Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 5/2012

01.05.2012 | Original Article

Dynamic FDG PET for assessing early effects of cerebral hypoxia and resuscitation in new-born pigs

verfasst von: Charlotte de Lange, Eirik Malinen, Hong Qu, Kjersti Johnsrud, Arne Skretting, Ola Didrik Saugstad, Berit H. Munkeby

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 5/2012

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Changes in cerebral glucose metabolism may be an early prognostic indicator of perinatal hypoxic–ischaemic injury. In this study dynamic 18F-FDG PET was used to evaluate cerebral glucose metabolism in piglets after global perinatal hypoxia and the impact of the resuscitation strategy using room air or hyperoxia.

Methods

New-born piglets (n = 16) underwent 60 min of global hypoxia followed by 30 min of resuscitation with a fraction of inspired oxygen (FiO2) of 0.21 or 1.0. Dynamic FDG PET, using a microPET system, was performed at baseline and repeated at the end of resuscitation under stabilized haemodynamic conditions. MRI at 3 T was performed for anatomic correlation. Global and regional cerebral metabolic rates of glucose (CMRgl) were assessed by Patlak analysis for the two time-points and resuscitation groups.

Results

Global hypoxia was found to cause an immediate decrease in cerebral glucose metabolism from a baseline level (mean ± SD) of 21.2 ± 7.9 to 12.6 ± 4.7 μmol/min/100 g (p <0.01). The basal ganglia, cerebellum and cortex showed the greatest decrease in CMRgl but no significant differences in global or regional CMRgl between the resuscitation groups were found.

