Skip to main content
Erschienen in: Virology Journal 1/2017

Open Access 01.12.2017 | Short Report

Duck enteritis virus (DEV) UL54 protein, a novel partner, interacts with DEV UL24 protein

Erschienen in: Virology Journal | Ausgabe 1/2017

Abstract

Background

UL24 is a multifunctional protein that is conserved among alphaherpesviruses and is believed to play an important role in viral infection and replication.

Results

In this paper, to investigate putative UL24-binding proteins and to explore the functional mechanisms of DEV UL24, yeast two-hybrid (Y2H) was carried out, and further verified the interaction between UL24 and partners by co-immunoprecipitation and fluorescence microscopy experiments. Interaction partners of UL24 protein were screened by yeast two-hybrid (Y2H) with the cDNA library of DEV-CHv strain post-infection DEF cells. A novel partner, DEV UL54 protein, was discovered by Y2H screening and bioinformatic. Co-immunoprecipitation experiments suggested that DEV UL24 interacted with UL54 proteins. And distribution of a part of UL54 protein was changed from nucleus to cytoplasm in DF-1 cells of co-subcellular localization experiments which also showed that DEV UL24 interacted with UL54 proteins.

Conclusions

The interaction between the DEV UL24 and UL54 proteins was discovered for the first time. Thus, DEV UL54 protein as a novel partner interacted with DEV UL24 protein.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s12985-017-0830-5) contains supplementary material, which is available to authorized users.
Abkürzungen
CO-IP
Co-immunoprecipitation
CPE
Cytopathic effect
DEV
Duck enteritis virus
DMEM
Dulbecco modified Eagle medium
EHV-1
Equine herpesvirus 1
FBS
Fetal bovine serum
HCMV
Human Cytomegalovirus
HDs
Homology domains
HEK cells
Human embryonic kidney cells
HSV-1
Herpes simplex virus 1
ICP27
Infectious cell protein 27
ICTV
International Committee on Taxonomy of Viruses
IRS
Inverted repeated sequences
MHV-68
Murine Herpes Virus 68
NBCS
Newborn calf serum
NES
Nuclear export signal
NLS
Nuclear localization signal
NTRs
N-terminal regions
ORF
Open reading frame
PCR
Polymerase chain reaction
PPI
protein-protein interaction
UL
Unique long region
US
Unique short
Y2H
Yeast two-hybrid

