Skip to main content
Erschienen in: Archives of Virology 3/2017

17.11.2016 | Original Article

Dynein light chain DYNLL1 subunit facilitates porcine circovirus type 2 intracellular transports along microtubules

verfasst von: Sirin Theerawatanasirikul, Nantawan Phecharat, Chaiwat Prawettongsopon, Wanpen Chaicumpa, Porntippa Lekcharoensuk

Erschienen in: Archives of Virology | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Abstract

Microtubule (MT) and dynein motor proteins facilitate intracytoplasmic transport of cellular proteins. Various viruses utilize microtubules and dynein for their movement from the cell periphery to the nucleus. The aim of this study was to investigate the intracellular transport of porcine circovirus type 2 (PCV2) via 8 kDa dynein light chain (DYNLL1, LC8) subunit along the MTs. At 20 μM, vinblastine sulfate inhibited tubulin polymerization resulting in disorganized morphology. In PCV2-infected PK-15 cells, double immunofluorescent labeling showed that the viral particles appeared at the cell periphery and gradually moved to the microtubule organization center (MTOC) at 0−12 hour post inoculation (hpi) while at 20−24 hpi they accumulated in the nucleus. Co-localization between DYNLL1 and PCV2 particles was observed clearly at 8−12 hpi. At 20−24 hpi, most aggregated tubulin had a paracrystalline appearance at the MTOC around the nucleus in vinblastine-treated, PCV2-infected PK-15 cells. Between 12 and 24 hpi, PCV2 particles were still bound to DYNLL1 before they were translocated to the nucleus in both treatments, indicating that vinblastine sulfate had no effect on the protein-protein co-localization. The DYNLL1 binding motif, LRLQT, was found near the C-terminus of PCV2 capsid protein (Cap). Molecular docking analysis confirmed the specific interaction between these residues and the cargo binding site on DYNLL1. Our study clearly demonstrated that dynein, in particular DYNLL1, mediated PCV2 intracellular trafficking. The results could explain, at least in part, the viral transport mechanism by DYNLL1 via MT during PCV2 infection.
Literatur
1.
Zurück zum Zitat Radtke K, Dohner K, Sodeik B (2006) Viral interactions with the cytoskeleton: a hitchhiker’s guide to the cell. Cell Microbiol 8:387–400CrossRefPubMed Radtke K, Dohner K, Sodeik B (2006) Viral interactions with the cytoskeleton: a hitchhiker’s guide to the cell. Cell Microbiol 8:387–400CrossRefPubMed
4.
Zurück zum Zitat Döhner K, Nagel C-H, Sodeik B (2005) Viral stop-and-go along microtubules: taking a ride with dynein and kinesins. Trends Microbiol 13:320–327CrossRefPubMed Döhner K, Nagel C-H, Sodeik B (2005) Viral stop-and-go along microtubules: taking a ride with dynein and kinesins. Trends Microbiol 13:320–327CrossRefPubMed
5.
Zurück zum Zitat Hall J, Hall A, Pursifull N, Barbar E (2008) Differences in dynamic structure of LC8 monomer, dimer, and dimer-peptide complexes. Biochemistry 47:11940–11952CrossRefPubMed Hall J, Hall A, Pursifull N, Barbar E (2008) Differences in dynamic structure of LC8 monomer, dimer, and dimer-peptide complexes. Biochemistry 47:11940–11952CrossRefPubMed
6.
Zurück zum Zitat Rapali P, Szenes Á, Radnai L, Bakos A, Pál G, Nyitray L (2011) DYNLL/LC8: A light chain subunit of the dynein motor complex and beyond. FEBS J 278:2980–2996CrossRefPubMed Rapali P, Szenes Á, Radnai L, Bakos A, Pál G, Nyitray L (2011) DYNLL/LC8: A light chain subunit of the dynein motor complex and beyond. FEBS J 278:2980–2996CrossRefPubMed
7.
