mugnaini L, Lombardi E, Bernardini R, Pucci N, et al. Clinical features of acute anaphylaxis in patients admitted to a university hospital: an 11-year retrospective review (1985–1996). Ann Allergy Asthma Immunol. 2001;87(1):27–32.CrossRef Cianferoni A, Novembre E, Mugnaini L, Lombardi E, Bernardini R, Pucci N, et al. Clinical features of acute anaphylaxis in patients admitted to a university hospital: an 11-year retrospective review (1985–1996). Ann Allergy Asthma Immunol. 2001;87(1):27–32.CrossRef
5.
Zurück zum Zitat Renaudin JM, Beaudouin E, Ponvert C, Demoly P, Moneret-Vautrin DA. Severe drug-induced anaphylaxis: analysis of 333 cases recorded by the Allergy Vigilance Network from 2002 to 2010. Allergy. 2013;68(7):929–37.CrossRef Renaudin JM, Beaudouin E, Ponvert C, Demoly P, Moneret-Vautrin DA. Severe drug-induced anaphylaxis: analysis of 333 cases recorded by the Allergy Vigilance Network from 2002 to 2010. Allergy. 2013;68(7):929–37.CrossRef
6.
Zurück zum Zitat Jerschow E, Lin RY, Scaperotti MM, McGinn AP. Fatal anaphylaxis in the United States, 1999–2010: temporal patterns and demographic associations. J Allergy Clin Immunol. 2014;134(6):1318–28.e7.CrossRef Jerschow E, Lin RY, Scaperotti MM, McGinn AP. Fatal anaphylaxis in the United States, 1999–2010: temporal patterns and demographic associations. J Allergy Clin Immunol. 2014;134(6):1318–28.e7.CrossRef
7.
Zurück zum Zitat Ye YM, Kim MK, Kang HR, Kim TB, Sohn SW, Koh YI, et al. Predictors of the severity and serious outcomes of anaphylaxis in korean adults: a multicenter retrospective case study. Allergy Asthma Immunol Res. 2015;7(1):22–9.CrossRef Ye YM, Kim MK, Kang HR, Kim TB, Sohn SW, Koh YI, et al. Predictors of the severity and serious outcomes of anaphylaxis in korean adults: a multicenter retrospective case study. Allergy Asthma Immunol Res. 2015;7(1):22–9.CrossRef
8.
Zurück zum Zitat Ribeiro-Vaz I, Marques J, Demoly P, Polonia J, Gomes ER. Drug-induced anaphylaxis: a decade review of reporting to the Portuguese Pharmacovigilance Authority. Eur J Clin Pharmacol. 2013;69(3):673–81.CrossRef Ribeiro-Vaz I, Marques J, Demoly P, Polonia J, Gomes ER. Drug-induced anaphylaxis: a decade review of reporting to the Portuguese Pharmacovigilance Authority. Eur J Clin Pharmacol. 2013;69(3):673–81.CrossRef
9.
Zurück zum Zitat Sole D, Ivancevich JC, Borges MS, Coelho MA, Rosario NA, Ardusso LR, et al. Anaphylaxis in Latin America: a report of the online Latin American survey on anaphylaxis (OLASA). Clinics (Sao Paulo). 2011;66(6):943–7.CrossRef Sole D, Ivancevich JC, Borges MS, Coelho MA, Rosario NA, Ardusso LR, et al. Anaphylaxis in Latin America: a report of the online Latin American survey on anaphylaxis (OLASA). Clinics (Sao Paulo). 2011;66(6):943–7.CrossRef
10.
Zurück zum Zitat Wang T, Ma X, Xing Y, Sun S, Zhang H, Sturmer T, et al. Use of epinephrine in patients with drug-induced anaphylaxis: an analysis of the Beijing Pharmacovigilance Database. Int Arch Allergy Immunol. 2017;173(1):51–60.CrossRef Wang T, Ma X, Xing Y, Sun S, Zhang H, Sturmer T, et al. Use of epinephrine in patients with drug-induced anaphylaxis: an analysis of the Beijing Pharmacovigilance Database. Int Arch Allergy Immunol. 2017;173(1):51–60.CrossRef
11.