Finding

Duck enteritis virus (DEV, anatid alphaherpesvirus 1 species), clustered in mardivirus genus, alphaherpesvirinae subfamily, Herpesviridae family according to the latest report of the International Committee on Taxonomy of Viruses (ICTV) [1], causes considerable economic losses to the commercial duck industry and poses a continuous threat to wild and migratory waterfowl populations (e.g., ducks, geese and swans) due to their high mortality and decreased egg production rates [2].
Currently, there are three complete genomic sequences of DEV strains available in GenBank: the Chinese virulent DEV strain (DEV CHv) [3, 4], the European virulent strain (2085) [5], and the attenuated vaccine strain (VAC) [6], and the publications related to the three genome sequences have cast light on the genome structure of DEV. DEV is a linear, double-stranded DNA virus, the genome size of which is approximately 158–162 kb [36]. The entire genome of DEV is composed of a unique long (UL), a unique short (US) and two inverted repeated sequences (IRS and TRS) [6]. A total of 78 ORFs were predicted to code for the potential functional proteins. Of these ORFs, 10 and 68 ORFs coded for structural proteins and non-structural proteins, respectively. Many DEV proteins, such as UL16 [7], UL38 [8], gE [9], gN [10, 11] have been researched in molecular biology studies. However, these researches on protein-protein interaction (PPI) were only done between gM and gN [10]. And there was no report on partners of DEV UL24 protein.
UL24 protein is a conserved multifunctional protein and is believed to play an important role in viral infection and replication. UL24 protein contains five homology domains (HDs) with a high percentage of amino acid identity among its homologs of the other Herpesvirus family members (including HSV1/2 UL24, EHV-1 ORF37, HCMV UL76, MHV-68 ORF20, and so on) and one PD-(D/E)XK endonuclease motif in the N-terminal regions (NTRs) [1214]. Using mouse infection model, researches showed that HSV-1 UL24 protein was involved in viral pathogenesis [15, 16] and contributed to viral replication in the mucous membranes [17]. ORF 37 is a neuropathogenic determinant of equine herpesvirus 1 (EHV-1) [18, 19]. UL76 protein of human cytomegalovirus (HCMV) was able to induce DNA double-strands breaks and DNA damage response [2022]. ORF 20 of murine herpesvirus 68 (MHV-68) was reported to be involved in inducing cell-cycle arrest at the G2/M phase followed by apoptosis [13, 23]. In summary, UL24 protein contributes to virus virulence [16, 17, 19], viral replication [15, 2426], cell membrane fusion [27, 28], cell cycle arrest [23], and redistribution of nucleolin (C23) and nucleophosmin (B23) [2731]. Up to now, research on DEV UL24 protein showed that it is located in the cytoplasm around the periphery of the nucleus in DEV-infected DEF cells [32]. And attenuated Salmonella Typhimurium delivering DNA vaccine encoding DEV UL24 induced immune responses and conferred good protection against challenge [33, 34].
The DEV UL54 is an immediate early gene [33], but its function is not very clear. Bioinformation analysis showed that DEV UL54 encode a 51.75 KDa protein of 458 AA with 56% homology to the corresponding HSV-1 protein ICP27. ICP27, a conserved and multifunctional protein, is characterized nucleocytoplasmi​c shuttling based on crucial nuclear localization signal (NLS) and nuclear export signal (NES) [3537]. ICP27 has been implicated in viral replication [35, 38], gene expression [39, 40], apoptosis [41] and host immunization reactions [42, 43], all of which promote infection. Thus, these features of ICP27 provide ideas or inspiration for research on UL54.
UL24 protein family is a multifunctional protein playing important roles in herpesvirus invasion and replication. However, there are only a few reports on the molecular mechanisms underlying the function of UL24 protein [32, 34, 44, 45]. Thus, study on PPI of DEV UL24 contributes to better understanding of functions and molecular mechanisms of this protein, which also prompts us to understand the molecular mechanisms of DEV infection. To this end, we employed yeast two-hybrid technology coupled with co-immunoprecipitation to screen DEV UL24 protein interacting partner.
Sequence analysis of the N-terminal region of DEV UL24 gene (nucleotides 1–720, Additional file 1: Figure S1) was carried out by codon optimization with host yeast of Saccharomyces cerevisiae (http://​www.​jcat.​de/). Optimized sequence was generated by company of Huada (China). To clone full-length optimized DEV UL24 gene, two pairs of primer were designed (Table 1, primers UL24/N-F/R, UL24/C-F/R). Viral sequences (N-terminal fragment, UL24/N; and full-length optimized DEV UL24 gene, UL24/FL) were cloned into pGBKT7 plasmid (bait plasmid; Clontech) and Y2HGold strain (bait strains; Clontech) was transformed with this two recombinant plasmids (Fig. 1a, b), respectively. UL24/N strain was used as a control. Then, bait strains were verified for self-activation, toxicity and Western blot analysis according to protocols as described in Matchmaker Gold Yeast Two-Hybrid System User Manual (Clontech) [46, 47].Self-activation and toxicity detection of bait strains were negative. Western blot analysis revealed that UL24/N and UL24/FL-fusion proteins were expressed. Based on theoretical estimates, UL24/N and UL24/FL-fusion proteins (contain GAL4 DNA binding domain of pGBKT7 plasmid about 22 kDa; myc flag protein about 1 kDa) are about 50 kDa, 69 kDa respectively (Fig. 1c).