Conclusion

Dynamic FDG PET detected decreased cerebral glucose metabolism early after perinatal hypoxia in piglets. The decrease in CMRgl may indicate early changes of mild cerebral hypoxia–ischaemia. No significant effect of hyperoxic resuscitation on the degree of hypometabolism was found in this early phase after hypoxia. Cerebral FDG PET can provide new insights into mechanisms of perinatal hypoxic–ischaemic injury where early detection plays an important role in instituting therapy.
Literatur
1.
Zurück zum Zitat Vento M, Sastre J, Asensi MA, Vina J. Room-air resuscitation causes less damage to heart and kidney than 100% oxygen. Am J Respir Crit Care Med. 2005;172:1393–8.PubMedCrossRef Vento M, Sastre J, Asensi MA, Vina J. Room-air resuscitation causes less damage to heart and kidney than 100% oxygen. Am J Respir Crit Care Med. 2005;172:1393–8.PubMedCrossRef
2.
Zurück zum Zitat Munkeby BH, Borke WB, Bjornland K, Sikkeland LI, Borge GI, Lømo J, et al. Resuscitation of hypoxic piglets with 100% O2 increases pulmonary metalloproteinases and IL-8. Pediatr Res. 2005;58:542–8.PubMedCrossRef Munkeby BH, Borke WB, Bjornland K, Sikkeland LI, Borge GI, Lømo J, et al. Resuscitation of hypoxic piglets with 100% O2 increases pulmonary metalloproteinases and IL-8. Pediatr Res. 2005;58:542–8.PubMedCrossRef
3.
Zurück zum Zitat Saugstad OD, Ramji S, Soll RF, Vento M. Resuscitation of newborn infants with 21% or 100% oxygen: an updated systematic review and meta-analysis. Neonatology. 2008;94:176–82.PubMedCrossRef Saugstad OD, Ramji S, Soll RF, Vento M. Resuscitation of newborn infants with 21% or 100% oxygen: an updated systematic review and meta-analysis. Neonatology. 2008;94:176–82.PubMedCrossRef
4.
5.
Zurück zum Zitat Biban P, Filipovic-Grcic B, Biarent D, Manzoni P. New cardiopulmonary resuscitation guidelines 2010: managing the newly born in delivery room. Early Hum Dev. 2011;87 Suppl 1:S9–S11.PubMedCrossRef Biban P, Filipovic-Grcic B, Biarent D, Manzoni P. New cardiopulmonary resuscitation guidelines 2010: managing the newly born in delivery room. Early Hum Dev. 2011;87 Suppl 1:S9–S11.PubMedCrossRef
6.
Zurück zum Zitat Accardo J, Kammann H, Hoon Jr AH. Neuroimaging in cerebral palsy. J Pediatr. 2004;145:S19–27.PubMedCrossRef Accardo J, Kammann H, Hoon Jr AH. Neuroimaging in cerebral palsy. J Pediatr. 2004;145:S19–27.PubMedCrossRef
7.
Zurück zum Zitat Fatemi A, Wilson MA, Johnston MV. Hypoxic-ischemic encephalopathy in the term infant. Clin Perinatol. 2009;36:835–58.PubMedCrossRef Fatemi A, Wilson MA, Johnston MV. Hypoxic-ischemic encephalopathy in the term infant. Clin Perinatol. 2009;36:835–58.PubMedCrossRef
8.
Zurück zum Zitat Perlman JM. Summary proceedings from the neurology group on hypoxic-ischemic encephalopathy. Pediatrics. 2006;117:S28–33.PubMedCrossRef Perlman JM. Summary proceedings from the neurology group on hypoxic-ischemic encephalopathy. Pediatrics. 2006;117:S28–33.PubMedCrossRef
9.
Zurück zum Zitat Shalak L, Perlman JM. Hypoxic-ischemic brain injury in the term infant – current concepts. Early Hum Dev. 2004;80:125–41.PubMedCrossRef Shalak L, Perlman JM. Hypoxic-ischemic brain injury in the term infant – current concepts. Early Hum Dev. 2004;80:125–41.PubMedCrossRef
10.
Zurück zum Zitat Barkovich AJ, Baranski K, Vigneron D, Partridge JC, Hallam DK, Hajnal BL, et al. Proton MR spectroscopy for the evaluation of brain injury in asphyxiated, term neonates. AJNR Am J Neuroradiol. 1999;20:1399–405.PubMed Barkovich AJ, Baranski K, Vigneron D, Partridge JC, Hallam DK, Hajnal BL, et al. Proton MR spectroscopy for the evaluation of brain injury in asphyxiated, term neonates. AJNR Am J Neuroradiol. 1999;20:1399–405.PubMed
11.
