Skip to main content
Erschienen in: Molecular Cancer 1/2018

Open Access 01.12.2018 | Letter to the Editor

E-cadherin signal sequence disruption: a novel mechanism underlying hereditary cancer

verfasst von: Joana Figueiredo, Soraia Melo, Kimberley Gamet, Tanis Godwin, Susana Seixas, João M. Sanches, Parry Guilford, Raquel Seruca

Erschienen in: Molecular Cancer | Ausgabe 1/2018

Abstract

The aim of this study was to uncover the pathogenic relevance and the underlying molecular mechanism of a novel CDH1 variant found in a Hereditary Diffuse Gastric Cancer family (p.L13_L15del), which affects the signal peptide of E-cadherin without changing the remaining predicted sequence. We verified that p.L13_L15del cells yield low levels of E-cadherin, decreased cell adhesion and enhanced cell invasion. Further, we demonstrated that the disruption of the highly conserved hydrophobic core of the signal peptide hampers the binding of cellular components crucial for E-cadherin translation and translocation into the endoplasmic reticulum, constituting a new molecular basis for the loss of a tumour suppressor gene causative of hereditary cancer.
Begleitmaterial
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12943-018-0859-0) contains supplementary material, which is available to authorized users.
Joana Figueiredo and Soraia Melo contributed equally to this work.
Abkürzungen
DMSO
Dimethyl sulfoxide
ER
Endoplasmic reticulum
HDGC
Hereditary Diffuse Gastric Cancer
SRP
Signal recognition particle

Main text

To date, more than 155 loss-of-function CDH1 mutations have been described in Hereditary Diffuse Gastric Cancer (HDGC) [1]. The most common alterations induce the occurrence of premature termination codons with an obvious deleterious effect [2].
The mature E-cadherin, encoded by the CDH1 gene, is a powerful adhesion molecule that contains a long extracellular domain responsible for the homophilic binding to cadherins presented on neighbouring cells, a transmembrane domain, and a cytoplasmic portion that supports the assembly of catenins and their anchorage to the cytoskeleton [3]. Importantly, before protein processing, the immature molecule also encompasses a short signal peptide and a precursor region preceding the extracellular domain [3]. Signal peptides serve as docking sites for the signal recognition particle (SRP), the main molecule responsible for detecting the translocation code of secretory and membrane proteins [4, 5].
Despite the remarkable biological function of the signal peptide, genetic changes occurring in this region are often ignored. The present study reports a novel CDH1 germline variant found in a HDGC family, which affects the signal peptide core of E-cadherin and maintains an intact mature protein.

Results and discussion

Description of the family

The heterozygous germline mutation c.38_46del, leading to the amino acid deletion p.L13_L15del, was identified by direct sequencing in a 33-year old woman from New Zealand (patient A). Histological examination of gastric specimens revealed that the proband was affected by signet ring cell (diffuse) carcinoma. One paternal aunt and a cousin were diagnosed with the same type of neoplasia and died at 40 and 30 years of age (Fig. 1a). The affected cousin, as well as patient A’s father were carriers of the same genetic alteration. Of note, this mutation was not found in the largest database of human genetic variation to date (gnomAD: The Genome Aggregation Database) comprising several thousand of unrelated individuals [6].

