Skip to main content
Erschienen in: Annals of Nuclear Medicine 3/2022

06.01.2022 | Original Article

Dual time point imaging of staging PSMA PET/CT quantification; spread and radiomic analyses

verfasst von: Ayşegül Aksu, Özge Vural Topuz, Gülşah Yılmaz, Gamze Çapa Kaya, Burçak Yılmaz

Erschienen in: Annals of Nuclear Medicine | Ausgabe 3/2022

Einloggen, um Zugang zu erhalten

Abstract

Objective

The aims were to evaluate the performance of models that predict Gleason Grade (GG) groups with radiomic data obtained from the prostate gland in dual time 68Ga-Prostate Specific Membrane Antigen (PSMA) Positron Emission Tomography/Computerized Tomography (PET/CT) images for prostate cancer (PCa) staging, and to analyze the contribution of late imaging to the radiomic model and to evaluate the relationship of the distance between tumor foci in the body (Dmax) obtained in early PET images with histopathology and prostate specific antigen (PSA) value.

Methods

Between October 2020 and August 2021, 41 patients who underwent 68Ga-PSMA PET/CT for staging of PCa were retrospectively analyzed. Volumetric and radiomics data were obtained from early and late PSMA PET images. The differences between age, metastasis status, PSA, standard uptake value (SUV), volumetric and radiomics parameters between GG groups were analyzed. Early and late PET radiomic models were created, area under curve (AUC), sensitivity, specificity and accuracy values of the models were obtained. In addition, the correlation of Dmax values with total PSMA-tumor volume (TV), Total lesion (TL)-PSMA and PSA values was evaluated. In metastatic patients, the difference in Dmax between GG groups was analyzed.

Results

There was a significant difference between patients with GG ≤ 3 and > 3 in 35 of the early PET radiomic features. In the early PET model, multivariate analyses showed that GLRLM_RLNU and PSA were the most meaningful parameters. The AUC, sensitivity, specificity and accuracy values of the early model in detecting patients with GG > 3 were calculated as 0.902, 76.2%, 84% and 78.1%, respectively. In 36 late PET radiomic features, there was a significant difference between patients with GG ≤ 3 and > 3. In multivariate analyses; SHAPE_compacity and PSA were obtained as the most meaningful parameters. The AUC, sensitivity, specificity and accuracy values of the late model in detecting patients with GG > 3 were calculated as 0.924, 85.7%, 85% and 85.4%. There was a strong correlation between Dmax and PSA values (p < 0.001, rho: 0.793). Dmax showed strong correlation with PSMA-TVtotal and TL-PSMAtotal (p < 0.001, rho: 0.797; p < 0.001, rho: 0.763, respectively). In patients with metastasis, median Dmax values of the GG > 3 group were higher than GG ≤ 3 group; A statistically significant difference was obtained between these two groups (p = 0.023).

