26.11.2021 | Original Article
Drug resistance to nelarabine in leukemia cell lines might be caused by reduced expression of deoxycytidine kinase through epigenetic mechanisms
verfasst von:
Keishi Yoshida, Atsushi Fujita, Hidehiko Narazaki, Takeshi Asano, Yasuhiko Itoh
Erschienen in:
Cancer Chemotherapy and Pharmacology
|
Ausgabe 1/2022
Einloggen, um Zugang zu erhalten
Abstract
Purpose
Drug resistance is a serious problem in leukemia therapy. A novel purine nucleoside analogue, nelarabine, is available for the treatment of children with T cell acute lymphoblastic leukemia. We investigated the mechanisms of drug resistance to nelarabine.
Methods
Nelarabine-resistant cells were selected by stepwise and continuous exposure to nelarabine using the limiting dilution method in human B and T cell lymphoblastic leukemia cell lines. Expression analysis was performed using real-time polymerase chain reaction, and epigenetic analysis was performed using methylation-specific polymerase chain reaction and chromatin immunoprecipitation.
Results
The RNA expression level for deoxycytidine kinase (dCK) was decreased in nelarabine-resistant leukemia cells. There were no differences between the parental and nelarabine-resistant leukemia cells in the methylation status of the promoter region of the dCK gene. In the chromatin immune precipitation assay, decreased acetylation of histones H3 and H4 bound to the dCK promoter was seen in the nelarabine-resistant cells when compared to the parental cells. Furthermore, treatment with a novel histone deacetylase inhibitor, vorinostat, promoted the cytotoxic effect of nelarabine along with increased expression of the dCK gene, and it increased acetylation of both histones H3 and H4 bound to the dCK promoter in nelarabine-resistant leukemia cells. The combination index showed that the effect of nelarabine and vorinostat was synergistic.
Conclusion
This study reports that nelarabine with vorinostat can promote cytotoxicity in nelarabine-resistant leukemia cells through epigenetic mechanisms.