P.L13_L15del variant induces decreased total and membrane E-cadherin expression

To determine the pathogenicity of the L13_L15del CDH1 mutation, we first studied the conservation of the signal peptide. We performed a multiple sequence alignment of the E-cadherin amino acid sequence from different species and of P-cadherin, given the similarity of both cadherins with respect to their cell-to-cell adhesive function and epithelial expression [3]. Although most of the sequence is variable, the signal hydrophobic core is highly conserved across different cadherins (Fig. 1b). The p.L13_L15del mutation affects this specific region by removing three amino acids from the six that comprise the hydrophobic region, which suggests its possible functional relevance. Accordingly, PROVEAN software predicts a deleterious effect for this mutation with a score of − 6.102 (score ≤ − 2.5 is considered deleterious, Additional file 1: Table S1). A putative effect on the signal peptide cleavage was also tested and, while the predicted cleavage site of the wild-type and the variant sequences remains unchanged, the probability of the variant to generate a functional signal peptide is greatly decreased (Additional file 2: Figure S1). In addition, we could confirm p.L13_L15del mutation as “likely affecting signal peptide quality” through the inhibition of protein translocation to the endoplasmic reticulum (ER) membrane (min(∆C)= − 0.321 > min(∆S)= − 0.430) [7].
To assess the impact of the p.L13_L15del alteration in vitro, we transfected E-cadherin negative cells with vectors encoding the wild-type protein and the variant, as well as the empty vector, as a control (Additional file 3: Methods and Materials). Despite similar transfection efficiencies in all conditions, we verified that total protein levels were significantly reduced in the mutant cells, when compared with the wild-type expressing cells (Fig. 1c). An abnormal pattern of E-cadherin localization was also detected by immunofluorescence in most of the cells. In contrast to the strong membrane staining presented by the great majority of the wild-type cells, the p.L13_L15del cells displayed very low levels of E-cadherin at the membrane and, occasionally, aberrant cytoplasmic accumulation of the protein (Fig. 1d). Quantitative evaluation of the staining showed more intense E-cadherin in the wild-type cells when compared with those expressing the p.L13_L15del (Fig. 1e). This difference is also reflected in fluorescence intensity exhibited at the plasma membrane.
Taken together, these results indicate that the p.L13_L15del variant affects a conserved region of the E-cadherin signal peptide and impacts protein expression (the total level and the membrane fraction).

p.L13_L15del variant affects the adhesive and anti-invasive function of E-cadherin

To investigate the functional significance of p.L13_L15del variant, we tested cell invasive properties and cell-to-cell adhesiveness (Fig. 1f-h). In contrast to the transfection of wild-type E-cadherin, which significantly decreases the number of invasive cells, the variant is not able to efficiently suppress invasion through a matrigel matrix. Regarding adhesion, wild-type cells form large and compact aggregates with an average area of 20,277 pixels2, contrasting with p.L13_L15del expressing cells, which exhibit an isolated appearance with cellular structures of 5662 pixels2. Overall, our findings strongly support the pathogenic nature of the p.L13_L15del variant.

P.L13_L15del does not induce abnormal protein trafficking or premature degradation

Finally, we determined the molecular mechanism underlying the deleterious effects of p.L13_L15del at the signal peptide of E-cadherin. Possible alterations at the RNA level were first evaluated by real-time PCR. We verified that CDH1 mRNA levels were not significantly changed both in wild-type and in the variant conditions, despite the huge difference at the protein level (Fig. 2a). To exclude protein trafficking deregulation or premature degradation by quality control mechanisms, we treated the cells with DMSO chemical chaperone and MG132 proteasome inhibitor. Upon DMSO treatment, no effect was detected in either E-cadherin total expression, number of E-cadherin positive cells, or staining intensity of mutant cells (Fig. 2b-f). Proteasome inhibition induced a significant increase in p.L13_L15del protein levels and a slight increase in the number of cells expressing E-cadherin, as well as in the number of molecules present at the membrane. However, these increased levels were significantly different from those observed in the wild-type cells.
With this set of experiments, we demonstrated that the deleterious effect of p.L13_L15del is not dependent on protein trafficking deregulation or on its early degradation.