Table 1
primer sequences
primer name
sequence
restriction enzyme
UL24/N-F
5′-AGGAGGACCTGCATATGATGGCTTCTAAGGTTCAAAAGAAGAGA-3’
Nde I
UL24/N-R
5′-GGATCCCCGGGAATTCTGGTATTCAGACAAACCAG-3’
EcoR I
UL24/C-F
5′-ATCGCTGGTTTGTCTGAATACCACATACCTACCAAAGGTAAGCGCCGG-3’
——
UL24/C-R
5′-GGATCCCCGGGAATTCCTAGTGTTTAGTTGGTCTGA
EcoR I
pCMV-myc-UL24 F
5′-ATGGAGGCCCGAATTCGGATGGCATCGAAGGTACAGA-3’
EcoR I
pCMV-myc-UL24 R
5′-GCCGCGGTACCTCGAGACTAGTGTTTAGTTGGTCTGAA-3’
Xho I
pCMV-Flag-UL54 F
5′-CATATGATGGCCTGCAGTGCTAAA-3’
Nde I
pCMV-Flag-UL54 R
5′-GGATCCCAAACATTTCATTACAATAAAA-3’
BamH I
pEGFP-N1-UL24-F1
5′-AAGCTTCGAATTCTGATGGCATCGAAGGTACAGA-3’
EcoR I
pEGFP-N1-UL24-R2
5′-CGACCGGTGGATCCCGGGCGTGTTTAGTTGGTCTGAATA-3’
Sma I
pDsRed-N1-UL54-F1
5′- TCTCAAGCTTAAGCTATGGCCTGCAGTGCTAAAC-3’
Hind III
pDsRed-N1-UL54 R2
5′- GGCGACCGGTGAGCTCGTAAACATTTCATTACAATA-3’
BamH I
The restriction enzyme sites were bold
To explore the functional mechanisms of DEV UL24 and to investigate putative UL24-binding proteins, Y2H screens were performed by mating (according to protocol in Matchmaker Gold Yeast Two-Hybrid System User Manual, Clontech). Briefly, the cDNA library was constructed by previously described, which was comprised all genes of the DEF cells post-infection DEV-CHv strain and contained more than 107 primary clones per milliliter [48]. Four putative interacting proteins, DEV UL54 (Accession: EU071033.​1), duck PSF2 (Accession: XM_​013096619.​1), GNB2L1 (Accession: XM_​005018317.​2), and Anas platyrhynchos Nudix-type motif 9 (Accession: XM_​005012818.​2) were obtained by sequencing analysis and NCBI (National Center for Biotechnology Information) blast analysis. NCBI blast analysis suggested that the first base of positive clone contained GNB2L1 mRNA sequence, and matched with the 426th base of GNB2L1 mRNA sequence; the 78th base of positive clone contained Anas platyrhynchos Nudix-type motif 9 mRNA sequence and matched with the 194th base of Anas platyrhynchos Nudix-type motif 9 mRNA sequence. According to triplet code characteristic of nucleic acid code protein, we concluded the positive clones which contained GNB2L1 mRNA sequence and Anas platyrhynchos Nudix-type motif 9 sequences as probably frame-shift mutants. PSF2 sequence lay in 3’UTR of duck PSF2 mRNA whereas DEV UL54 sequence unaffected. Thus, we used positive clone which contains UL54 sequence to eliminate the false positive of it by Y2H (Fig. 2). DEV UL54 mRNA also contained a polyA site that was 26 nt downstream of the UL54 CDS region.
DEV UL24 and UL54 sequences were cloned by recombination into pCMV-myc-N and pCMV-Flag-N vectors respectively. Primers were designed and are listed in Table 1 (primers pCMV-myc-UL24 F/R, pCMV-Flag-UL54 F/R). Positive clones were identified by sequencing. HEK293T cells (Human embryonic kidney cells, HEK) were cultured in DMEM (Dulbecco modified Eagle medium, Gibco) supplemented with 10% (v/v) FBS (fetal bovine serum, Gibco), 100 units/mL penicillin, and 100 μg/mL streptomycin in an atmosphere of 5% CO2 at 37 °C. For co-expression DEV UL24 and UL54 proteins, equal plasmids were transiently co-transfected into HEK293T cells using a Lipofectamine-2000 transfection reagent system (Invitrogen). Total protein was harvested at 48 h post-transfection by incubating cells for 30 min on ice, followed by scraping into NP-40 lysis buffer with the addition of ionic detergents (0.5% sodium deoxycholate and 0.1% SDS) [35]. Debris was pelleted by centrifugation at 13,000×g for 20 min in 4 °C. Western blot (WB) analysis of cell extracts revealed that both UL24 and UL54 fusion proteins were expressed with molecular weights of about 45 kDa and 50.5 kDa, respectively (Additional file 2: Figure S2). The full length UL24-fusion protein was expressed and about 69 kDa (containing 22 kDa binding domain of GAL4 protein and 1 kDa myc tagged protein) in Saccharomyces cerevisiae Y2HGold strain firstly according to codon optimization (Additional file 1: Figure S1). Thus, full length DEV UL24 protein was about 46 kDa in Y2HGold strain which was consistent with expected results. Therefore, DEV UL24 protein expressed in eukaryote is about 45 kDa.
Immunoprecipitation was performed with 2 mg of total protein incubated with 5 μL myc-agarose (mouse-anti-myc monoclonal antibody coupling with agarose, Santa Cruz Biotechnology) for 2 h at 4 °C, or incubated with 3 μg rabbit anti-UL24 antibody (polyclonal antibody, pAb) for 2 h at 4 °C. And compounds which contained pAb UL24 were incubated with protein A&G plus agarose (Santa Cruz Biotechnology) for another 2 h at 4 °C. Then, the other steps of immunoprecipitation were performed as protocol [49]. According to WB analysis, we observed that UL54 fusion protein, in above transfected 293 T cell extracts, was expressed in the experimental group (Fig. 3, lane 1&2) in contrast to control where no visible band was detected (Fig. 3, lane 3). Simultaneously, cell extracts were precipitated using rabbit-anti DEV UL24 antibody coupled to protein A &G-agarose and precipitated with myc-agarose respectively. Subsequent WB analysis showed that UL54 fusion protein was detected in the experimental group (Fig. 3, lane 1&2), but not in the control group (Fig. 3, lane 3). Furthermore, the intensity of the UL54 fusion protein in lane 2 was greater than in lane 1. To summarize, using co-immunoprecipitation, our results suggested that UL24 and U54 proteins interact with each other.