Zurück zum Zitat Rapali P, Radnai L, Süveges D, Harmat V, Tölgyesi F, Wahlgren WY, Katona G, Nyitray L, Pál G (2011) Directed evolution reveals the binding motif preference of the LC8/DYNLL hub protein and predicts large numbers of novel binders in the human proteome. PLoS One 6:e18818 Rapali P, Radnai L, Süveges D, Harmat V, Tölgyesi F, Wahlgren WY, Katona G, Nyitray L, Pál G (2011) Directed evolution reveals the binding motif preference of the LC8/DYNLL hub protein and predicts large numbers of novel binders in the human proteome. PLoS One 6:e18818
8.
Zurück zum Zitat Alonso C, Miskin J, Hernaez B, Fernandez-Zapatero P, Soto L, Canto C, Rodriguez-Crespo I, Dixon L, Escribano JM (2001) African swine fever virus protein p54 interacts with the microtubular motor complex through direct binding to light-chain dynein. J Virol 75:9819–9827CrossRefPubMedPubMedCentral Alonso C, Miskin J, Hernaez B, Fernandez-Zapatero P, Soto L, Canto C, Rodriguez-Crespo I, Dixon L, Escribano JM (2001) African swine fever virus protein p54 interacts with the microtubular motor complex through direct binding to light-chain dynein. J Virol 75:9819–9827CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Hernáez B, Diaz-Gil G, Garcia-Gallo M, Ignacio Quetglas J, Rodriguez-Crespo I, Dixon L, Escribano JM, Alonso C (2004) The African swine fever virus dynein-binding protein p54 induces infected cell apoptosis. FEBS Lett 569:224–228CrossRefPubMed Hernáez B, Diaz-Gil G, Garcia-Gallo M, Ignacio Quetglas J, Rodriguez-Crespo I, Dixon L, Escribano JM, Alonso C (2004) The African swine fever virus dynein-binding protein p54 induces infected cell apoptosis. FEBS Lett 569:224–228CrossRefPubMed
10.
Zurück zum Zitat Poisson N, Real E, Gaudin Y, Vaney MC, King S, Jacob Y, Tordo N, Blondel D (2001) Molecular basis for the interaction between rabies virus phosphoprotein P and the dynein light chain LC8: dissociation of dynein-binding properties and transcriptional functionality of P. J Gen Virol 82:2691–2696CrossRefPubMed Poisson N, Real E, Gaudin Y, Vaney MC, King S, Jacob Y, Tordo N, Blondel D (2001) Molecular basis for the interaction between rabies virus phosphoprotein P and the dynein light chain LC8: dissociation of dynein-binding properties and transcriptional functionality of P. J Gen Virol 82:2691–2696CrossRefPubMed
11.
Zurück zum Zitat Moseley GW, Roth DM, DeJesus MA, Leyton DL, Filmer RP, Pouton CW, Jans DA (2007) Dynein light chain association sequences can facilitate nuclear protein import. Mol Biol Cell 18:3204–3213CrossRefPubMedPubMedCentral Moseley GW, Roth DM, DeJesus MA, Leyton DL, Filmer RP, Pouton CW, Jans DA (2007) Dynein light chain association sequences can facilitate nuclear protein import. Mol Biol Cell 18:3204–3213CrossRefPubMedPubMedCentral
12.
13.
Zurück zum Zitat Segales J, Allan G, Domingo M (2005) Porcine circovirus diseases. Anim Health Res Rev 6:119–142CrossRefPubMed Segales J, Allan G, Domingo M (2005) Porcine circovirus diseases. Anim Health Res Rev 6:119–142CrossRefPubMed
14.
Zurück zum Zitat Fan H, Ye Y, Luo Y, Tong T, Yan G, Liao M (2012) Quantitative proteomics using stable isotope labeling with amino acids in cell culture reveals protein and pathway regulation in porcine circovirus type 2 infected PK-15 cells. J Proteome Res 11:995–1008CrossRefPubMed Fan H, Ye Y, Luo Y, Tong T, Yan G, Liao M (2012) Quantitative proteomics using stable isotope labeling with amino acids in cell culture reveals protein and pathway regulation in porcine circovirus type 2 infected PK-15 cells. J Proteome Res 11:995–1008CrossRefPubMed
15.