P.L13_L15del hampers E-cadherin translation and processing

To test the involvement of post-translational machinery in the regulation of the p.L13_L15del mutant, we set up a cell-free system for in vitro protein translation (Fig. 3b). The approach allows coupled transcription and translation of a specific DNA sequence without the action of intermediate and regulatory cellular moieties. Vectors encoding the wild-type and the mutant CDH1 cDNAs were used as templates for the production of E-cadherin molecules. E-cadherin synthesis was subsequently detected by immunoblot and it was verified that the wild-type and the p.L13_L15del plasmids produce similar amounts of the protein, in contrast to the clear difference observed in the cell model system (Fig. 3c-g).
To determine the impact of the specific leucine residues from the hydrophobic core in protein translation, a series of mutants was engineered. The sequential deletion of one, two or three leucine residues produces a decreasing effect on the quantity of E-cadherin molecules that are translated by the cells and that are exposed at the cell surface (Fig. 3f-g and Additional file 4: Figure S2). Concordant results were obtained by in silico analysis of these mutants, where the p.L13_L15del always displayed stronger deleterious effect than the p.L14_L15del, and the p.L15del behaved as a nearly neutral variant (Additional file 1: Table S1). Remarkably, in the cell-free system, no decreasing effects were observed in protein levels of any of the mutants when compared with the wild-type condition. These findings demonstrated that p.L13_L15del impairs the interaction of E-cadherin with post-translational machinery, decreasing protein synthesis, ER import and membrane activity. Further, we verified that the impairment of protein translation is dependent on the extension of the signal peptide core disruption.
Interestingly, two different germline mutations affecting the signal peptide core and which do not induce truncated CDH1 forms were previously identified in diffuse gastric cancer cases: c.44_46del (p.L15del) and c.46insTGC (p.L15dup) [810]. Taking into account our results, both mutations are unlikely to cause HDGC. In fact, we demonstrated that p.L15del does not affect the function of the signal peptide, and in the case of p.L15dup, the integrity of the signal peptide core is preserved, which is indicative of normal translation and translocation into the ER.
In summary, this is the first description that the CDH1 signal peptide core is essential for E-cadherin synthesis and delivery. The failure in this checkpoint leads to loss of protein expression and function, and ultimately to disease.

Acknowledgments

We acknowledge Dr. Victoria Beshay from the Peter MacCallum Cancer Center (Melbourne, Australia) for DNA sequencing.

Funding

This work was financed by FEDER funds through the Operational Programme for Competitiveness Factors (COMPETE), Programa Operacional Regional do Norte (Norte 2020) and by National Funds through the Portuguese Foundation for Science and Technology (FCT), under the projects PTDC/BIM-ONC/0171/2012, PTDC/BIM-ONC/0281/2014, PTDC/BBB-IMG/0283/2014, NORTE-01-0145-FEDER-000029; Post-Doctoral grant SFRH/BPD/87705/2012-JF and Doctoral grant SFRH/BD/108009/2015-SM. We acknowledge the American Association of Patients with Hereditary Gastric Cancer “No Stomach for Cancer” for funding Seruca and Figueiredo research.

Availability of data and materials

All data generated or analysed during this study are included in this published article [and its Additional files].
Biopsy samples were collected from the Pathology Department at North Shore Hospital, Auckland, and informed consent was obtained from the affected family members.
We have obtained consent to publish this paper from the participants of this study.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Anhänge

Additional files

Literatur
1.
Zurück zum Zitat van der Post RS, Vogelaar IP, Carneiro F, Guilford P, Huntsman D, Hoogerbrugge N, Caldas C, Schreiber KE, Hardwick RH, Ausems MG, et al. Hereditary diffuse gastric cancer: updated clinical guidelines with an emphasis on germline CDH1 mutation carriers. J Med Genet. 2015;52:361–74.CrossRefPubMedPubMedCentral van der Post RS, Vogelaar IP, Carneiro F, Guilford P, Huntsman D, Hoogerbrugge N, Caldas C, Schreiber KE, Hardwick RH, Ausems MG, et al. Hereditary diffuse gastric cancer: updated clinical guidelines with an emphasis on germline CDH1 mutation carriers. J Med Genet. 2015;52:361–74.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Oliveira C, Pinheiro H, Figueiredo J, Seruca R, Carneiro F. Familial gastric cancer: genetic susceptibility, pathology, and implications for management. Lancet Oncol. 2015;16:e60–70.CrossRefPubMed Oliveira C, Pinheiro H, Figueiredo J, Seruca R, Carneiro F. Familial gastric cancer: genetic susceptibility, pathology, and implications for management. Lancet Oncol. 2015;16:e60–70.CrossRefPubMed
3.
Zurück zum Zitat Paredes J, Figueiredo J, Albergaria A, Oliveira P, Carvalho J, Ribeiro AS, Caldeira J, Costa AM, Simoes-Correia J, Oliveira MJ, et al. Epithelial E- and P-cadherins: role and clinical significance in cancer. Biochim Biophys Acta. 1826;2012:297–311. Paredes J, Figueiredo J, Albergaria A, Oliveira P, Carvalho J, Ribeiro AS, Caldeira J, Costa AM, Simoes-Correia J, Oliveira MJ, et al. Epithelial E- and P-cadherins: role and clinical significance in cancer. Biochim Biophys Acta. 1826;2012:297–311.
4.
Zurück zum Zitat Halic M, Becker T, Pool MR, Spahn CM, Grassucci RA, Frank J, Beckmann R. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature. 2004;427:808–14.CrossRefPubMed Halic M, Becker T, Pool MR, Spahn CM, Grassucci RA, Frank J, Beckmann R. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature. 2004;427:808–14.CrossRefPubMed
5.
Zurück zum Zitat Janda CY, Li J, Oubridge C, Hernandez H, Robinson CV, Nagai K. Recognition of a signal peptide by the signal recognition particle. Nature. 2010;465:507–10.CrossRefPubMedPubMedCentral Janda CY, Li J, Oubridge C, Hernandez H, Robinson CV, Nagai K. Recognition of a signal peptide by the signal recognition particle. Nature. 2010;465:507–10.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O'Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.CrossRefPubMedPubMedCentral Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O'Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Hon LS, Zhang Y, Kaminker JS, Zhang Z. Computational prediction of the functional effects of amino acid substitutions in signal peptides using a model-based approach. Hum Mutat. 2009;30:99–106.CrossRefPubMed Hon LS, Zhang Y, Kaminker JS, Zhang Z. Computational prediction of the functional effects of amino acid substitutions in signal peptides using a model-based approach. Hum Mutat. 2009;30:99–106.CrossRefPubMed
8.
Zurück zum Zitat Chen QH, Deng W, Li XW, Liu XF, Wang JM, Wang LF, Xiao N, He Q, Wang YP, Fan YM. Novel CDH1 germline mutations identified in Chinese gastric cancer patients. World J Gastroenterol. 2013;19:909–16.CrossRefPubMedPubMedCentral Chen QH, Deng W, Li XW, Liu XF, Wang JM, Wang LF, Xiao N, He Q, Wang YP, Fan YM. Novel CDH1 germline mutations identified in Chinese gastric cancer patients. World J Gastroenterol. 2013;19:909–16.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Guilford P, Humar B, Blair V. Hereditary diffuse gastric cancer: translation of CDH1 germline mutations into clinical practice. Gastric Cancer. 2010;13:1–10.CrossRefPubMed Guilford P, Humar B, Blair V. Hereditary diffuse gastric cancer: translation of CDH1 germline mutations into clinical practice. Gastric Cancer. 2010;13:1–10.CrossRefPubMed
10.
Zurück zum Zitat Hansford S, Kaurah P, Li-Chang H, Woo M, Senz J, Pinheiro H, Schrader KA, Schaeffer DF, Shumansky K, Zogopoulos G, et al. Hereditary diffuse gastric Cancer syndrome: CDH1 mutations and beyond. JAMA Oncol. 2015;1:23–32.CrossRefPubMed Hansford S, Kaurah P, Li-Chang H, Woo M, Senz J, Pinheiro H, Schrader KA, Schaeffer DF, Shumansky K, Zogopoulos G, et al. Hereditary diffuse gastric Cancer syndrome: CDH1 mutations and beyond. JAMA Oncol. 2015;1:23–32.CrossRefPubMed
Metadaten
Titel
E-cadherin signal sequence disruption: a novel mechanism underlying hereditary cancer
verfasst von
Joana Figueiredo
Soraia Melo
Kimberley Gamet
Tanis Godwin
Susana Seixas
João M. Sanches
Parry Guilford
Raquel Seruca
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Molecular Cancer / Ausgabe 1/2018
Elektronische ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-018-0859-0

Weitere Artikel der Ausgabe 1/2018

Molecular Cancer 1/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.