To further verify the interaction between UL24 and UL54 protein and to explore the function of UL24 protein during DEV infection, fluorescence microscopy was carried out. DEV UL24 and UL54 sequences were cloned by recombination into pEGFP-N1 and pDsRed-N1 vectors respectively. Primers were designed as in Table 1 (primers pEGFP-N1-UL24 F/R, pDsRed-N1-UL54 F/R). Positive clones were identified by sequencing. Chicken fibroblast cells (DF-1) were cultured and transiently transfected/ co-transfected as same as HEK293T cells. Respectively, 12 h, 24 h, 36 h, 48 h after transfection, the transfected cells were fixed in 4% paraformaldehyde for 10 min, permeabilized treatment in 0.3% Triton X-100 for 10 min, stained in 10 μg/mL DAPI solution (Sigma) for 8 min, and observed with a fluorescence microscope under a × 40 objective [50]. Results in Fig. 4 also demonstrated that UL24-EGFP protein was localized predominantly to the nucleus but a fraction also appeared to be located in the cytoplasm at 36 h and 48 h, post-transfection. Simultaneously, significant nuclear fragmentation was observed at 12 h48 h post-transfection as revealed by DAPI stain. Thirdly, UL24-EGFP protein distribution exhibited a globular shape or crystal shape aggregation. Figure 5 showed that UL54-DsRed protein was located in nucleus predominantly.
Subcellular co-localization of UL24- and UL54-fusion proteins, at 12 h ~ 36 h post-transfection, UL24-EGFP and UL54-DsRed proteins was redistributed equably in nucleus. At 48 h post-infection, UL54-DsRed proteins were partly transported to cytoplasm although most of UL24- and UL54-fusion proteins were distributed equably in nucleus (Fig. 6, UL24-EGFP + UL54-DsRed group). Furthermore, some cell nucleus, in which UL24-EGFP and UL54-DsRed proteins were redistributed equably, was not a form of visible micronucleus by fluorescence microscopy. For in groups of negative control (UL24-EGFP+ DsRed group, EGFP + UL54-DsRed group), UL24-EGFP and UL54-DsRed proteins were predominantly laid in nucleus, respectively (Fig. 6, list 1&3). The blank control group (EGFP + DsRed group) revealed that EGFP and DsRed co-located in cytoplasm and nucleus equably (Fig. 6, list 4). In summary, our data suggested that UL24- and UL54-fusion protein could be co-expressed in DF-1 cells, and that the redistribution of UL54-fusion protein was caused by interactions between UL24 and UL54 protein.
In the past years, it has been reported that the HSV-1 ICP27 protein, a homologue of DEV UL54 protein [38, 5153], can shuttle from the nucleus to the cytoplasm due to interaction with the host Nup62 protein [35]. The interactions between ICP27 protein and Nup62 protein inhibits host mRNAs exported to cytoplasm and regulates the expression of virus genes via regulation of the amount of the virus mRNAs exported to cytoplasm [35, 54]. HSV-1 UL24 protein is located in the nucleus, nucleolus and cytoplasm [55], whereas DEV UL24 protein is localized in the cytoplasm and the nucleus [34, 44]. UL24 protein interaction with UL54 protein existed in other five herpesviruses [56]. Therefore, we infer that the function of UL24 and UL54 PPI in DEV was probably the same as UL24 and ICP27 in HSV-1.
The UL24 protein is located differently in different cells. In this article, the localization of UL24-EGFP fusion protein was in the nucleus and cytoplasm in DF-1 cells (Fig. 4). In previous study, DEV UL24-LTB fusion protein was also located in the nucleus and cytoplasm when it was transiently expressed in COS-7 cells [34]. When overexpressed in COS-7 or DF-1 cells, UL24-fusion protein was predominantly localized in the nucleus. But DEV UL24 protein was located in the perinuclear region in DEV infected DEF cells, and regardless of an earlier or later time-point in infection, a little UL24 protein was observed in the nucleus [32]. It was guessed that there was a protein which interacted with DEV UL24, and UL24 could made it shuttle from nucleus to cytoplasm during DEV infection. DEV UL54 protein had a characterization of nucleocytoplasmic shuttling [57], and DEV UL24 interacted with UL54. Thus, we concluded that DEV UL54 probably promoted UL24 transportation from nucleus to cytoplasm during DEV infection.
Overexpression of UL24-fusion protein in DF-1 cell, induced DNA fragmentation and formation micronucleus according to DAPI stain (Fig. 5 and Additional file 2: Figure S2), suggested DEV UL24 protein functions in DNA damage. Similarly, HCMV UL76 protein, a homologue of DEV UL24 protein in herpesvirus family could induce DNA fragmentation and a form of micronucleus [21, 22]. Co-subcellular localization of UL24 and UL54-fusion protein, and redistribution of UL24-EGFP and UL54-DsRed proteins were changed at time post-transfection. Thus, we concluded that the redistribution of UL24 and UL54-fusion protein was caused by interactions between UL24 and UL54 protein. Interestingly, in cells of co-expression UL24 and UL54 proteins, some nucleus did not have DNA damage (Fig. 6, list 2). It suggested that the PPI between UL24 and UL54 protein could reduce the effect of DNA damage, and we would explore the molecular mechanism in the future.

Conclusions

UL24 is a multifunctional protein, playing important roles in virus invasion and replication. To identify the molecular mechanisms underlying the function of UL24 protein, Y2H experiment coupled with CO-IP and co-subcellular localization were employed. UL54 protein, as a novel partner, interacted with DEV UL24 protein and conserved in herpesviridae family. In addition, the redistribution of partial UL54 proteins took changes from nucleus to cytoplasm, and the micronucleus disappeared in some of co-expression DF-1 cells. We concluded that the interaction between the two proteins is associated with several pathogenic processes in DEV infection, such as DNA damage and viral replication. And the molecular mechanism of this interaction contribution to DEV pathogenic infection is required to be further researched in the future.

Acknowledgements

We would like to thank Ming Wen (College of Animal Science and Technology, Guizhou University) for kindly donating Y2H plasmids.

Funding

This work was supported by National Key Research and Development Program of China (2017YFD0500800), National Key R & D Program (2016YFD0500800), China Agricultural Research System (CARS-42-17), and Sichuan Province Research Programs (2017JY0014/2017HH0026).

Availability of data and materials

Datasets used and/or analyzed in this study available from the corresponding author on reasonable request.

Ethics approval

The usage of duck embryo in this paper was approved by the Animal Ethics Committee of Sichuan Agricultural University (approval No. 2015–016).
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Adams MJ, Lefkowitz EJ, King AMQ, et al. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2016)[J]. Archives of virology. 2016;161(10):2921-49. Adams MJ, Lefkowitz EJ, King AMQ, et al. Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2016)[J]. Archives of virology. 2016;161(10):2921-49.
2.
Zurück zum Zitat Fadly AM, Glisson JR, McDougald LR, Nolan L, DE S. Duck virus enteritis diseases of poultry. 12th ed; 2008. p. 384–93. Fadly AM, Glisson JR, McDougald LR, Nolan L, DE S. Duck virus enteritis diseases of poultry. 12th ed; 2008. p. 384–93.
5.
Zurück zum Zitat Wang J, Höper D, Beer M, Osterrieder N. Complete genome sequence of virulent duck enteritis virus (DEV) strain 2085 and comparison with genome sequences of virulent and attenuated DEV strains. Virus Res. 2011;160:316–25.CrossRefPubMed Wang J, Höper D, Beer M, Osterrieder N. Complete genome sequence of virulent duck enteritis virus (DEV) strain 2085 and comparison with genome sequences of virulent and attenuated DEV strains. Virus Res. 2011;160:316–25.CrossRefPubMed
6.
Zurück zum Zitat Li Y, Huang B, Ma X, Wu J, Li F, et al. Molecular characterization of the genome of duck enteritis virus. Virology. 2009;391:151–61.CrossRefPubMed Li Y, Huang B, Ma X, Wu J, Li F, et al. Molecular characterization of the genome of duck enteritis virus. Virology. 2009;391:151–61.CrossRefPubMed
7.
Zurück zum Zitat He Q, Cheng A, Wang M, Xiang J, Zhu D, et al. Replication kinetics of duck enteritis virus UL16 gene in vitro. Virol J. 2012;9:1–4.CrossRef He Q, Cheng A, Wang M, Xiang J, Zhu D, et al. Replication kinetics of duck enteritis virus UL16 gene in vitro. Virol J. 2012;9:1–4.CrossRef
8.
Zurück zum Zitat Xiang J, Ma G, Zhang S, Cheng A, Wang M, et al. Expression and intracellular localization of duck enteritis virus pUL38 protein. Virol J. 2010;7:162.CrossRefPubMedPubMedCentral Xiang J, Ma G, Zhang S, Cheng A, Wang M, et al. Expression and intracellular localization of duck enteritis virus pUL38 protein. Virol J. 2010;7:162.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Chang H, Cheng A, Wang M, Zhu D, Jia R, et al. (2010) Research cloning, expression and characterization of gE protein of duck plague virus. Chang H, Cheng A, Wang M, Zhu D, Jia R, et al. (2010) Research cloning, expression and characterization of gE protein of duck plague virus.
10.
Zurück zum Zitat Lin M, Jia R, Wang M, Gao X, Zhu D, et al. Molecular characterization of duck enteritis virus CHv strain UL49. 5 protein and its colocalization with glycoprotein M. J Vet Sci. 2014;15:389–98.CrossRefPubMedPubMedCentral Lin M, Jia R, Wang M, Gao X, Zhu D, et al. Molecular characterization of duck enteritis virus CHv strain UL49. 5 protein and its colocalization with glycoprotein M. J Vet Sci. 2014;15:389–98.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Lin M, Jia R, Wang M, Gao X, Zhu D, et al. The transcription analysis of duck enteritis virus UL49. 5 gene using real-time quantitative reverse transcription PCR. Virus Genes. 2013;47:298–304.CrossRefPubMed Lin M, Jia R, Wang M, Gao X, Zhu D, et al. The transcription analysis of duck enteritis virus UL49. 5 gene using real-time quantitative reverse transcription PCR. Virus Genes. 2013;47:298–304.CrossRefPubMed
12.
Zurück zum Zitat Jacobson J, Martin S, Coen D. A conserved open reading frame that overlaps the herpes simplex virus thymidine kinase gene is important for viral growth in cell culture. J Virol. 1989;63:1839–43.PubMedPubMedCentral Jacobson J, Martin S, Coen D. A conserved open reading frame that overlaps the herpes simplex virus thymidine kinase gene is important for viral growth in cell culture. J Virol. 1989;63:1839–43.PubMedPubMedCentral
13.
Zurück zum Zitat Nascimento R, Costa H, Dias J, Parkhouse R. MHV-68 open reading frame 20 is a nonessential gene delaying lung viral clearance. Arch Virol. 2011;156:375–86.CrossRefPubMed Nascimento R, Costa H, Dias J, Parkhouse R. MHV-68 open reading frame 20 is a nonessential gene delaying lung viral clearance. Arch Virol. 2011;156:375–86.CrossRefPubMed
14.