Zurück zum Zitat Boichot C, Walker PM, Durand C, Grimaldi M, Chapuis S, Gouyon JB, et al. Term neonate prognoses after perinatal asphyxia: contributions of MR imaging, MR spectroscopy, relaxation times, and apparent diffusion coefficients. Radiology. 2006;239:839–48.PubMedCrossRef Boichot C, Walker PM, Durand C, Grimaldi M, Chapuis S, Gouyon JB, et al. Term neonate prognoses after perinatal asphyxia: contributions of MR imaging, MR spectroscopy, relaxation times, and apparent diffusion coefficients. Radiology. 2006;239:839–48.PubMedCrossRef
12.
Zurück zum Zitat Ilves P, Lintrop M, Metsvaht T, Vaher U, Talvik T. Cerebral blood-flow velocities in predicting outcome of asphyxiated newborn infants. Acta Paediatr. 2004;93:523–8.PubMedCrossRef Ilves P, Lintrop M, Metsvaht T, Vaher U, Talvik T. Cerebral blood-flow velocities in predicting outcome of asphyxiated newborn infants. Acta Paediatr. 2004;93:523–8.PubMedCrossRef
13.
Zurück zum Zitat Rutherford M, Biarge MM, Allsop J, Counsell S, Cowan F. MRI of perinatal brain injury. Pediatr Radiol. 2010;40:819–33.PubMedCrossRef Rutherford M, Biarge MM, Allsop J, Counsell S, Cowan F. MRI of perinatal brain injury. Pediatr Radiol. 2010;40:819–33.PubMedCrossRef
14.
Zurück zum Zitat Munkeby BH, De Lange C, Emblem KE, Bjørnerud A, Kro GA, Andresen J, et al. A piglet model for detection of hypoxic-ischemic brain injury with magnetic resonance imaging. Acta Radiol. 2008;49:1049–57.PubMedCrossRef Munkeby BH, De Lange C, Emblem KE, Bjørnerud A, Kro GA, Andresen J, et al. A piglet model for detection of hypoxic-ischemic brain injury with magnetic resonance imaging. Acta Radiol. 2008;49:1049–57.PubMedCrossRef
15.
Zurück zum Zitat Blennow M, Ingvar M, Lagercrantz H, Stone-Elander S, Eriksson L, Forssberg H, et al. Early [18F]FDG positron emission tomography in infants with hypoxic-ischaemic encephalopathy shows hypermetabolism during the postasphyctic period. Acta Paediatr. 1995;84:1289–95.PubMedCrossRef Blennow M, Ingvar M, Lagercrantz H, Stone-Elander S, Eriksson L, Forssberg H, et al. Early [18F]FDG positron emission tomography in infants with hypoxic-ischaemic encephalopathy shows hypermetabolism during the postasphyctic period. Acta Paediatr. 1995;84:1289–95.PubMedCrossRef
16.
Zurück zum Zitat Thorngren-Jerneck K, Ohlsson T, Sandell A, Erlandsson K, Strand SE, Ryding E, et al. Cerebral glucose metabolism measured by positron emission tomography in term newborn infants with hypoxic ischemic encephalopathy. Pediatr Res. 2001;49:495–501.PubMedCrossRef Thorngren-Jerneck K, Ohlsson T, Sandell A, Erlandsson K, Strand SE, Ryding E, et al. Cerebral glucose metabolism measured by positron emission tomography in term newborn infants with hypoxic ischemic encephalopathy. Pediatr Res. 2001;49:495–501.PubMedCrossRef
17.
Zurück zum Zitat Kannan S, Chugani HT. Applications of positron emission tomography in the newborn nursery. Semin Perinatol. 2010;34:39–45.PubMedCrossRef Kannan S, Chugani HT. Applications of positron emission tomography in the newborn nursery. Semin Perinatol. 2010;34:39–45.PubMedCrossRef
18.
Zurück zum Zitat Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28:897–916.PubMedCrossRef Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28:897–916.PubMedCrossRef
19.
Zurück zum Zitat Heiss WD, Emunds HG, Herholz K. Cerebral glucose metabolism as a predictor of rehabilitation after ischemic stroke. Stroke. 1993;24:1784–8.PubMedCrossRef Heiss WD, Emunds HG, Herholz K. Cerebral glucose metabolism as a predictor of rehabilitation after ischemic stroke. Stroke. 1993;24:1784–8.PubMedCrossRef
20.
Zurück zum Zitat Batista CE, Chugani HT, Juhasz C, Behen ME, Shankaran S. Transient hypermetabolism of the basal ganglia following perinatal hypoxia. Pediatr Neurol. 2007;36:330–3.PubMedCrossRef Batista CE, Chugani HT, Juhasz C, Behen ME, Shankaran S. Transient hypermetabolism of the basal ganglia following perinatal hypoxia. Pediatr Neurol. 2007;36:330–3.PubMedCrossRef
21.
Zurück zum Zitat Doyle LW, Nahmias C, Firnau G, Kenyon DB, Garnett ES, Sinclair JC. Regional cerebral glucose metabolism of newborn infants measured by positron emission tomography. Dev Med Child Neurol. 1983;25:143–51.PubMedCrossRef Doyle LW, Nahmias C, Firnau G, Kenyon DB, Garnett ES, Sinclair JC. Regional cerebral glucose metabolism of newborn infants measured by positron emission tomography. Dev Med Child Neurol. 1983;25:143–51.PubMedCrossRef
