Skip to main content
Erschienen in: Clinical and Translational Oncology 4/2013

01.04.2013 | Educational Series – Blue Series

Dynamic regulation of cancer stem cells and clinical challenges

verfasst von: Chao Ni, Jian Huang

Erschienen in: Clinical and Translational Oncology | Ausgabe 4/2013

Einloggen, um Zugang zu erhalten

Abstract

A small population of cancer cells referred to as cancer stem cells (CSCs) have received particular attention, as they have been revealed to acquire stem cell-like properties and become the main cause of tumor propagation, metastasis and drug resistance. The CSC theory of tumor formation was believed to follow the hierarchical model initially, and therefore many CSC-targeted therapy methods were expected to cure cancer by eradicating CSCs. However, subsequent CSC research has revealed that rather than a distinct entity, the CSC is a dynamic status that can be continually dedifferentiated from progenitor or differentiated cancer cells. Elucidation of this bidirectional transition mechanism would help perfect the CSC theory and be of great value in the development of more effective anti-cancer drugs. Here, we reviewed the mechanisms of reciprocal conversion between non-CSCs and CSCs. Moreover, several approaches of target CSCs and non-CSCs together with unbiased eradication of all cancer cells are also discussed.
Literatur
1.
Zurück zum Zitat Magee JA, Piskounova E, Morrison SJ (2012) Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21(3):283–296PubMedCrossRef Magee JA, Piskounova E, Morrison SJ (2012) Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21(3):283–296PubMedCrossRef
2.
Zurück zum Zitat Chaffer CL, Brueckmann I, Scheel C et al (2011) Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Nat Acad Sci USA 108(19):7950–7955PubMedCrossRef Chaffer CL, Brueckmann I, Scheel C et al (2011) Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc Nat Acad Sci USA 108(19):7950–7955PubMedCrossRef
3.
Zurück zum Zitat Chang HH, Chen BY, Wu CY et al (2011) Hedgehog overexpression leads to the formation of prostate cancer stem cells with metastatic property irrespective of androgen receptor expression in the mouse model. J Biomed Sci 18:6PubMedCrossRef Chang HH, Chen BY, Wu CY et al (2011) Hedgehog overexpression leads to the formation of prostate cancer stem cells with metastatic property irrespective of androgen receptor expression in the mouse model. J Biomed Sci 18:6PubMedCrossRef
4.
Zurück zum Zitat Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872PubMedCrossRef Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872PubMedCrossRef
5.
Zurück zum Zitat Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920PubMedCrossRef Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920PubMedCrossRef
6.
Zurück zum Zitat Jeter CR, Liu B, Liu X et al (2011) NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene 30(36):3833–3845PubMedCrossRef Jeter CR, Liu B, Liu X et al (2011) NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene 30(36):3833–3845PubMedCrossRef
7.
Zurück zum Zitat Jeter CR, Badeaux M, Choy G et al (2009) Functional evidence that the self-renewal gene Nanog regulates human tumor development. Stem Cells 27(5):993–1005PubMedCrossRef Jeter CR, Badeaux M, Choy G et al (2009) Functional evidence that the self-renewal gene Nanog regulates human tumor development. Stem Cells 27(5):993–1005PubMedCrossRef
8.
Zurück zum Zitat Chiou SH, Wang ML, Chou YT et al (2010) Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res 70(24):10433–10444PubMedCrossRef Chiou SH, Wang ML, Chou YT et al (2010) Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res 70(24):10433–10444PubMedCrossRef
9.
Zurück zum Zitat Narva E, Rahkonen N, Emani MR et al (2012) RNA-binding protein L1TD1 interacts with LIN28 via RNA and is required for human embryonic stem cell self-renewal and cancer cell proliferation. Stem Cells 30(3):452–460PubMedCrossRef Narva E, Rahkonen N, Emani MR et al (2012) RNA-binding protein L1TD1 interacts with LIN28 via RNA and is required for human embryonic stem cell self-renewal and cancer cell proliferation. Stem Cells 30(3):452–460PubMedCrossRef
10.