Conclusions

Model generated from the late PSMA PET radiomic data had better performance in the current study. Without the use of invasive methods, the heterogeneity and aggressiveness of the primary tumor and the prediction of GG groups may be possible with 68Ga-PSMA PET/CT images obtained for diagnostic purposes especially with late PSMA PET/CT imaging.
Literatur
1.
Zurück zum Zitat Afshar-Oromieh A, Malcher A, Eder M, Eisenhut M, Linhart HG, Hadaschik BA, et al. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging. 2013;40(4):486–95. CrossRef Afshar-Oromieh A, Malcher A, Eder M, Eisenhut M, Linhart HG, Hadaschik BA, et al. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging. 2013;40(4):486–95. CrossRef
2.
Zurück zum Zitat Eiber M, Maurer T, Souvatzoglou M, Beer AJ, Ruffani A, Haller B, et al. Evaluation of hybrid 68Ga-PSMA Ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med. 2015;56(5):668–74. CrossRef Eiber M, Maurer T, Souvatzoglou M, Beer AJ, Ruffani A, Haller B, et al. Evaluation of hybrid 68Ga-PSMA Ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med. 2015;56(5):668–74. CrossRef
3.
Zurück zum Zitat Perera M, Papa N, Christidis D, Wetherell D, Hofman MS, Murphy DG, et al. Sensitivity, specificity, and predictors of positive (68)Ga-prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: a systematic review and meta-analyses. Eur Urol. 2016;70:926–37. CrossRef Perera M, Papa N, Christidis D, Wetherell D, Hofman MS, Murphy DG, et al. Sensitivity, specificity, and predictors of positive (68)Ga-prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: a systematic review and meta-analyses. Eur Urol. 2016;70:926–37. CrossRef
4.
Zurück zum Zitat Han S, Woo S, Kim YJ, Suh CH. Impact of (68)Ga-PSMA PET on the management of patients with prostate cancer: a systematic review and meta-analyses. Eur Urol. 2018;74(2):179–90. CrossRef Han S, Woo S, Kim YJ, Suh CH. Impact of (68)Ga-PSMA PET on the management of patients with prostate cancer: a systematic review and meta-analyses. Eur Urol. 2018;74(2):179–90. CrossRef
5.
Zurück zum Zitat Schmidkonz C, Cordes M, Schmidt D, Bauerle T, Goetz TI, Beck M, et al. (68)Ga-PSMA-11 PET/CT-derived metabolic parameters for determination of whole-body tumor burden and treatment response in prostate cancer. Eur J Nucl Med Mol Imaging. 2018;45(11):1862–72. CrossRef Schmidkonz C, Cordes M, Schmidt D, Bauerle T, Goetz TI, Beck M, et al. (68)Ga-PSMA-11 PET/CT-derived metabolic parameters for determination of whole-body tumor burden and treatment response in prostate cancer. Eur J Nucl Med Mol Imaging. 2018;45(11):1862–72. CrossRef
6.
Zurück zum Zitat Schmuck S, von Klot CA, Henkenberens C, Sohns JM, Christiansen H, Wester HJ, et al. Initial experience with volumetric 68Ga-PSMA I&T PET/CT for assessment of whole-body tumor burden as a quantitative imaging biomarker in patients with prostate cancer. J Nucl Med. 2017;58(12):1962–8. CrossRef Schmuck S, von Klot CA, Henkenberens C, Sohns JM, Christiansen H, Wester HJ, et al. Initial experience with volumetric 68Ga-PSMA I&T PET/CT for assessment of whole-body tumor burden as a quantitative imaging biomarker in patients with prostate cancer. J Nucl Med. 2017;58(12):1962–8. CrossRef
7.
Zurück zum Zitat Acar E, Özdoğan Ö, Aksu A, Derebek E, Bekiş R, Çapa KG. The use of molecular volumetric parameters for the evaluation of Lu-177 PSMA I&T therapy response and survival. Ann Nucl Med. 2019;33(9):681–8. CrossRef Acar E, Özdoğan Ö, Aksu A, Derebek E, Bekiş R, Çapa KG. The use of molecular volumetric parameters for the evaluation of Lu-177 PSMA I&T therapy response and survival. Ann Nucl Med. 2019;33(9):681–8. CrossRef
8.
Zurück zum Zitat Cottereau AS, Nioche C, Dirand AS, Clerc J, Morschhauser F, Casasnovas O, et al. 18F-FDG PET dissemination features in diffuse large B-Cell lymphoma are predictive of outcome. J Nucl Med. 2020;61(1):40–5. CrossRef Cottereau AS, Nioche C, Dirand AS, Clerc J, Morschhauser F, Casasnovas O, et al. 18F-FDG PET dissemination features in diffuse large B-Cell lymphoma are predictive of outcome. J Nucl Med. 2020;61(1):40–5. CrossRef
9.