Zurück zum Zitat Kniżewski Ł, Kinch L, Grishin NV, Rychlewski L, Ginalski K. Human herpesvirus 1 UL24 gene encodes a potential PD-(D/E) XK endonuclease. J Virol. 2006;80:2575–7.CrossRefPubMedPubMedCentral Kniżewski Ł, Kinch L, Grishin NV, Rychlewski L, Ginalski K. Human herpesvirus 1 UL24 gene encodes a potential PD-(D/E) XK endonuclease. J Virol. 2006;80:2575–7.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Leiva-Torres GA, Rochette P-A, Pearson A. Differential importance of highly conserved residues in UL24 for herpes simplex virus 1 replication in vivo and reactivation. J Gen Virol. 2010;91:1109–16.CrossRefPubMed Leiva-Torres GA, Rochette P-A, Pearson A. Differential importance of highly conserved residues in UL24 for herpes simplex virus 1 replication in vivo and reactivation. J Gen Virol. 2010;91:1109–16.CrossRefPubMed
16.
Zurück zum Zitat Blakeney S, Kowalski J, Tummolo D, DeStefano J, Cooper D, et al. Herpes simplex virus type 2 UL24 gene is a virulence determinant in murine and guinea pig disease models. J Virol. 2005;79:10498–506.CrossRefPubMedPubMedCentral Blakeney S, Kowalski J, Tummolo D, DeStefano J, Cooper D, et al. Herpes simplex virus type 2 UL24 gene is a virulence determinant in murine and guinea pig disease models. J Virol. 2005;79:10498–506.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Jacobson JG, Chen S-H, Cook WJ, Kramer MF, Coen DM. Importance of the herpes simplex virus UL24 Gene for productive Ganglionic infection in mice. Virology. 1998;242:161–9.CrossRefPubMed Jacobson JG, Chen S-H, Cook WJ, Kramer MF, Coen DM. Importance of the herpes simplex virus UL24 Gene for productive Ganglionic infection in mice. Virology. 1998;242:161–9.CrossRefPubMed
18.
Zurück zum Zitat Carvalho R, Spilki F, Cunha E, Stocco R, Arns C. Molecular data of UL24 homolog gene (ORF37) from Brazilian isolates of equine herpesvirus type 1. Res Vet Sci. 2012;93:494–7.CrossRefPubMed Carvalho R, Spilki F, Cunha E, Stocco R, Arns C. Molecular data of UL24 homolog gene (ORF37) from Brazilian isolates of equine herpesvirus type 1. Res Vet Sci. 2012;93:494–7.CrossRefPubMed
19.
Zurück zum Zitat Kasem S, Yu MHH, Yamada S, Kodaira A, Matsumura T, et al. The ORF37 (UL24) is a neuropathogenicity determinant of equine herpesvirus 1 (EHV-1) in the mouse encephalitis model. Virology. 2010;400:259–70.CrossRefPubMed Kasem S, Yu MHH, Yamada S, Kodaira A, Matsumura T, et al. The ORF37 (UL24) is a neuropathogenicity determinant of equine herpesvirus 1 (EHV-1) in the mouse encephalitis model. Virology. 2010;400:259–70.CrossRefPubMed
20.
Zurück zum Zitat Lin S-R, Jiang MJ, Wang H-H, Hu C-H, Hsu M-S, et al. Human cytomegalovirus UL76 elicits novel Aggresome formation via interaction with S5a of the Ubiquitin Proteasome system. J Virol. 2013;87:11562–78.CrossRefPubMedPubMedCentral Lin S-R, Jiang MJ, Wang H-H, Hu C-H, Hsu M-S, et al. Human cytomegalovirus UL76 elicits novel Aggresome formation via interaction with S5a of the Ubiquitin Proteasome system. J Virol. 2013;87:11562–78.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Costa H, Nascimento R, Sinclair J, Parkhouse RME. Human cytomegalovirus gene UL76 induces IL-8 expression through activation of the DNA damage response. PLoS Pathog. 2013;9:e1003609.CrossRefPubMedPubMedCentral Costa H, Nascimento R, Sinclair J, Parkhouse RME. Human cytomegalovirus gene UL76 induces IL-8 expression through activation of the DNA damage response. PLoS Pathog. 2013;9:e1003609.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Nascimento R, Parkhouse R. Murine gammaherpesvirus 68 ORF20 induces cell-cycle arrest in G2 by inhibiting the Cdc2–cyclin B complex. J Gen Virol. 2007;88:1446–53.CrossRefPubMed Nascimento R, Parkhouse R. Murine gammaherpesvirus 68 ORF20 induces cell-cycle arrest in G2 by inhibiting the Cdc2–cyclin B complex. J Gen Virol. 2007;88:1446–53.CrossRefPubMed
24.
Zurück zum Zitat Jackson SA, DeLuca NA. Relationship of herpes simplex virus genome configuration to productive and persistent infections. Proc Natl Acad Sci. 2003;100:7871–6.CrossRefPubMedPubMedCentral Jackson SA, DeLuca NA. Relationship of herpes simplex virus genome configuration to productive and persistent infections. Proc Natl Acad Sci. 2003;100:7871–6.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Lilley CE, Carson CT, Muotri AR, Gage FH, Weitzman MD. DNA repair proteins affect the lifecycle of herpes simplex virus 1. Proc Natl Acad Sci U S A. 2005;102:5844–9.CrossRefPubMedPubMedCentral Lilley CE, Carson CT, Muotri AR, Gage FH, Weitzman MD. DNA repair proteins affect the lifecycle of herpes simplex virus 1. Proc Natl Acad Sci U S A. 2005;102:5844–9.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Bertrand L, Leiva-Torres GA, Hyjazie H, Pearson A. Conserved residues in the UL24 protein of herpes simplex virus 1 are important for dispersal of the nucleolar protein nucleolin. J Virol. 2010;84:109–18.CrossRefPubMed Bertrand L, Leiva-Torres GA, Hyjazie H, Pearson A. Conserved residues in the UL24 protein of herpes simplex virus 1 are important for dispersal of the nucleolar protein nucleolin. J Virol. 2010;84:109–18.CrossRefPubMed
28.
Zurück zum Zitat Bertrand L, Pearson A. The conserved N-terminal domain of herpes simplex virus 1 UL24 protein is sufficient to induce the spatial redistribution of nucleolin. J Gen Virol. 2008;89:1142–51.CrossRefPubMed Bertrand L, Pearson A. The conserved N-terminal domain of herpes simplex virus 1 UL24 protein is sufficient to induce the spatial redistribution of nucleolin. J Gen Virol. 2008;89:1142–51.CrossRefPubMed
29.
Zurück zum Zitat Lymberopoulos MH, Bourget A, Abdeljelil NB, Pearson A. Involvement of the UL24 protein in herpes simplex virus 1-induced dispersal of B23 and in nuclear egress. Virology. 2011;412:341–8.CrossRefPubMed Lymberopoulos MH, Bourget A, Abdeljelil NB, Pearson A. Involvement of the UL24 protein in herpes simplex virus 1-induced dispersal of B23 and in nuclear egress. Virology. 2011;412:341–8.CrossRefPubMed
30.
31.
Zurück zum Zitat Rickards B, Flint S, Cole MD, LeRoy G. Nucleolin is required for RNA polymerase I transcription in vivo. Mol Cell Biol. 2007;27:937–48.CrossRefPubMed Rickards B, Flint S, Cole MD, LeRoy G. Nucleolin is required for RNA polymerase I transcription in vivo. Mol Cell Biol. 2007;27:937–48.CrossRefPubMed
32.
Zurück zum Zitat Jia R, Cheng A, Wang M, Zhu D, Ge H, et al. Cloning, expression, purification and characterization of UL24 partial protein of duck enteritis virus. Intervirology. 2009;52:326–34.CrossRefPubMed Jia R, Cheng A, Wang M, Zhu D, Ge H, et al. Cloning, expression, purification and characterization of UL24 partial protein of duck enteritis virus. Intervirology. 2009;52:326–34.CrossRefPubMed
33.
Zurück zum Zitat Liu X, Liu Q, Xiao K, Li P, Liu Q, et al. Attenuated salmonella Typhimurium delivery of a novel DNA vaccine induces immune responses and provides protection against duck enteritis virus. Vet Microbiol. 2016;186:189–98.CrossRefPubMed Liu X, Liu Q, Xiao K, Li P, Liu Q, et al. Attenuated salmonella Typhimurium delivery of a novel DNA vaccine induces immune responses and provides protection against duck enteritis virus. Vet Microbiol. 2016;186:189–98.CrossRefPubMed
34.
Zurück zum Zitat Yu X, Jia R, Huang J, Shu B, Zhu D, et al. Attenuated salmonella typhimurium delivering DNA vaccine encoding duck enteritis virus UL24 induced systemic and mucosal immune responses and conferred good protection against challenge. Vet Res. 2012;43:1–10.CrossRef Yu X, Jia R, Huang J, Shu B, Zhu D, et al. Attenuated salmonella typhimurium delivering DNA vaccine encoding duck enteritis virus UL24 induced systemic and mucosal immune responses and conferred good protection against challenge. Vet Res. 2012;43:1–10.CrossRef
35.
Zurück zum Zitat Malik P, Tabarraei A, Kehlenbach RH, Korfali N, Iwasawa R, et al. Herpes simplex virus ICP27 protein directly interacts with the nuclear pore complex through NUP62, inhibiting host nucleocytoplasmic transport pathways. J Biol Chem. 2012;287:12277–92.CrossRefPubMedPubMedCentral Malik P, Tabarraei A, Kehlenbach RH, Korfali N, Iwasawa R, et al. Herpes simplex virus ICP27 protein directly interacts with the nuclear pore complex through NUP62, inhibiting host nucleocytoplasmic transport pathways. J Biol Chem. 2012;287:12277–92.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Li M, Wang S, Xing J, Guo H, Zheng C. Molecular characterization of subcellular localization and nucleocytoplasmic shuttling of PRV UL54. BioMed Central Ltd. 2011;5:P78. Li M, Wang S, Xing J, Guo H, Zheng C. Molecular characterization of subcellular localization and nucleocytoplasmic shuttling of PRV UL54. BioMed Central Ltd. 2011;5:P78.
37.
Zurück zum Zitat Guo H, Ding Q, Lin F, Pan W, Lin J, et al. Characterization of the nuclear and nucleolar localization signals of bovine herpesvirus-1 infected cell protein 27. Virus Res. 2009;145:312–20.CrossRefPubMed Guo H, Ding Q, Lin F, Pan W, Lin J, et al. Characterization of the nuclear and nucleolar localization signals of bovine herpesvirus-1 infected cell protein 27. Virus Res. 2009;145:312–20.CrossRefPubMed
38.
Zurück zum Zitat Tian X, Devi-Rao G, Golovanov AP, Sandri-Goldin RM. The interaction of the cellular export adaptor protein Aly/REF with ICP27 contributes to the efficiency of herpes simplex virus 1 mRNA export. J Virol. 2013;87:7210–7.CrossRefPubMedPubMedCentral Tian X, Devi-Rao G, Golovanov AP, Sandri-Goldin RM. The interaction of the cellular export adaptor protein Aly/REF with ICP27 contributes to the efficiency of herpes simplex virus 1 mRNA export. J Virol. 2013;87:7210–7.CrossRefPubMedPubMedCentral
39.
40.
Zurück zum Zitat Dai-Ju JQ, Li L, Johnson LA, Sandri-Goldin RM. ICP27 interacts with the C-terminal domain of RNA polymerase II and facilitates its recruitment to herpes simplex virus 1 transcription sites, where it undergoes proteasomal degradation during infection. J Virol. 2006;80:3567–81.CrossRefPubMedPubMedCentral Dai-Ju JQ, Li L, Johnson LA, Sandri-Goldin RM. ICP27 interacts with the C-terminal domain of RNA polymerase II and facilitates its recruitment to herpes simplex virus 1 transcription sites, where it undergoes proteasomal degradation during infection. J Virol. 2006;80:3567–81.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Gillis PA, Okagaki LH, Rice SA. Herpes simplex virus type 1 ICP27 induces p38 mitogen-activated protein kinase signaling and apoptosis in HeLa cells. J Virol. 2009;83:1767–77.CrossRefPubMed Gillis PA, Okagaki LH, Rice SA. Herpes simplex virus type 1 ICP27 induces p38 mitogen-activated protein kinase signaling and apoptosis in HeLa cells. J Virol. 2009;83:1767–77.CrossRefPubMed
42.
Zurück zum Zitat da Silva LF, Sinani D, Jones C. ICP27 protein encoded by bovine herpesvirus type 1 (bICP27) interferes with promoter activity of the bovine genes encoding beta interferon 1 (IFN-β1) and IFN-β3. Virus Res. 2012;169:162–8.CrossRefPubMedPubMedCentral da Silva LF, Sinani D, Jones C. ICP27 protein encoded by bovine herpesvirus type 1 (bICP27) interferes with promoter activity of the bovine genes encoding beta interferon 1 (IFN-β1) and IFN-β3. Virus Res. 2012;169:162–8.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Bright H, Perez DL, Christy C, Cockle P, Eyles JE, et al. The efficacy of HSV-2 vaccines based on gD and gB is enhanced by the addition of ICP27. Vaccine. 2012;30:7529–35.CrossRefPubMed Bright H, Perez DL, Christy C, Cockle P, Eyles JE, et al. The efficacy of HSV-2 vaccines based on gD and gB is enhanced by the addition of ICP27. Vaccine. 2012;30:7529–35.CrossRefPubMed
44.
Zurück zum Zitat Jia R, Cheng A, Wang M, Qi X, Zhu D, et al. Development and evaluation of an antigen-capture ELISA for detection of the UL24 antigen of the duck enteritis virus, based on a polyclonal antibody against the UL24 expression protein. J Virol Methods. 2009;161:38–43.CrossRefPubMed Jia R, Cheng A, Wang M, Qi X, Zhu D, et al. Development and evaluation of an antigen-capture ELISA for detection of the UL24 antigen of the duck enteritis virus, based on a polyclonal antibody against the UL24 expression protein. J Virol Methods. 2009;161:38–43.CrossRefPubMed
45.