Zurück zum Zitat Mani SA, Guo W, Liao MJ et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715PubMedCrossRef Mani SA, Guo W, Liao MJ et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133(4):704–715PubMedCrossRef
11.
Zurück zum Zitat Kim JB, Greber B, Arauzo-Bravo MJ et al (2009) Direct reprogramming of human neural stem cells by Oct4. Nature 461(7264):649–653PubMedCrossRef Kim JB, Greber B, Arauzo-Bravo MJ et al (2009) Direct reprogramming of human neural stem cells by Oct4. Nature 461(7264):649–653PubMedCrossRef
13.
Zurück zum Zitat Ikushima H, Todo T, Ino Y et al (2011) Glioma-initiating cells retain their tumorigenicity through integration of the Sox axis and Oct4 protein. J Biol Chem 286(48):41434–41441PubMedCrossRef Ikushima H, Todo T, Ino Y et al (2011) Glioma-initiating cells retain their tumorigenicity through integration of the Sox axis and Oct4 protein. J Biol Chem 286(48):41434–41441PubMedCrossRef
14.
Zurück zum Zitat Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K, Miyazono K (2009) Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 5(5):504–514PubMedCrossRef Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K, Miyazono K (2009) Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 5(5):504–514PubMedCrossRef
15.
Zurück zum Zitat Li Y, Li A, Glas M et al (2011) c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype. Proc Nat Acad Sci USA 108(24):9951–9956PubMedCrossRef Li Y, Li A, Glas M et al (2011) c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype. Proc Nat Acad Sci USA 108(24):9951–9956PubMedCrossRef
16.
Zurück zum Zitat Mizuno H, Spike BT, Wahl GM, Levine AJ (2010) Inactivation of p53 in breast cancers correlates with stem cell transcriptional signatures. Proc Nat Acad Sci USA 107(52):22745–22750PubMedCrossRef Mizuno H, Spike BT, Wahl GM, Levine AJ (2010) Inactivation of p53 in breast cancers correlates with stem cell transcriptional signatures. Proc Nat Acad Sci USA 107(52):22745–22750PubMedCrossRef
17.
Zurück zum Zitat Motohara T, Masuko S, Ishimoto T et al (2011) Transient depletion of p53 followed by transduction of c-Myc and K-Ras converts ovarian stem-like cells into tumor-initiating cells. Carcinogenesis 32(11):1597–1606PubMedCrossRef Motohara T, Masuko S, Ishimoto T et al (2011) Transient depletion of p53 followed by transduction of c-Myc and K-Ras converts ovarian stem-like cells into tumor-initiating cells. Carcinogenesis 32(11):1597–1606PubMedCrossRef
18.
Zurück zum Zitat Gill JG, Langer EM, Lindsley RC et al (2011) Snail and the microRNA-200 family act in opposition to regulate epithelial-to-mesenchymal transition and germ layer fate restriction in differentiating ESCs. Stem Cells 29(5):764–776PubMedCrossRef Gill JG, Langer EM, Lindsley RC et al (2011) Snail and the microRNA-200 family act in opposition to regulate epithelial-to-mesenchymal transition and germ layer fate restriction in differentiating ESCs. Stem Cells 29(5):764–776PubMedCrossRef
19.
Zurück zum Zitat Tellez CS, Juri DE, Do K et al (2011) EMT and stem cell-like properties associated with miR-205 and miR-200 epigenetic silencing are early manifestations during carcinogen-induced transformation of human lung epithelial cells. Cancer Res 71(8):3087–3097PubMedCrossRef Tellez CS, Juri DE, Do K et al (2011) EMT and stem cell-like properties associated with miR-205 and miR-200 epigenetic silencing are early manifestations during carcinogen-induced transformation of human lung epithelial cells. Cancer Res 71(8):3087–3097PubMedCrossRef
20.