Zurück zum Zitat Zhang X, Zhou J, Wu Y, Zheng X, Ma G, Wang Z, Jin Y, He J, Yan Y (2009) Differential proteome analysis of host cells infected with porcine circovirus type 2. J Proteome Res 8:5111–5119CrossRefPubMed Zhang X, Zhou J, Wu Y, Zheng X, Ma G, Wang Z, Jin Y, He J, Yan Y (2009) Differential proteome analysis of host cells infected with porcine circovirus type 2. J Proteome Res 8:5111–5119CrossRefPubMed
16.
Zurück zum Zitat Cheng S, Zhang M, Li W, Wang Y, Liu Y, He Q (2012) Proteomic analysis of porcine alveolar macrophages infected with porcine circovirus type 2. J Proteomics 75:3258–3269CrossRefPubMed Cheng S, Zhang M, Li W, Wang Y, Liu Y, He Q (2012) Proteomic analysis of porcine alveolar macrophages infected with porcine circovirus type 2. J Proteomics 75:3258–3269CrossRefPubMed
17.
Zurück zum Zitat Cao J, Lin C, Wang H, Wang L, Zhou N, Jin Y, Liao M, Zhou J (2015) Circovirus transport proceeds via direct interaction of the cytoplasmic dynein IC1 subunit with the viral capsid protein. J Virol 89:2777–2791CrossRefPubMed Cao J, Lin C, Wang H, Wang L, Zhou N, Jin Y, Liao M, Zhou J (2015) Circovirus transport proceeds via direct interaction of the cytoplasmic dynein IC1 subunit with the viral capsid protein. J Virol 89:2777–2791CrossRefPubMed
18.
Zurück zum Zitat Morozov I, Sirinarumitr T, Sorden SD, Halbur PG, Morgan MK, Yoon KJ, Paul PS (1998) Detection of a novel strain of porcine circovirus in pigs with postweaning multisystemic wasting syndrome. J Clin Microbiol 36:2535–2541PubMedPubMedCentral Morozov I, Sirinarumitr T, Sorden SD, Halbur PG, Morgan MK, Yoon KJ, Paul PS (1998) Detection of a novel strain of porcine circovirus in pigs with postweaning multisystemic wasting syndrome. J Clin Microbiol 36:2535–2541PubMedPubMedCentral
19.
Zurück zum Zitat Lekcharoensuk P, Morozov I, Paul PS, Thangthumniyom N, Wajjawalku W, Meng XJ (2004) Epitope mapping of the major capsid protein of type 2 porcine circovirus (PCV2) by using chimeric PCV1 and PCV2. J Virol 78:8135–8145CrossRefPubMedPubMedCentral Lekcharoensuk P, Morozov I, Paul PS, Thangthumniyom N, Wajjawalku W, Meng XJ (2004) Epitope mapping of the major capsid protein of type 2 porcine circovirus (PCV2) by using chimeric PCV1 and PCV2. J Virol 78:8135–8145CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Jantafong T, Boonsoongnern A, Poolperm P, Urairong K, Lekcharoensuk C, Lekcharoensuk P (2011) Genetic characterization of porcine circovirus type 2 in piglets from PMWS-affected and -negative farms in Thailand. Virol J 28:88CrossRef Jantafong T, Boonsoongnern A, Poolperm P, Urairong K, Lekcharoensuk C, Lekcharoensuk P (2011) Genetic characterization of porcine circovirus type 2 in piglets from PMWS-affected and -negative farms in Thailand. Virol J 28:88CrossRef
21.
Zurück zum Zitat Manders EMM, Verbeek FJ, Aten JA (1993) Measurement of colocalization of objects in dual-color confocal images. J Microsc 169:375–382CrossRef Manders EMM, Verbeek FJ, Aten JA (1993) Measurement of colocalization of objects in dual-color confocal images. J Microsc 169:375–382CrossRef
22.
Zurück zum Zitat Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S (2004) Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J 86:3993–4003CrossRefPubMedPubMedCentral Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S (2004) Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J 86:3993–4003CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Bolte S, Cordelieres P (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232CrossRefPubMed Bolte S, Cordelieres P (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224:213–232CrossRefPubMed
24.