Zurück zum Zitat Jia R, Cheng A, Wang M, Xin H, Guo Y, et al. Analysis of synonymous codon usage in the UL24 gene of duck enteritis virus. Virus Genes. 2009;38:96–103.CrossRefPubMed Jia R, Cheng A, Wang M, Xin H, Guo Y, et al. Analysis of synonymous codon usage in the UL24 gene of duck enteritis virus. Virus Genes. 2009;38:96–103.CrossRefPubMed
46.
Zurück zum Zitat Mehla J, Caufield JH, Uetz P (2015) The yeast two-hybrid system: a tool for mapping protein–protein interactions. Cold Spring Harbor protocols 2015: pdb. top083345. Mehla J, Caufield JH, Uetz P (2015) The yeast two-hybrid system: a tool for mapping protein–protein interactions. Cold Spring Harbor protocols 2015: pdb. top083345.
47.
Zurück zum Zitat Mehla J, Caufield JH, Uetz P (2015) Mapping protein–protein interactions using yeast two-hybrid assays. Cold Spring Harbor protocols 2015: pdb. prot086157. Mehla J, Caufield JH, Uetz P (2015) Mapping protein–protein interactions using yeast two-hybrid assays. Cold Spring Harbor protocols 2015: pdb. prot086157.
48.
Zurück zum Zitat Gao X, Jia R, Wang M, Zhu D, Chen S, et al. Construction and identification of a cDNA library for use in the yeast two-hybrid system from duck embryonic fibroblast cells post-infected with duck enteritis virus. Mol Biol Rep. 2014;41:467–75.CrossRefPubMed Gao X, Jia R, Wang M, Zhu D, Chen S, et al. Construction and identification of a cDNA library for use in the yeast two-hybrid system from duck embryonic fibroblast cells post-infected with duck enteritis virus. Mol Biol Rep. 2014;41:467–75.CrossRefPubMed
49.
Zurück zum Zitat Phillips SL, Cygnar D, Thomas A, Bresnahan WA. Interaction between the human cytomegalovirus tegument proteins UL94 and UL99 is essential for virus replication. J Virol. 2012;86:9995–10005.CrossRefPubMedPubMedCentral Phillips SL, Cygnar D, Thomas A, Bresnahan WA. Interaction between the human cytomegalovirus tegument proteins UL94 and UL99 is essential for virus replication. J Virol. 2012;86:9995–10005.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Guan Y, Guo L, Yang E, Liao Y, Liu L, et al. HSV-1 nucleocapsid egress mediated by UL31 in association with UL34 is impeded by cellular transmembrane protein 140. Virology. 2014;464:1–10.CrossRefPubMed Guan Y, Guo L, Yang E, Liao Y, Liu L, et al. HSV-1 nucleocapsid egress mediated by UL31 in association with UL34 is impeded by cellular transmembrane protein 140. Virology. 2014;464:1–10.CrossRefPubMed
51.
Zurück zum Zitat Corbin-Lickfett KA, Rojas S, Li L, Cocco MJ, Sandri-Goldin RM. ICP27 phosphorylation site mutants display altered functional interactions with cellular export factors Aly/REF and TAP/NXF1 but are able to bind herpes simplex virus 1 RNA. J Virol. 2010;84:2212–22.CrossRefPubMed Corbin-Lickfett KA, Rojas S, Li L, Cocco MJ, Sandri-Goldin RM. ICP27 phosphorylation site mutants display altered functional interactions with cellular export factors Aly/REF and TAP/NXF1 but are able to bind herpes simplex virus 1 RNA. J Virol. 2010;84:2212–22.CrossRefPubMed
52.
Zurück zum Zitat Johnson LA, Sandri-Goldin RM. Efficient nuclear export of herpes simplex virus 1 transcripts requires both RNA binding by ICP27 and ICP27 interaction with TAP/NXF1. J Virol. 2009;83:1184–92.CrossRefPubMed Johnson LA, Sandri-Goldin RM. Efficient nuclear export of herpes simplex virus 1 transcripts requires both RNA binding by ICP27 and ICP27 interaction with TAP/NXF1. J Virol. 2009;83:1184–92.CrossRefPubMed
53.
Zurück zum Zitat Johnson LA, Li L, Sandri-Goldin RM. The cellular RNA export receptor TAP/NXF1 is required for ICP27-mediated export of herpes simplex virus 1 RNA, but the TREX complex adaptor protein Aly/REF appears to be dispensable. J Virol. 2009;83:6335–46.CrossRefPubMedPubMedCentral Johnson LA, Li L, Sandri-Goldin RM. The cellular RNA export receptor TAP/NXF1 is required for ICP27-mediated export of herpes simplex virus 1 RNA, but the TREX complex adaptor protein Aly/REF appears to be dispensable. J Virol. 2009;83:6335–46.CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Hardwicke MA, Sandri-Goldin RM. The herpes simplex virus regulatory protein ICP27 contributes to the decrease in cellular mRNA levels during infection. J Virol. 1994;68:4797–810.PubMedPubMedCentral Hardwicke MA, Sandri-Goldin RM. The herpes simplex virus regulatory protein ICP27 contributes to the decrease in cellular mRNA levels during infection. J Virol. 1994;68:4797–810.PubMedPubMedCentral
55.
Zurück zum Zitat Ben Abdeljelil N, Rochette P-A, Pearson A. The UL24 protein of herpes simplex virus 1 affects the sub-cellular distribution of viral glycoproteins involved in fusion. Virology. 2013;444:263–73.CrossRefPubMed Ben Abdeljelil N, Rochette P-A, Pearson A. The UL24 protein of herpes simplex virus 1 affects the sub-cellular distribution of viral glycoproteins involved in fusion. Virology. 2013;444:263–73.CrossRefPubMed
56.
Zurück zum Zitat Fossum E, Friedel CC, Rajagopala SV, Titz B, Baiker A, et al. Evolutionarily conserved herpesviral protein interaction networks. PLoS Pathog. 2009;5:e1000570.CrossRefPubMedPubMedCentral Fossum E, Friedel CC, Rajagopala SV, Titz B, Baiker A, et al. Evolutionarily conserved herpesviral protein interaction networks. PLoS Pathog. 2009;5:e1000570.CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Liu C, Cheng A, Wang M, Chen S, Jia R, et al. Characterization of nucleocytoplasmic shuttling and intracellular localization signals in duck enteritis virus UL54. Biochimie. 2016;127:86–94.CrossRefPubMed Liu C, Cheng A, Wang M, Chen S, Jia R, et al. Characterization of nucleocytoplasmic shuttling and intracellular localization signals in duck enteritis virus UL54. Biochimie. 2016;127:86–94.CrossRefPubMed
Metadaten
Titel
Duck enteritis virus (DEV) UL54 protein, a novel partner, interacts with DEV UL24 protein
Publikationsdatum
01.12.2017
Erschienen in
Virology Journal / Ausgabe 1/2017
Elektronische ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-017-0830-5

Weitere Artikel der Ausgabe 1/2017

Virology Journal 1/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.