Zurück zum Zitat Sweetman S. Martindale: the complete drug reference, 37th ed. London: Pharmaceutical Press; 2011. ISBN 9780853699330. Sweetman S. Martindale: the complete drug reference, 37th ed. London: Pharmaceutical Press; 2011. ISBN 9780853699330.
13.
Zurück zum Zitat Chinese Pharmacopoeia Commission. Chinese pharmacopoeia (Volume I). Beijing: China Medical Science Press; 2015. ISBN 9787506775397. Chinese Pharmacopoeia Commission. Chinese pharmacopoeia (Volume I). Beijing: China Medical Science Press; 2015. ISBN 9787506775397.
14.
Zurück zum Zitat Brown AF, McKinnon D, Chu K. Emergency department anaphylaxis: a review of 142 patients in a single year. J Allergy Clin Immunol. 2001;108(5):861–6.CrossRef Brown AF, McKinnon D, Chu K. Emergency department anaphylaxis: a review of 142 patients in a single year. J Allergy Clin Immunol. 2001;108(5):861–6.CrossRef
15.
Zurück zum Zitat Jiang N, Yin J, Wen L, Li H. Characteristics of anaphylaxis in 907 Chinese patients referred to a tertiary allergy center: a retrospective study of 1,952 episodes. Allergy Asthma Immunol Res. 2016;8(4):353–61.CrossRef Jiang N, Yin J, Wen L, Li H. Characteristics of anaphylaxis in 907 Chinese patients referred to a tertiary allergy center: a retrospective study of 1,952 episodes. Allergy Asthma Immunol Res. 2016;8(4):353–61.CrossRef
16.
Zurück zum Zitat Faria E, Rodrigues-Cernadas J, Gaspar A, Botelho C, Castro E, Lopes A, et al. Drug-induced anaphylaxis survey in Portuguese Allergy Departments. J Investig Allergol Clin Immunol. 2014;24(1):40–8.PubMed Faria E, Rodrigues-Cernadas J, Gaspar A, Botelho C, Castro E, Lopes A, et al. Drug-induced anaphylaxis survey in Portuguese Allergy Departments. J Investig Allergol Clin Immunol. 2014;24(1):40–8.PubMed
17.
Zurück zum Zitat Baldo BA, Pham NH. Classification and descriptions of allergic reactions to drugs. Drug allergy: Clinical aspects, diagnosis, mechanisms, structure-activity relationships. New York, NY: Springer; 2013. p. 15–35. CrossRef Baldo BA, Pham NH. Classification and descriptions of allergic reactions to drugs. Drug allergy: Clinical aspects, diagnosis, mechanisms, structure-activity relationships. New York, NY: Springer; 2013. p. 15–35. CrossRef
18.
Zurück zum Zitat Fisher M, Baldo BA. Anaphylaxis during anaesthesia: current aspects of diagnosis and prevention. Eur J Anaesthesiol. 1994;11(4):263–84.PubMed Fisher M, Baldo BA. Anaphylaxis during anaesthesia: current aspects of diagnosis and prevention. Eur J Anaesthesiol. 1994;11(4):263–84.PubMed
19.
Zurück zum Zitat Lieberman P, Nicklas RA, Oppenheimer J, Kemp SF, Lang DM, Bernstein DI, et al. The diagnosis and management of anaphylaxis practice parameter: 2010 update. J Allergy Clin Immunol. 2010;126(3):477–80.e1-42.CrossRef Lieberman P, Nicklas RA, Oppenheimer J, Kemp SF, Lang DM, Bernstein DI, et al. The diagnosis and management of anaphylaxis practice parameter: 2010 update. J Allergy Clin Immunol. 2010;126(3):477–80.e1-42.CrossRef
20.
Zurück zum Zitat Wang J, Wang P, Wang X, Zheng Y, Xiao Y. Use and prescription of antibiotics in primary health care settings in China. JAMA Intern Med. 2014;174(12):1914–20.CrossRef Wang J, Wang P, Wang X, Zheng Y, Xiao Y. Use and prescription of antibiotics in primary health care settings in China. JAMA Intern Med. 2014;174(12):1914–20.CrossRef
21.
Zurück zum Zitat Yoon SY, Park SY, Kim S, Lee T, Lee YS, Kwon HS, et al. Validation of the cephalosporin intradermal skin test for predicting immediate hypersensitivity: a prospective study with drug challenge. Allergy. 2013;68(7):938–44.CrossRef Yoon SY, Park SY, Kim S, Lee T, Lee YS, Kwon HS, et al. Validation of the cephalosporin intradermal skin test for predicting immediate hypersensitivity: a prospective study with drug challenge. Allergy. 2013;68(7):938–44.CrossRef
22.
Zurück zum Zitat Guo YJ, Wang DW, Meng L, Wang YQ. Analysis of anaphylactic shock caused by 17 types of traditional Chinese medicine injections used to treat cardiovascular and cerebrovascular diseases. Biomed Res Int. 2015;2015:420607.PubMedPubMedCentral Guo YJ, Wang DW, Meng L, Wang YQ. Analysis of anaphylactic shock caused by 17 types of traditional Chinese medicine injections used to treat cardiovascular and cerebrovascular diseases. Biomed Res Int. 2015;2015:420607.PubMedPubMedCentral
23.
Zurück zum Zitat Kim SR, Lee JH, Park KH, Park HJ, Park JW. Varied incidence of immediate adverse reactions to low-osmolar non-ionic iodide radiocontrast media used in computed tomography. Clin Exp Allergy. 2016;47(1):106–12.CrossRef Kim SR, Lee JH, Park KH, Park HJ, Park JW. Varied incidence of immediate adverse reactions to low-osmolar non-ionic iodide radiocontrast media used in computed tomography. Clin Exp Allergy. 2016;47(1):106–12.CrossRef
24.
Zurück zum Zitat Kim MH, Lee SY, Lee SE, Yang MS, Jung JW, Park CM, et al. Anaphylaxis to iodinated contrast media: clinical characteristics related with development of anaphylactic shock. PLoS ONE. 2014;9(6):e100154.CrossRef Kim MH, Lee SY, Lee SE, Yang MS, Jung JW, Park CM, et al. Anaphylaxis to iodinated contrast media: clinical characteristics related with development of anaphylactic shock. PLoS ONE. 2014;9(6):e100154.CrossRef
26.
Zurück zum Zitat Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–32.CrossRef Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–32.CrossRef
27.
Zurück zum Zitat Szebeni J. Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology. 2005;216(2–3):106–21.CrossRef Szebeni J. Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology. 2005;216(2–3):106–21.CrossRef
28.
Zurück zum Zitat Wang JH, King TM, Chang MC, Hsu CW. Oxaliplatin-induced severe anaphylactic reactions in metastatic colorectal cancer: case series analysis. World J Gastroenterol. 2012;18(38):5427–33.CrossRef Wang JH, King TM, Chang MC, Hsu CW. Oxaliplatin-induced severe anaphylactic reactions in metastatic colorectal cancer: case series analysis. World J Gastroenterol. 2012;18(38):5427–33.CrossRef
29.
Zurück zum Zitat Kolomeyevskaya NV, Lele SB, Miller A, Riebandt GC, Blum BL, Odunsi KO, et al. Oxaliplatin is a safe alternative option for patients with recurrent gynecologic cancers after hypersensitivity reaction to Carboplatin. Int J Gynecol Cancer. 2015;25(1):42–8.CrossRef Kolomeyevskaya NV, Lele SB, Miller A, Riebandt GC, Blum BL, Odunsi KO, et al. Oxaliplatin is a safe alternative option for patients with recurrent gynecologic cancers after hypersensitivity reaction to Carboplatin. Int J Gynecol Cancer. 2015;25(1):42–8.CrossRef
Metadaten
Titel
Drug-induced anaphylaxis in China: a 10 year retrospective analysis of the Beijing Pharmacovigilance Database
verfasst von
Ying Zhao
Shusen Sun
Xiaotong Li
Xiang Ma
Huilin Tang
Lulu Sun
Suodi Zhai
Tiansheng Wang
Publikationsdatum
01.10.2018
Verlag
Springer International Publishing
Erschienen in
International Journal of Clinical Pharmacy / Ausgabe 5/2018
Print ISSN: 2210-7703
Elektronische ISSN: 2210-7711
DOI
https://doi.org/10.1007/s11096-017-0535-2

Weitere Artikel der Ausgabe 5/2018

International Journal of Clinical Pharmacy 5/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.