Skip to main content
main-content

22.01.2019 | Original Article | Ausgabe 4/2019 Open Access

International Journal of Computer Assisted Radiology and Surgery 4/2019

Early esophageal adenocarcinoma detection using deep learning methods

Zeitschrift:
International Journal of Computer Assisted Radiology and Surgery > Ausgabe 4/2019
Autoren:
Noha Ghatwary, Massoud Zolgharni, Xujiong Ye
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Purpose

This study aims to adapt and evaluate the performance of different state-of-the-art deep learning object detection methods to automatically identify esophageal adenocarcinoma (EAC) regions from high-definition white light endoscopy (HD-WLE) images.

Method

Several state-of-the-art object detection methods using Convolutional Neural Networks (CNNs) were adapted to automatically detect abnormal regions in the esophagus HD-WLE images, utilizing VGG’16 as the backbone architecture for feature extraction. Those methods are Regional-based Convolutional Neural Network (R-CNN), Fast R-CNN, Faster R-CNN and Single-Shot Multibox Detector (SSD). For the evaluation of the different methods, 100 images from 39 patients that have been manually annotated by five experienced clinicians as ground truth have been tested.

Results

Experimental results illustrate that the SSD and Faster R-CNN networks show promising results, and the SSD outperforms other methods achieving a sensitivity of 0.96, specificity of 0.92 and F-measure of 0.94. Additionally, the Average Recall Rate of the Faster R-CNN in locating the EAC region accurately is 0.83.

Conclusion

In this paper, recent deep learning object detection methods are adapted to detect esophageal abnormalities automatically. The evaluation of the methods proved its ability to locate abnormal regions in the esophagus from endoscopic images. The automatic detection is a crucial step that may help early detection and treatment of EAC and also can improve automatic tumor segmentation to monitor its growth and treatment outcome.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

e.Med Chirurgie

Kombi-Abonnement

Mit e.Med Chirurgie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Chirurgie, den Premium-Inhalten der chirurgischen Fachzeitschriften, inklusive einer gedruckten chirurgischen Zeitschrift Ihrer Wahl.

e.Med Radiologie

Kombi-Abonnement

Mit e.Med Radiologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Radiologie, den Premium-Inhalten der radiologischen Fachzeitschriften, inklusive einer gedruckten Radiologie-Zeitschrift Ihrer Wahl.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 4/2019

International Journal of Computer Assisted Radiology and Surgery 4/2019 Zur Ausgabe

Neu im Fachgebiet Radiologie

Meistgelesene Bücher aus der Radiologie

2016 | Buch

Medizinische Fremdkörper in der Bildgebung

Thorax, Abdomen, Gefäße und Kinder

Dieses einzigartige Buch enthält ca. 1.600 hochwertige radiologische Abbildungen und Fotos iatrogen eingebrachter Fremdmaterialien im Röntgenbild und CT.

Herausgeber:
Dr. med. Daniela Kildal

2011 | Buch

Atlas Klinische Neuroradiologie des Gehirns

Radiologie lebt von Bildern! Der vorliegende Atlas trägt dieser Tatsache Rechnung. Sie finden zu jedem Krankheitsbild des Gehirns Referenzbilder zum Abgleichen mit eigenen Befunden.

Autoren:
Priv.-Doz. Dr. med. Jennifer Linn, Prof. Dr. med. Martin Wiesmann, Prof. Dr. med. Hartmut Brückmann

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Radiologie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise