Skip to main content
Erschienen in: Tumor Biology 12/2016

04.10.2016 | Original Article

E2F-1 promotes DAPK2-induced anti-tumor immunity of gastric cancer cells by targeting miR-34a

verfasst von: Lin-Hai Yan, Zhi-Ning Chen, Li Li, Jia Chen, Xian-Wei Mo, Yu-Zhou Qin, Wen-E Wei, Hai-Quan Qin, Yuan Lin, Jian-Si Chen

Erschienen in: Tumor Biology | Ausgabe 12/2016

Einloggen, um Zugang zu erhalten

Abstract

Activation of the transcription factor E2F-1 gene is a negative event in dendritic cell (DC) maturation process. Down-regulation of E2F1 causes immaturity of DC thereby stopping antigen production which in turn leads to inhibition of immune responses. E2F-1-free stimulates the NF-kB signaling pathway, leading to activation of monocytes and several other transcription factor genes. In the study, we report that down-regulation of E2F-1 in DCs promote anti-tumor immune response in gastric cancer (GC) cells through a novel mechanism. DCs were isolated from peripheral blood mononuclear cells. E2F-1 small interfering RNA (E2F-1-shRNA) induced down-regulation of E2F-1 mRNA and protein expression in DCs. Furthermore, we identified the E2F-1-shRNA targeted the CD80, CD83, CD86, and MHC II molecules, promoted their expression, and induced T lymphocytes proliferation activity and up-regulation of IFN-Ī³ production and GC cell killing effect, which significantly correlated with the cytotoxic T lymphocytes activated by E2F-1-shRNA DCs. The higher expression of miR-34a was found which was significantly correlated with the DC enhancing anti-tumor immunity against gastric cancer cell, and miR-34a potently targeted DAPK2 and Sp1, both of which were involved in the deactivation of E2F-1. Moreover, in E2F-1-DC-down-regulation in mice, GC transplantation tumors displayed down-regulation of Sp1, DAPK2, Caspase3, and Caspase7 and progressed to anti-tumor immunity. Collectively, our data uncover an E2F-1-mediated mechanism for the control of DC anti-tumor immunity via miR-34a-dependent down-regulation of E2F-1 expression and suggest its contribution to GC immunotherapy.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zhou M, Wang H, Zhu J, Chen W, Wang L, Liu S, et al. Cause-specific mortality for 240 causes in China during 1990-2013: a systematic subnational analysis for the global burden of disease study 2013. Lancet. 2015;23:551–6. Zhou M, Wang H, Zhu J, Chen W, Wang L, Liu S, et al. Cause-specific mortality for 240 causes in China during 1990-2013: a systematic subnational analysis for the global burden of disease study 2013. Lancet. 2015;23:551–6.
2.
Zurück zum Zitat van Beek JJ, Wimmers F, Hato SV, de Vries IJ, Skold AE. Dendritic cell cross talk with innate and innate-like effector cells in antitumor immunity: implications for DC vaccination. Crit Rev Immunol. 2014;34:517–36.CrossRefPubMed van Beek JJ, Wimmers F, Hato SV, de Vries IJ, Skold AE. Dendritic cell cross talk with innate and innate-like effector cells in antitumor immunity: implications for DC vaccination. Crit Rev Immunol. 2014;34:517–36.CrossRefPubMed
3.
Zurück zum Zitat N'Diaye M, Warnecke A, Flytzani S, Abdelmagid N, Ruhrmann S, Olsson T, Jagodic M, et al. Rat bone marrow-derived dendritic cells generated with GM-CSF/IL-4 or FLT3L exhibit distinct phenotypical and functional characteristics. J Leukoc Biol. 2015;29:e914. N'Diaye M, Warnecke A, Flytzani S, Abdelmagid N, Ruhrmann S, Olsson T, Jagodic M, et al. Rat bone marrow-derived dendritic cells generated with GM-CSF/IL-4 or FLT3L exhibit distinct phenotypical and functional characteristics. J Leukoc Biol. 2015;29:e914.
4.
Zurück zum Zitat Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.CrossRefPubMed Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.CrossRefPubMed
5.
Zurück zum Zitat Yin X, Johns SC, Kim D, Mikulski Z, Salanga CL, Handel TM, et al. Lymphatic specific disruption in the fine structure of heparan sulfate inhibits dendritic cell traffic and functional T cell responses in the lymph node. J Immunol. 2014;192:2133–42.CrossRefPubMedPubMedCentral Yin X, Johns SC, Kim D, Mikulski Z, Salanga CL, Handel TM, et al. Lymphatic specific disruption in the fine structure of heparan sulfate inhibits dendritic cell traffic and functional T cell responses in the lymph node. J Immunol. 2014;192:2133–42.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Fang F, Wang Y, Li R, Zhao Y, Guo Y, Jiang M, Sun J, et al. Transcription factor E2F1 suppresses dendritic cell maturation. J Immunol. 2010;184:6084–91.CrossRefPubMed Fang F, Wang Y, Li R, Zhao Y, Guo Y, Jiang M, Sun J, et al. Transcription factor E2F1 suppresses dendritic cell maturation. J Immunol. 2010;184:6084–91.CrossRefPubMed
7.
Zurück zum Zitat Desrichard A, Snyder A, Chan TA. Cancer neoantigens and applications for immunotherapy. Clin Cancer Res. 2015;22:1–6. Desrichard A, Snyder A, Chan TA. Cancer neoantigens and applications for immunotherapy. Clin Cancer Res. 2015;22:1–6.
9.
Zurück zum Zitat Yan LH, Wei WY, Cao WL, Zhang XS, Xie YB, Xiao Q. Overexpression of E2F1 in human gastric carcinoma is involved in anti-cancer drug resistance. BMC Cancer. 2014;14:904.CrossRefPubMedPubMedCentral Yan LH, Wei WY, Cao WL, Zhang XS, Xie YB, Xiao Q. Overexpression of E2F1 in human gastric carcinoma is involved in anti-cancer drug resistance. BMC Cancer. 2014;14:904.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Yamasaki L, Jacks T, Bronson R, Goillot E, Harlow E, Dyson NJ. Tumor induction and tissue atrophy in mice lacking E2F-1. Cell. 1996;85:537–48.CrossRefPubMed Yamasaki L, Jacks T, Bronson R, Goillot E, Harlow E, Dyson NJ. Tumor induction and tissue atrophy in mice lacking E2F-1. Cell. 1996;85:537–48.CrossRefPubMed
11.
Zurück zum Zitat Field SJ, Tsai FY, Kuo F, Zubiaga AM, Kaelin Jr WG, et al. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell. 1996;85:549–61.CrossRefPubMed Field SJ, Tsai FY, Kuo F, Zubiaga AM, Kaelin Jr WG, et al. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell. 1996;85:549–61.CrossRefPubMed
12.
Zurück zum Zitat Zhu JW, Field SJ, Gore L, Thompson M, Yang H, Fujiwara Y, et al. E2F1 and E2F2 determine thresholds for antigen-induced T-cell proliferation and suppress tumorigenesis. Mol Cell Biol. 2001;21:8547–64.CrossRefPubMedPubMedCentral Zhu JW, Field SJ, Gore L, Thompson M, Yang H, Fujiwara Y, et al. E2F1 and E2F2 determine thresholds for antigen-induced T-cell proliferation and suppress tumorigenesis. Mol Cell Biol. 2001;21:8547–64.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Yan LH, Wang XT, Yang J, Kong FB, Lian C, Wei WY, et al. Reversal of multidrug resistance in gastric cancer cells by E2F-1 downregulation in vitro and in vivo, J. Cell Biochem. 2014;115:34–41.CrossRef Yan LH, Wang XT, Yang J, Kong FB, Lian C, Wei WY, et al. Reversal of multidrug resistance in gastric cancer cells by E2F-1 downregulation in vitro and in vivo, J. Cell Biochem. 2014;115:34–41.CrossRef
14.
Zurück zum Zitat Kuang Y, Weng X, Liu X, Zhu H, Chen Z, Jiang B, et al. Anti-tumor immune response induced by dendritic cells transduced with truncated PSMA IRES 4-1BBL recombinant adenoviruses. Cancer Lett. 2010;293:254–62.CrossRefPubMed Kuang Y, Weng X, Liu X, Zhu H, Chen Z, Jiang B, et al. Anti-tumor immune response induced by dendritic cells transduced with truncated PSMA IRES 4-1BBL recombinant adenoviruses. Cancer Lett. 2010;293:254–62.CrossRefPubMed
15.
Zurück zum Zitat Aranda F, Vacchelli E, Eggermont A, Galon J, Sautes-Fridman C, Tartour E, Zitvogel L, Kroemer G, et al. Trial watch: peptide vaccines in cancer therapy. Oncoimmunology. 2013;2:e26621.CrossRefPubMedPubMedCentral Aranda F, Vacchelli E, Eggermont A, Galon J, Sautes-Fridman C, Tartour E, Zitvogel L, Kroemer G, et al. Trial watch: peptide vaccines in cancer therapy. Oncoimmunology. 2013;2:e26621.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Zheng C, Ren Z, Wang H, Zhang W, Kalvakolanu DV, Tian Z, et al. E2F1 induces tumor cell survival via nuclear factor-kappaB-dependent induction of EGR1 transcription in prostate cancer cells. Cancer Res. 2009;69:2324–31.CrossRefPubMed Zheng C, Ren Z, Wang H, Zhang W, Kalvakolanu DV, Tian Z, et al. E2F1 induces tumor cell survival via nuclear factor-kappaB-dependent induction of EGR1 transcription in prostate cancer cells. Cancer Res. 2009;69:2324–31.CrossRefPubMed
17.
Zurück zum Zitat Britschgi A, Trinh E, Rizzi M, Jenal M, Ress A, Tobler A, et al. DAPK2 is a novel E2F1/KLF6 target gene involved in their proapoptotic function. Oncogene. 2008;27:5706–16.CrossRefPubMed Britschgi A, Trinh E, Rizzi M, Jenal M, Ress A, Tobler A, et al. DAPK2 is a novel E2F1/KLF6 target gene involved in their proapoptotic function. Oncogene. 2008;27:5706–16.CrossRefPubMed
18.
Zurück zum Zitat Nencioni A, Grunebach F, Schmidt SM, Muller MR, Boy D, Patrone F, et al. The use of dendritic cells in cancer immunotherapy. Crit Rev Oncol Hematol. 2008;65:191–9.CrossRefPubMed Nencioni A, Grunebach F, Schmidt SM, Muller MR, Boy D, Patrone F, et al. The use of dendritic cells in cancer immunotherapy. Crit Rev Oncol Hematol. 2008;65:191–9.CrossRefPubMed
19.
Zurück zum Zitat Aslanidi GV, Rivers AE, Ortiz L, Govindasamy L, Ling C, Jayandharan GR, et al. High-efficiency transduction of human monocyte-derived dendritic cells by capsid-modified recombinant AAV2 vectors. Vaccine. 2012;30:3908–17.CrossRefPubMedPubMedCentral Aslanidi GV, Rivers AE, Ortiz L, Govindasamy L, Ling C, Jayandharan GR, et al. High-efficiency transduction of human monocyte-derived dendritic cells by capsid-modified recombinant AAV2 vectors. Vaccine. 2012;30:3908–17.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Wang B, Ma A, Zhang L, Jin WL, Qian Y, Xu G, et al. POH1 deubiquitylates and stabilizes E2F1 to promote tumour formation. Nat Commun. 2015;6:8704.CrossRefPubMedPubMedCentral Wang B, Ma A, Zhang L, Jin WL, Qian Y, Xu G, et al. POH1 deubiquitylates and stabilizes E2F1 to promote tumour formation. Nat Commun. 2015;6:8704.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat DeRyckere D, DeGregori J. E2F1 and E2F2 are differentially required for homeostasis-driven and antigen-induced T cell proliferation in vivo. J Immunol. 2005;175:647–55.CrossRefPubMed DeRyckere D, DeGregori J. E2F1 and E2F2 are differentially required for homeostasis-driven and antigen-induced T cell proliferation in vivo. J Immunol. 2005;175:647–55.CrossRefPubMed
22.
Zurück zum Zitat Li M, Zhang X, Zheng X, Lian D, Zhang ZX, Ge W, et al. Immune modulation and tolerance induction by RelB-silenced dendritic cells through RNA interference. J Immunol. 2007;178:5480–7.CrossRefPubMed Li M, Zhang X, Zheng X, Lian D, Zhang ZX, Ge W, et al. Immune modulation and tolerance induction by RelB-silenced dendritic cells through RNA interference. J Immunol. 2007;178:5480–7.CrossRefPubMed
23.
Zurück zum Zitat Lind EF, Ahonen CL, Wasiuk A, Kosaka Y, Becher B, Bennett KA, et al. Dendritic cells require the NF-kappaB2 pathway for cross-presentation of soluble antigens. J Immunol. 2008;181:354–63.CrossRefPubMed Lind EF, Ahonen CL, Wasiuk A, Kosaka Y, Becher B, Bennett KA, et al. Dendritic cells require the NF-kappaB2 pathway for cross-presentation of soluble antigens. J Immunol. 2008;181:354–63.CrossRefPubMed
24.
Zurück zum Zitat Mann J, Oakley F, Johnson PW, Mann DA. CD40 induces interleukin-6 gene transcription in dendritic cells: regulation by TRAF2, AP-1, NF-kappa B, AND CBF1. J Biol Chem. 2002;277:17125–38.CrossRefPubMed Mann J, Oakley F, Johnson PW, Mann DA. CD40 induces interleukin-6 gene transcription in dendritic cells: regulation by TRAF2, AP-1, NF-kappa B, AND CBF1. J Biol Chem. 2002;277:17125–38.CrossRefPubMed
25.
Zurück zum Zitat Jafarinejad-Farsangi S, Farazmand A, Mahmoudi M, Gharibdoost F, Karimizadeh E, Noorbakhsh F, et al. MicroRNA-29a induces apoptosis via increasing the Bax:Bcl-2 ratio in dermal fibroblasts of patients with systemic sclerosis. Autoimmunity. 2015;48:369–78.CrossRefPubMed Jafarinejad-Farsangi S, Farazmand A, Mahmoudi M, Gharibdoost F, Karimizadeh E, Noorbakhsh F, et al. MicroRNA-29a induces apoptosis via increasing the Bax:Bcl-2 ratio in dermal fibroblasts of patients with systemic sclerosis. Autoimmunity. 2015;48:369–78.CrossRefPubMed
26.
Zurück zum Zitat Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 2007;26:5017–22.CrossRefPubMed Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 2007;26:5017–22.CrossRefPubMed
27.
Zurück zum Zitat Xu X, Chen W, Miao R, Zhou Y, Wang Z, Zhang L, et al. miR-34a induces cellular senescence via modulation of telomerase activity in human hepatocellular carcinoma by targeting FoxM1/c-Myc pathway. Oncotarget. 2015;6:3988–4004.CrossRefPubMedPubMedCentral Xu X, Chen W, Miao R, Zhou Y, Wang Z, Zhang L, et al. miR-34a induces cellular senescence via modulation of telomerase activity in human hepatocellular carcinoma by targeting FoxM1/c-Myc pathway. Oncotarget. 2015;6:3988–4004.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Tryndyak VP, Ross SA, Beland FA, Pogribny IP. Down-regulation of the microRNAs miR-34a, miR-127, and miR-200b in rat liver during hepatocarcinogenesis induced by a methyl-deficient diet. Mol Carcinog. 2009;48:479–87.CrossRefPubMed Tryndyak VP, Ross SA, Beland FA, Pogribny IP. Down-regulation of the microRNAs miR-34a, miR-127, and miR-200b in rat liver during hepatocarcinogenesis induced by a methyl-deficient diet. Mol Carcinog. 2009;48:479–87.CrossRefPubMed
29.
Zurück zum Zitat Kumamoto K, Spillare EA, Fujita K, Horikawa I, Yamashita T, Appella E, et al. Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence. Cancer Res. 2008;68:3193–203.CrossRefPubMedPubMedCentral Kumamoto K, Spillare EA, Fujita K, Horikawa I, Yamashita T, Appella E, et al. Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence. Cancer Res. 2008;68:3193–203.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M, et al. p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ. 2010;17:236–45.CrossRefPubMed Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M, et al. p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ. 2010;17:236–45.CrossRefPubMed
31.
Zurück zum Zitat Bai XY, Ma Y, Ding R, Fu B, Shi S, Chen XM. miR-335 and miR-34a promote renal senescence by suppressing mitochondrial antioxidative enzymes. J Am Soc Nephrol. 2011;22:1252–61.CrossRefPubMedPubMedCentral Bai XY, Ma Y, Ding R, Fu B, Shi S, Chen XM. miR-335 and miR-34a promote renal senescence by suppressing mitochondrial antioxidative enzymes. J Am Soc Nephrol. 2011;22:1252–61.CrossRefPubMedPubMedCentral
Metadaten
Titel
E2F-1 promotes DAPK2-induced anti-tumor immunity of gastric cancer cells by targeting miR-34a
verfasst von
Lin-Hai Yan
Zhi-Ning Chen
Li Li
Jia Chen
Xian-Wei Mo
Yu-Zhou Qin
Wen-E Wei
Hai-Quan Qin
Yuan Lin
Jian-Si Chen
Publikationsdatum
04.10.2016
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 12/2016
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-5446-7

Weitere Artikel der Ausgabe 12/2016

Tumor Biology 12/2016 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.