Zurück zum Zitat Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin D, Chang JH, Lindquist R, Moffat J, Golland P, Sabatini DM (2006) Cell Profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100CrossRefPubMedPubMedCentral Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin D, Chang JH, Lindquist R, Moffat J, Golland P, Sabatini DM (2006) Cell Profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217CrossRefPubMed Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217CrossRefPubMed
26.
Zurück zum Zitat Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Proc 5:725–738CrossRef Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Proc 5:725–738CrossRef
28.
Zurück zum Zitat Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefPubMed Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefPubMed
29.
Zurück zum Zitat Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461PubMedPubMedCentral Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461PubMedPubMedCentral
30.
Zurück zum Zitat Hirosue S, Senn K, Clément N, Nonnenmacher M, Gigout L, Linden RM, Weber T (2007) Effect of inhibition of dynein function and microtubule-altering drugs on AAV2 transduction. Virology 367:10–18CrossRefPubMedPubMedCentral Hirosue S, Senn K, Clément N, Nonnenmacher M, Gigout L, Linden RM, Weber T (2007) Effect of inhibition of dynein function and microtubule-altering drugs on AAV2 transduction. Virology 367:10–18CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Suikkanen S, Aaltonen T, Nevalainen M, Välilehto O, Lindholm L, Vuento M, Vihinen-Ranta M (2003) Exploitation of microtubule cytoskeleton and dynein during parvoviral traffic toward the nucleus. J Virol 77:10270–10279 Suikkanen S, Aaltonen T, Nevalainen M, Välilehto O, Lindholm L, Vuento M, Vihinen-Ranta M (2003) Exploitation of microtubule cytoskeleton and dynein during parvoviral traffic toward the nucleus. J Virol 77:10270–10279
32.
Zurück zum Zitat Chu JJ, Ng NL (2002) Trafficking mechanism of West Nile (Sarafend) virus structural proteins. J Med Virol 67:127–136CrossRefPubMed Chu JJ, Ng NL (2002) Trafficking mechanism of West Nile (Sarafend) virus structural proteins. J Med Virol 67:127–136CrossRefPubMed
33.
34.
Zurück zum Zitat Su Y, Qiao W, Guo T, Tan J, Li Z, Chen Y, Li X, Li Y, Zhou J, Chen Q (2010) Microtubule-dependent retrograde transport of bovine immunodeficiency virus. Cell Microbiol 12:1098–1107CrossRefPubMed Su Y, Qiao W, Guo T, Tan J, Li Z, Chen Y, Li X, Li Y, Zhou J, Chen Q (2010) Microtubule-dependent retrograde transport of bovine immunodeficiency virus. Cell Microbiol 12:1098–1107CrossRefPubMed
35.
Zurück zum Zitat Gaudin R, Alencar BC, De Arhel N, Benaroch P (2013) HIV trafficking in host cells: motors wanted! Trends Cell Biol 23:652–662CrossRefPubMed Gaudin R, Alencar BC, De Arhel N, Benaroch P (2013) HIV trafficking in host cells: motors wanted! Trends Cell Biol 23:652–662CrossRefPubMed
36.
Zurück zum Zitat Misinzo G, Delputte PL, Lefebvre DJ, Nauwynck HJ (2009) Porcine circovirus 2 infection of epithelial cells is clathrin-, caveolae- and dynamin-independent, actin and Rho-GTPase-mediated, and enhanced by cholesterol depletion. Virus Res 139:1–9CrossRefPubMed Misinzo G, Delputte PL, Lefebvre DJ, Nauwynck HJ (2009) Porcine circovirus 2 infection of epithelial cells is clathrin-, caveolae- and dynamin-independent, actin and Rho-GTPase-mediated, and enhanced by cholesterol depletion. Virus Res 139:1–9CrossRefPubMed
37.
38.