Zurück zum Zitat Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures. They are data. Radiology. 2016;278(2):563–77. CrossRef Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures. They are data. Radiology. 2016;278(2):563–77. CrossRef
10.
Zurück zum Zitat Hyun SH, Ahn MS, Koh YW, Lee SJ. A machine-learning approach using PET-based radiomics to predict the histological subtypes of lung cancer. Clin Nucl Med. 2019;44(12):956–60. CrossRef Hyun SH, Ahn MS, Koh YW, Lee SJ. A machine-learning approach using PET-based radiomics to predict the histological subtypes of lung cancer. Clin Nucl Med. 2019;44(12):956–60. CrossRef
11.
Zurück zum Zitat Li Y, Zhang Y, Fang Q, Zhang X, Hou P, Wu H, et al. Radiomics analyses of [18F]FDG PET/CT for microvascular invasion and prognosis prediction in very-early- and early-stage hepatocellular carcinoma. Eur J Nucl Med Mol Imaging. 2021;48(8):2599–614. CrossRef Li Y, Zhang Y, Fang Q, Zhang X, Hou P, Wu H, et al. Radiomics analyses of [18F]FDG PET/CT for microvascular invasion and prognosis prediction in very-early- and early-stage hepatocellular carcinoma. Eur J Nucl Med Mol Imaging. 2021;48(8):2599–614. CrossRef
12.
Zurück zum Zitat Polverari G, Ceci F, Bertaglia V, Reale ML, Rampado O, Gallio E, et al. 18F-FDG pet parameters and radiomics features analyses in advanced Nsclc treated with immunotherapy as predictors of therapy response and survival. Cancers (Basel). 2020;12(5):1163. CrossRef Polverari G, Ceci F, Bertaglia V, Reale ML, Rampado O, Gallio E, et al. 18F-FDG pet parameters and radiomics features analyses in advanced Nsclc treated with immunotherapy as predictors of therapy response and survival. Cancers (Basel). 2020;12(5):1163. CrossRef
13.
Zurück zum Zitat Giannini V, Mazzetti S, Bertotto I, Chiarenza C, Cauda S, Delmastro E, et al. Predicting locally advanced rectal cancer response to neoadjuvant therapy with 18F-FDG PET and MRI radiomics features. Eur J Nucl Med Mol Imaging. 2019;46(4):878–88. CrossRef Giannini V, Mazzetti S, Bertotto I, Chiarenza C, Cauda S, Delmastro E, et al. Predicting locally advanced rectal cancer response to neoadjuvant therapy with 18F-FDG PET and MRI radiomics features. Eur J Nucl Med Mol Imaging. 2019;46(4):878–88. CrossRef
14.
Zurück zum Zitat Zamboglou C, Carles M, Fechter T, Kiefer S, Reichel K, Fass-bender TF, et al. Radiomic features from PSMA PET for non-invasive intraprostatic tumor discrimination and characterization in patients with intermediate- and high-risk prostate cancer—a comparison study with histology reference. Theranostics. 2019;9(9):2595–605. CrossRef Zamboglou C, Carles M, Fechter T, Kiefer S, Reichel K, Fass-bender TF, et al. Radiomic features from PSMA PET for non-invasive intraprostatic tumor discrimination and characterization in patients with intermediate- and high-risk prostate cancer—a comparison study with histology reference. Theranostics. 2019;9(9):2595–605. CrossRef
15.
Zurück zum Zitat Zamboglou C, Bettermann AS, Gratzke C, Mix M, Ruf J, Kiefer S, et al. Uncovering the invisible-prevalence, characteristics, and radiomics feature-based detection of visually undetectable intraprostatic tumor lesions in 68GaPSMA-11 PET images of patients with primary prostate cancer. Eur J Nucl Med Mol Imaging. 2021;48(6):1987–97. CrossRef Zamboglou C, Bettermann AS, Gratzke C, Mix M, Ruf J, Kiefer S, et al. Uncovering the invisible-prevalence, characteristics, and radiomics feature-based detection of visually undetectable intraprostatic tumor lesions in 68GaPSMA-11 PET images of patients with primary prostate cancer. Eur J Nucl Med Mol Imaging. 2021;48(6):1987–97. CrossRef
16.
Zurück zum Zitat Papp L, Spielvogel CP, Grubmüller B, Grahovac M, Krajnc D, Ecsedi B, et al. Supervised machine learning enables non-invasive lesion characterization in primary prostate cancer with [68Ga]Ga-PSMA-11 PET/MRI. Eur J Nucl Med Mol Imaging. 2021;48(6):1795–805. CrossRef Papp L, Spielvogel CP, Grubmüller B, Grahovac M, Krajnc D, Ecsedi B, et al. Supervised machine learning enables non-invasive lesion characterization in primary prostate cancer with [68Ga]Ga-PSMA-11 PET/MRI. Eur J Nucl Med Mol Imaging. 2021;48(6):1795–805. CrossRef
18.
Zurück zum Zitat Schmuck S, Mamach M, Wilke F, von Klot CA, Henkenberens C, Thackeray JT, Sohns JM, et al. Multiple time-point 68Ga-PSMA I&T PET/CT for characterization of primary prostate cancer: value of early dynamic and delayed imaging. Clin Nucl Med. 2017;42:286–93. CrossRef Schmuck S, Mamach M, Wilke F, von Klot CA, Henkenberens C, Thackeray JT, Sohns JM, et al. Multiple time-point 68Ga-PSMA I&T PET/CT for characterization of primary prostate cancer: value of early dynamic and delayed imaging. Clin Nucl Med. 2017;42:286–93. CrossRef
19.
Zurück zum Zitat Nioche C, Orlhac F, Soussan M, Boughdad S, Alberini J, Buvat I. A software for characterizing intra-tumor heterogeneity in multimodality imaging and establishing reference charts. Eur J Nucl Med Mol Imaging. 2016;43:S156–7. Nioche C, Orlhac F, Soussan M, Boughdad S, Alberini J, Buvat I. A software for characterizing intra-tumor heterogeneity in multimodality imaging and establishing reference charts. Eur J Nucl Med Mol Imaging. 2016;43:S156–7.
20.
Zurück zum Zitat Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA. The 2014 international society of urological pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am J Surg Pathol. 2016;40(2):244–52. CrossRef Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA. The 2014 international society of urological pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am J Surg Pathol. 2016;40(2):244–52. CrossRef
21.
Zurück zum Zitat Rowe SP, Pienta KJ, Pomper MG, Gorin MA. PSMA-RADS version 1.0: a step towards standardizing the interpretation and reporting of PSMA-targeted PET imaging studies. Eur Urol. 2018;73(4):485–7. CrossRef Rowe SP, Pienta KJ, Pomper MG, Gorin MA. PSMA-RADS version 1.0: a step towards standardizing the interpretation and reporting of PSMA-targeted PET imaging studies. Eur Urol. 2018;73(4):485–7. CrossRef
23.
Zurück zum Zitat Chan YH. Biostatistics 104: correlational analyses. Singap Med J. 2003;44:614–9. Chan YH. Biostatistics 104: correlational analyses. Singap Med J. 2003;44:614–9.
24.
Zurück zum Zitat Aksu A, Karahan Şen NP, Tuna EB, Aslan G, Çapa KG. Evaluation of 68Ga-PSMA PET/CT with volumetric parameters for staging of prostate cancer patients. Nucl Med Commun. 2021;42(5):503–9. CrossRef Aksu A, Karahan Şen NP, Tuna EB, Aslan G, Çapa KG. Evaluation of 68Ga-PSMA PET/CT with volumetric parameters for staging of prostate cancer patients. Nucl Med Commun. 2021;42(5):503–9. CrossRef
25.
Zurück zum Zitat Shiri I, Rahmim A, Ghaffarian P, Geramifar P, Abdollahi H, Bitarafan-Rajabi A. The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. Eur Radiol. 2017;27(11):4498–509. CrossRef Shiri I, Rahmim A, Ghaffarian P, Geramifar P, Abdollahi H, Bitarafan-Rajabi A. The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. Eur Radiol. 2017;27(11):4498–509. CrossRef
26.
Zurück zum Zitat Leijenaar RT, Nalbantov G, Carvalho S, van Elmpt WJ, Troost EG, Boellaard R, et al. The effect of SUV discretization in quantitative FDG-PET radiomics: the need for standardized methodology in tumor texture analyses. Sci Rep. 2015;5(5):11075. CrossRef Leijenaar RT, Nalbantov G, Carvalho S, van Elmpt WJ, Troost EG, Boellaard R, et al. The effect of SUV discretization in quantitative FDG-PET radiomics: the need for standardized methodology in tumor texture analyses. Sci Rep. 2015;5(5):11075. CrossRef
27.
Zurück zum Zitat van Velden FH, Kramer GM, Frings V, Nissen IA, Mulder ER, de Langen A, et al. Repeatability of radiomic features in non-small-cell lung cancer [(18)F]FDG-PET/CT studies: ımpact of reconstruction and delineation. Mol Imaging Biol. 2016;18(5):788–95. CrossRef van Velden FH, Kramer GM, Frings V, Nissen IA, Mulder ER, de Langen A, et al. Repeatability of radiomic features in non-small-cell lung cancer [(18)F]FDG-PET/CT studies: ımpact of reconstruction and delineation. Mol Imaging Biol. 2016;18(5):788–95. CrossRef
Metadaten
Titel
Dual time point imaging of staging PSMA PET/CT quantification; spread and radiomic analyses
verfasst von
Ayşegül Aksu
Özge Vural Topuz
Gülşah Yılmaz
Gamze Çapa Kaya
Burçak Yılmaz
Publikationsdatum
06.01.2022
Verlag
Springer Singapore
Erschienen in
Annals of Nuclear Medicine / Ausgabe 3/2022
Print ISSN: 0914-7187
Elektronische ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-021-01705-5

Weitere Artikel der Ausgabe 3/2022

Annals of Nuclear Medicine 3/2022 Zur Ausgabe