Zurück zum Zitat Wellner U, Schubert J, Burk UC et al (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11(12):1487–1495PubMedCrossRef Wellner U, Schubert J, Burk UC et al (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11(12):1487–1495PubMedCrossRef
21.
Zurück zum Zitat Landgraf P, Rusu M, Sheridan R et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414PubMedCrossRef Landgraf P, Rusu M, Sheridan R et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414PubMedCrossRef
22.
Zurück zum Zitat Melton C, Judson RL, Blelloch R (2010) Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463(7281):621–626PubMedCrossRef Melton C, Judson RL, Blelloch R (2010) Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463(7281):621–626PubMedCrossRef
23.
Zurück zum Zitat Ramachandran R, Fausett BV, Goldman D (2010) Ascl1a regulates Muller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway. Nat Cell Biol 12(11):1101–1107PubMedCrossRef Ramachandran R, Fausett BV, Goldman D (2010) Ascl1a regulates Muller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway. Nat Cell Biol 12(11):1101–1107PubMedCrossRef
24.
Zurück zum Zitat Viswanathan SR, Powers JT, Einhorn W et al (2009) Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 41(7):843–848PubMedCrossRef Viswanathan SR, Powers JT, Einhorn W et al (2009) Lin28 promotes transformation and is associated with advanced human malignancies. Nat Genet 41(7):843–848PubMedCrossRef
25.
Zurück zum Zitat Yu F, Yao H, Zhu P et al (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6):1109–1123PubMedCrossRef Yu F, Yao H, Zhu P et al (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131(6):1109–1123PubMedCrossRef
26.
Zurück zum Zitat Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9(5):402–412PubMedCrossRef Riley T, Sontag E, Chen P, Levine A (2008) Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 9(5):402–412PubMedCrossRef
27.
Zurück zum Zitat Hong H, Takahashi K, Ichisaka T et al (2009) Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature 460(7259):1132–1135PubMedCrossRef Hong H, Takahashi K, Ichisaka T et al (2009) Suppression of induced pluripotent stem cell generation by the p53–p21 pathway. Nature 460(7259):1132–1135PubMedCrossRef
28.
Zurück zum Zitat Choi YJ, Lin CP, Ho JJ et al (2011) miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nature cell Biol 13(11):1353–1360PubMedCrossRef Choi YJ, Lin CP, Ho JJ et al (2011) miR-34 miRNAs provide a barrier for somatic cell reprogramming. Nature cell Biol 13(11):1353–1360PubMedCrossRef
29.
Zurück zum Zitat Attisano L, Wrana JL (2002) Signal transduction by the TGF-beta superfamily. Science 296(5573):1646–1647PubMedCrossRef Attisano L, Wrana JL (2002) Signal transduction by the TGF-beta superfamily. Science 296(5573):1646–1647PubMedCrossRef
30.
Zurück zum Zitat Ichida JK, Blanchard J, Lam K et al (2009) A small-molecule inhibitor of TGF-Beta signaling replaces Sox2 in reprogramming by inducing Nanog. Cell Stem Cell 5(5):491–503PubMedCrossRef Ichida JK, Blanchard J, Lam K et al (2009) A small-molecule inhibitor of TGF-Beta signaling replaces Sox2 in reprogramming by inducing Nanog. Cell Stem Cell 5(5):491–503PubMedCrossRef
31.
Zurück zum Zitat Subramanyam D, Lamouille S, Judson RL et al (2011) Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol 29(5):443–448PubMedCrossRef Subramanyam D, Lamouille S, Judson RL et al (2011) Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells. Nat Biotechnol 29(5):443–448PubMedCrossRef
32.
Zurück zum Zitat Li Z, Yang CS, Nakashima K, Rana TM (2011) Small RNA-mediated regulation of iPS cell generation. EMBO J 30(5):823–834PubMedCrossRef Li Z, Yang CS, Nakashima K, Rana TM (2011) Small RNA-mediated regulation of iPS cell generation. EMBO J 30(5):823–834PubMedCrossRef
33.