Zurück zum Zitat Martinez-Moreno M, Navarro-Lerida I, Roncal F, Albar JP, Alonso C, Gavilanes F, Rodriguez-Crespo I (2003) Recognition of novel viral sequences that associate with the dynein light chain LC8 identified through a pepscan technique. FEBS Lett 544:262–267CrossRefPubMed Martinez-Moreno M, Navarro-Lerida I, Roncal F, Albar JP, Alonso C, Gavilanes F, Rodriguez-Crespo I (2003) Recognition of novel viral sequences that associate with the dynein light chain LC8 identified through a pepscan technique. FEBS Lett 544:262–267CrossRefPubMed
39.
Zurück zum Zitat Kubota T, Matsuoka M, Chang TH, Bray M, Jones S, Tashiro M, Kato A, Ozato K (2009) Ebolavirus VP35 interacts with the cytoplasmic dynein light chain 8. J Virol 83:6952–6956CrossRefPubMedPubMedCentral Kubota T, Matsuoka M, Chang TH, Bray M, Jones S, Tashiro M, Kato A, Ozato K (2009) Ebolavirus VP35 interacts with the cytoplasmic dynein light chain 8. J Virol 83:6952–6956CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Liang J, Jaffrey SR, Guo W, Snyder SH, Clardy J (1999) Structure of the PIN/LC8 dimer with a bound peptide. Nat Struct Biol 6:735–740CrossRefPubMed Liang J, Jaffrey SR, Guo W, Snyder SH, Clardy J (1999) Structure of the PIN/LC8 dimer with a bound peptide. Nat Struct Biol 6:735–740CrossRefPubMed
41.
Zurück zum Zitat Fan J, Zhang Q, Tochio H, Li M, Zhang M (2001) Structural basis of diverse sequence-dependent target recognition by the 8 kDa dynein light chain. J Mol Biol 306:97–108CrossRefPubMed Fan J, Zhang Q, Tochio H, Li M, Zhang M (2001) Structural basis of diverse sequence-dependent target recognition by the 8 kDa dynein light chain. J Mol Biol 306:97–108CrossRefPubMed
42.
Zurück zum Zitat Lightcap CM, Sun S, Lear JD, Rodeck U, Polenova T, Williams JC (2008) Biochemical and structural characterization of the Pak1–LC8 interaction. J Biol Chem 283:27314–27324CrossRefPubMedPubMedCentral Lightcap CM, Sun S, Lear JD, Rodeck U, Polenova T, Williams JC (2008) Biochemical and structural characterization of the Pak1–LC8 interaction. J Biol Chem 283:27314–27324CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Khayat R, Brunn N, Speir JA, Hardham JM, Ankenbauer RG, Schneemann A, Johnson JE (2011) The 2.3-Angstrom Structure of Porcine Circovirus 2. J Virol 8:7856–7862CrossRef Khayat R, Brunn N, Speir JA, Hardham JM, Ankenbauer RG, Schneemann A, Johnson JE (2011) The 2.3-Angstrom Structure of Porcine Circovirus 2. J Virol 8:7856–7862CrossRef
44.
Zurück zum Zitat Hall J, Karplus PA, Barbar E (2009) Multivalency in the assembly of intrinsically disordered dynein intermediate chain. J Biol Chem 284:33115–33121CrossRefPubMedPubMedCentral Hall J, Karplus PA, Barbar E (2009) Multivalency in the assembly of intrinsically disordered dynein intermediate chain. J Biol Chem 284:33115–33121CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Barbar E (2008) New concepts dynein light chain LC8 is a dimerization hub essential in diverse. Biochemistry 47:1–6CrossRef Barbar E (2008) New concepts dynein light chain LC8 is a dimerization hub essential in diverse. Biochemistry 47:1–6CrossRef
Metadaten
Titel
Dynein light chain DYNLL1 subunit facilitates porcine circovirus type 2 intracellular transports along microtubules
verfasst von
Sirin Theerawatanasirikul
Nantawan Phecharat
Chaiwat Prawettongsopon
Wanpen Chaicumpa
Porntippa Lekcharoensuk
Publikationsdatum
17.11.2016
Verlag
Springer Vienna
Erschienen in
Archives of Virology / Ausgabe 3/2017
Print ISSN: 0304-8608
Elektronische ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-016-3140-0

Weitere Artikel der Ausgabe 3/2017

Archives of Virology 3/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.