22.
Zurück zum Zitat Suhonen-Polvi H, Kero P, Korvenranta H, Ruotsalainen U, Haaparanta M, Bergman J, et al. Repeated fluorodeoxyglucose positron emission tomography of the brain in infants with suspected hypoxic-ischaemic brain injury. Eur J Nucl Med. 1993;20:759–65.PubMedCrossRef Suhonen-Polvi H, Kero P, Korvenranta H, Ruotsalainen U, Haaparanta M, Bergman J, et al. Repeated fluorodeoxyglucose positron emission tomography of the brain in infants with suspected hypoxic-ischaemic brain injury. Eur J Nucl Med. 1993;20:759–65.PubMedCrossRef
23.
Zurück zum Zitat Thorngren-Jerneck K, Hellstrom-Westas L, Ryding E, Rosen I. Cerebral glucose metabolism and early EEG/aEEG in term newborn infants with hypoxic-ischemic encephalopathy. Pediatr Res. 2003;54:854–60.PubMedCrossRef Thorngren-Jerneck K, Hellstrom-Westas L, Ryding E, Rosen I. Cerebral glucose metabolism and early EEG/aEEG in term newborn infants with hypoxic-ischemic encephalopathy. Pediatr Res. 2003;54:854–60.PubMedCrossRef
24.
Zurück zum Zitat Thorp PS, Levin SD, Garnett ES, Nahmias C, Firnau G, Toi A, et al. Patterns of cerebral glucose metabolism using 18FDG and positron tomography in the neurologic investigation of the full term newborn infant. Neuropediatrics. 1988;19:146–53.PubMedCrossRef Thorp PS, Levin SD, Garnett ES, Nahmias C, Firnau G, Toi A, et al. Patterns of cerebral glucose metabolism using 18FDG and positron tomography in the neurologic investigation of the full term newborn infant. Neuropediatrics. 1988;19:146–53.PubMedCrossRef
25.
Zurück zum Zitat Thorngren-Jerneck K, Ley D, Hellstrom-Westas L, Hernandez-Andrade E, Lingman G, Ohlsson T, et al. Reduced postnatal cerebral glucose metabolism measured by PET after asphyxia in near term fetal lambs. J Neurosci Res. 2001;66:844–50.PubMedCrossRef Thorngren-Jerneck K, Ley D, Hellstrom-Westas L, Hernandez-Andrade E, Lingman G, Ohlsson T, et al. Reduced postnatal cerebral glucose metabolism measured by PET after asphyxia in near term fetal lambs. J Neurosci Res. 2001;66:844–50.PubMedCrossRef
26.
Zurück zum Zitat Gilland E, Bona E, Hagberg H. Temporal changes of regional glucose use, blood flow, and microtubule-associated protein 2 immunostaining after hypoxia-ischemia in the immature rat brain. J Cereb Blood Flow Metab. 1998;18:222–8.PubMedCrossRef Gilland E, Bona E, Hagberg H. Temporal changes of regional glucose use, blood flow, and microtubule-associated protein 2 immunostaining after hypoxia-ischemia in the immature rat brain. J Cereb Blood Flow Metab. 1998;18:222–8.PubMedCrossRef
27.
Zurück zum Zitat Vannucci RC, Christensen MA, Stein DT. Regional cerebral glucose utilization in the immature rat: effect of hypoxia-ischemia. Pediatr Res. 1989;26:208–14.PubMedCrossRef Vannucci RC, Christensen MA, Stein DT. Regional cerebral glucose utilization in the immature rat: effect of hypoxia-ischemia. Pediatr Res. 1989;26:208–14.PubMedCrossRef
28.
Zurück zum Zitat de Lange C, Brabrand K, Emblem KE, Bjornerud A, Løberg EM, Saugstad OD, et al. Cerebral perfusion in perinatal hypoxia and resuscitation assessed by transcranial contrast-enhanced ultrasound and 3 T MRI in newborn pigs. Invest Radiol. 2011;46:686–96.PubMed de Lange C, Brabrand K, Emblem KE, Bjornerud A, Løberg EM, Saugstad OD, et al. Cerebral perfusion in perinatal hypoxia and resuscitation assessed by transcranial contrast-enhanced ultrasound and 3 T MRI in newborn pigs. Invest Radiol. 2011;46:686–96.PubMed
29.
Zurück zum Zitat Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab. 1985;5:584–90.PubMedCrossRef Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab. 1985;5:584–90.PubMedCrossRef
30.