Zurück zum Zitat Zhu Y, Jiang Q, Lou X et al (2012) MicroRNAs up-regulated by CagA of Helicobacter pylori induce intestinal metaplasia of gastric epithelial cells. PLoS ONE 7(4):e35147PubMedCrossRef Zhu Y, Jiang Q, Lou X et al (2012) MicroRNAs up-regulated by CagA of Helicobacter pylori induce intestinal metaplasia of gastric epithelial cells. PLoS ONE 7(4):e35147PubMedCrossRef
34.
Zurück zum Zitat Yang P, Wang Y, Chen J et al (2011) RCOR2 is a subunit of the LSD1 complex that regulates ESC property and substitutes for Sox2 in reprogramming somatic cells to pluripotency. Stem Cells 29(5):791–801PubMedCrossRef Yang P, Wang Y, Chen J et al (2011) RCOR2 is a subunit of the LSD1 complex that regulates ESC property and substitutes for Sox2 in reprogramming somatic cells to pluripotency. Stem Cells 29(5):791–801PubMedCrossRef
35.
Zurück zum Zitat Ang YS, Tsai SY, Lee DF et al (2011) Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145(2):183–197PubMedCrossRef Ang YS, Tsai SY, Lee DF et al (2011) Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 145(2):183–197PubMedCrossRef
36.
Zurück zum Zitat Farthing CR, Ficz G, Ng RK et al (2008) Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet 4(6):e1000116PubMedCrossRef Farthing CR, Ficz G, Ng RK et al (2008) Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet 4(6):e1000116PubMedCrossRef
37.
Zurück zum Zitat Doi A, Park IH, Wen B et al (2009) Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 41(12):1350–1353PubMedCrossRef Doi A, Park IH, Wen B et al (2009) Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 41(12):1350–1353PubMedCrossRef
38.
Zurück zum Zitat Jullien J, Astrand C, Halley-Stott RP, Garrett N, Gurdon JB (2010) Characterization of somatic cell nuclear reprogramming by oocytes in which a linker histone is required for pluripotency gene reactivation. Proc Nat Acad Sci USA 107(12):5483–5488PubMedCrossRef Jullien J, Astrand C, Halley-Stott RP, Garrett N, Gurdon JB (2010) Characterization of somatic cell nuclear reprogramming by oocytes in which a linker histone is required for pluripotency gene reactivation. Proc Nat Acad Sci USA 107(12):5483–5488PubMedCrossRef
39.
Zurück zum Zitat Taranger CK, Noer A, Sorensen AL, Hakelien AM, Boquest AC, Collas P (2005) Induction of dedifferentiation, genome wide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell 16(12):5719–5735PubMedCrossRef Taranger CK, Noer A, Sorensen AL, Hakelien AM, Boquest AC, Collas P (2005) Induction of dedifferentiation, genome wide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell 16(12):5719–5735PubMedCrossRef
40.
Zurück zum Zitat Freberg CT, Dahl JA, Timoskainen S, Collas P (2007) Epigenetic reprogramming of Oct4 and Nanog regulatory regions by embryonal carcinoma cell extract. Mol Biol Cell 18(5):1543–1553PubMedCrossRef Freberg CT, Dahl JA, Timoskainen S, Collas P (2007) Epigenetic reprogramming of Oct4 and Nanog regulatory regions by embryonal carcinoma cell extract. Mol Biol Cell 18(5):1543–1553PubMedCrossRef
41.
Zurück zum Zitat Kyle AH, Baker JH, Minchinton AI (2012) Targeting quiescent tumor cells via oxygen and IGF-I supplementation. Cancer Res 72(3):801–809PubMedCrossRef Kyle AH, Baker JH, Minchinton AI (2012) Targeting quiescent tumor cells via oxygen and IGF-I supplementation. Cancer Res 72(3):801–809PubMedCrossRef
42.
Zurück zum Zitat Mathieu J, Zhang Z, Zhou W et al (2011) HIF induces human embryonic stem cell markers in cancer cells. Cancer Res 71(13):4640–4652PubMedCrossRef Mathieu J, Zhang Z, Zhou W et al (2011) HIF induces human embryonic stem cell markers in cancer cells. Cancer Res 71(13):4640–4652PubMedCrossRef
43.
Zurück zum Zitat Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8(20):3274–3284PubMedCrossRef Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8(20):3274–3284PubMedCrossRef
44.
Zurück zum Zitat Vermeulen L, De Sousa EMF, van der Heijden M et al (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12(5):468–476PubMedCrossRef Vermeulen L, De Sousa EMF, van der Heijden M et al (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12(5):468–476PubMedCrossRef
45.
Zurück zum Zitat Scheel C, Eaton EN, Li SH et al (2011) Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145(6):926–940PubMedCrossRef Scheel C, Eaton EN, Li SH et al (2011) Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145(6):926–940PubMedCrossRef
46.
Zurück zum Zitat Yao C, Lin Y, Chua MS et al (2007) Interleukin-8 modulates growth and invasiveness of estrogen receptor-negative breast cancer cells. Int J Cancer 121(9):1949–1957PubMedCrossRef Yao C, Lin Y, Chua MS et al (2007) Interleukin-8 modulates growth and invasiveness of estrogen receptor-negative breast cancer cells. Int J Cancer 121(9):1949–1957PubMedCrossRef
47.
Zurück zum Zitat Elaraj DM, Weinreich DM, Varghese S et al (2006) The role of interleukin 1 in growth and metastasis of human cancer xenografts. Clin Cancer Res Off J Am Assoc Cancer Res 12(4):1088–1096CrossRef Elaraj DM, Weinreich DM, Varghese S et al (2006) The role of interleukin 1 in growth and metastasis of human cancer xenografts. Clin Cancer Res Off J Am Assoc Cancer Res 12(4):1088–1096CrossRef
48.
Zurück zum Zitat Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139(4):693–706PubMedCrossRef Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139(4):693–706PubMedCrossRef
49.
Zurück zum Zitat Liu S, Ginestier C, Ou SJ et al (2011) Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 71(2):614–624PubMedCrossRef Liu S, Ginestier C, Ou SJ et al (2011) Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 71(2):614–624PubMedCrossRef
50.
Zurück zum Zitat Sansone P, Storci G, Tavolari S et al (2007) IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Investig 117(12):3988–4002PubMedCrossRef Sansone P, Storci G, Tavolari S et al (2007) IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Investig 117(12):3988–4002PubMedCrossRef
51.
Zurück zum Zitat Xie G, Yao Q, Liu Y et al (2012) IL-6-induced epithelial-mesenchymal transition promotes the generation of breast cancer stem-like cells analogous to mammosphere cultures. Int J Oncol 40(4):1171–1179PubMed Xie G, Yao Q, Liu Y et al (2012) IL-6-induced epithelial-mesenchymal transition promotes the generation of breast cancer stem-like cells analogous to mammosphere cultures. Int J Oncol 40(4):1171–1179PubMed
52.
Zurück zum Zitat Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9(11):798–809PubMedCrossRef Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9(11):798–809PubMedCrossRef
53.
Zurück zum Zitat Fulciniti M, Hideshima T, Vermot-Desroches C et al (2009) A high-affinity fully human anti-IL-6 mAb, 1339, for the treatment of multiple myeloma. Clin Cancer Res Off J Am Assoc Cancer Res 15(23):7144–7152CrossRef Fulciniti M, Hideshima T, Vermot-Desroches C et al (2009) A high-affinity fully human anti-IL-6 mAb, 1339, for the treatment of multiple myeloma. Clin Cancer Res Off J Am Assoc Cancer Res 15(23):7144–7152CrossRef
54.
Zurück zum Zitat Todaro M, Alea MP, Di Stefano AB et al (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1(4):389–402PubMedCrossRef Todaro M, Alea MP, Di Stefano AB et al (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1(4):389–402PubMedCrossRef
55.
Zurück zum Zitat Todaro M, Perez Alea M, Scopelliti A, Medema JP, Stassi G (2008) IL-4-mediated drug resistance in colon cancer stem cells. Cell Cycle 7(3):309–313PubMedCrossRef Todaro M, Perez Alea M, Scopelliti A, Medema JP, Stassi G (2008) IL-4-mediated drug resistance in colon cancer stem cells. Cell Cycle 7(3):309–313PubMedCrossRef
56.
Zurück zum Zitat Todaro M, Francipane MG, Medema JP, Stassi G (2010) Colon cancer stem cells: promise of targeted therapy. Gastroenterology 138(6):2151–2162PubMedCrossRef Todaro M, Francipane MG, Medema JP, Stassi G (2010) Colon cancer stem cells: promise of targeted therapy. Gastroenterology 138(6):2151–2162PubMedCrossRef
57.
Zurück zum Zitat Wang K, Liu L, Zhang T et al (2011) Oxaliplatin-incorporated micelles eliminate both cancer stem-like and bulk cell populations in colorectal cancer. Int J Nanomed 6:3207–3218 Wang K, Liu L, Zhang T et al (2011) Oxaliplatin-incorporated micelles eliminate both cancer stem-like and bulk cell populations in colorectal cancer. Int J Nanomed 6:3207–3218
58.
Zurück zum Zitat Hovinga KE, Shimizu F, Wang R et al (2010) Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells 28(6):1019–1029PubMedCrossRef Hovinga KE, Shimizu F, Wang R et al (2010) Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate. Stem Cells 28(6):1019–1029PubMedCrossRef
59.
Zurück zum Zitat Wang YK, Zhu YL, Qiu FM et al (2010) Activation of Akt and MAPK pathways enhances the tumorigenicity of CD133+ primary colon cancer cells. Carcinogenesis 31(8):1376–1380PubMedCrossRef Wang YK, Zhu YL, Qiu FM et al (2010) Activation of Akt and MAPK pathways enhances the tumorigenicity of CD133+ primary colon cancer cells. Carcinogenesis 31(8):1376–1380PubMedCrossRef
60.
Zurück zum Zitat Ito K, Bernardi R, Morotti A et al (2008) PML targeting eradicates quiescent leukaemia-initiating cells. Nature 453(7198):1072–1078PubMedCrossRef Ito K, Bernardi R, Morotti A et al (2008) PML targeting eradicates quiescent leukaemia-initiating cells. Nature 453(7198):1072–1078PubMedCrossRef
61.
Zurück zum Zitat Azzi S, Bruno S, Giron-Michel J et al (2011) Differentiation therapy: targeting human renal cancer stem cells with interleukin 15. J Natl Cancer Inst 103(24):1884–1898PubMedCrossRef Azzi S, Bruno S, Giron-Michel J et al (2011) Differentiation therapy: targeting human renal cancer stem cells with interleukin 15. J Natl Cancer Inst 103(24):1884–1898PubMedCrossRef
62.
Zurück zum Zitat Zhang Y, Zhang H, Wang X, Wang J, Zhang X, Zhang Q (2012) The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles. Biomaterials 33(2):679–691PubMedCrossRef Zhang Y, Zhang H, Wang X, Wang J, Zhang X, Zhang Q (2012) The eradication of breast cancer and cancer stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting micelles. Biomaterials 33(2):679–691PubMedCrossRef
63.
Zurück zum Zitat Gupta PB, Fillmore CM, Jiang G et al (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146(4):633–644PubMedCrossRef Gupta PB, Fillmore CM, Jiang G et al (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146(4):633–644PubMedCrossRef
Metadaten
Titel
Dynamic regulation of cancer stem cells and clinical challenges
verfasst von
Chao Ni
Jian Huang
Publikationsdatum
01.04.2013
Verlag
Springer Milan
Erschienen in
Clinical and Translational Oncology / Ausgabe 4/2013
Print ISSN: 1699-048X
Elektronische ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-012-0927-7

Weitere Artikel der Ausgabe 4/2013

Clinical and Translational Oncology 4/2013 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.