Zurück zum Zitat Poulsen PH, Smith DF, Ostergaard L, Danielsen EH, Gee A, Hansen SB, et al. In vivo estimation of cerebral blood flow, oxygen consumption and glucose metabolism in the pig by [15O]water injection, [15O]oxygen inhalation and dual injections of [18F]fluorodeoxyglucose. J Neurosci Methods. 1997;77:199–209.PubMedCrossRef Poulsen PH, Smith DF, Ostergaard L, Danielsen EH, Gee A, Hansen SB, et al. In vivo estimation of cerebral blood flow, oxygen consumption and glucose metabolism in the pig by [15O]water injection, [15O]oxygen inhalation and dual injections of [18F]fluorodeoxyglucose. J Neurosci Methods. 1997;77:199–209.PubMedCrossRef
31.
Zurück zum Zitat Stauss J, Franzius C, Pfluger T, Juergens KU, Biassoni L, Begent J, et al. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging. 2008;35:1581–8.PubMedCrossRef Stauss J, Franzius C, Pfluger T, Juergens KU, Biassoni L, Begent J, et al. Guidelines for 18F-FDG PET and PET-CT imaging in paediatric oncology. Eur J Nucl Med Mol Imaging. 2008;35:1581–8.PubMedCrossRef
32.
Zurück zum Zitat Shi Y, Jin RB, Zhao JN, Tang SF, Li HQ, Li TY. Brain positron emission tomography in preterm and term newborn infants. Early Hum Dev. 2009;85:429–32.PubMedCrossRef Shi Y, Jin RB, Zhao JN, Tang SF, Li HQ, Li TY. Brain positron emission tomography in preterm and term newborn infants. Early Hum Dev. 2009;85:429–32.PubMedCrossRef
33.
Zurück zum Zitat Gjedde A, Wienhard K, Heiss WD, Kloster G, Diemer NH, Herholz K, et al. Comparative regional analysis of 2-fluorodeoxyglucose and methylglucose uptake in brain of four stroke patients. With special reference to the regional estimation of the lumped constant. J Cereb Blood Flow Metab. 1985;5:163–78.PubMedCrossRef Gjedde A, Wienhard K, Heiss WD, Kloster G, Diemer NH, Herholz K, et al. Comparative regional analysis of 2-fluorodeoxyglucose and methylglucose uptake in brain of four stroke patients. With special reference to the regional estimation of the lumped constant. J Cereb Blood Flow Metab. 1985;5:163–78.PubMedCrossRef
34.
Zurück zum Zitat Reivich M, Alavi A, Wolf A, Fowler J, Russell J, Arnett C, et al. Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose. J Cereb Blood Flow Metab. 1985;5:179–92.PubMedCrossRef Reivich M, Alavi A, Wolf A, Fowler J, Russell J, Arnett C, et al. Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose. J Cereb Blood Flow Metab. 1985;5:179–92.PubMedCrossRef
35.
Zurück zum Zitat Johnston MV, Trescher WH, Ishida A, Nakajima W. Neurobiology of hypoxic-ischemic injury in the developing brain. Pediatr Res. 2001;49:735–41.PubMedCrossRef Johnston MV, Trescher WH, Ishida A, Nakajima W. Neurobiology of hypoxic-ischemic injury in the developing brain. Pediatr Res. 2001;49:735–41.PubMedCrossRef
36.
Zurück zum Zitat Hankins GD, Speer M. Defining the pathogenesis and pathophysiology of neonatal encephalopathy and cerebral palsy. Obstet Gynecol. 2003;102:628–36.PubMedCrossRef Hankins GD, Speer M. Defining the pathogenesis and pathophysiology of neonatal encephalopathy and cerebral palsy. Obstet Gynecol. 2003;102:628–36.PubMedCrossRef
37.
Zurück zum Zitat Vannucci RC, Yager JY, Vannucci SJ. Cerebral glucose and energy utilization during the evolution of hypoxic-ischemic brain damage in the immature rat. J Cereb Blood Flow Metab. 1994;14:279–88.PubMedCrossRef Vannucci RC, Yager JY, Vannucci SJ. Cerebral glucose and energy utilization during the evolution of hypoxic-ischemic brain damage in the immature rat. J Cereb Blood Flow Metab. 1994;14:279–88.PubMedCrossRef
Metadaten
Titel
Dynamic FDG PET for assessing early effects of cerebral hypoxia and resuscitation in new-born pigs
verfasst von
Charlotte de Lange
Eirik Malinen
Hong Qu
Kjersti Johnsrud
Arne Skretting
Ola Didrik Saugstad
Berit H. Munkeby
Publikationsdatum
01.05.2012
Verlag
Springer-Verlag
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 5/2012
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-011-2055-y

Weitere Artikel der Ausgabe 5/2012

European Journal of Nuclear Medicine and Molecular Imaging 5/2012 Zur Ausgabe