Skip to main content
Erschienen in: Diabetologia 10/2016

24.06.2016 | Review

Early sympathetic islet neuropathy in autoimmune diabetes: lessons learned and opportunities for investigation

verfasst von: Thomas O. Mundinger, Gerald J. Taborsky Jr

Erschienen in: Diabetologia | Ausgabe 10/2016

Einloggen, um Zugang zu erhalten

Abstract

This review outlines the current state of knowledge regarding a unique neural defect of the pancreatic islet in autoimmune diabetes, one that we have termed early sympathetic islet neuropathy (eSIN). We begin with the findings that a majority of islet sympathetic nerves are lost near the onset of type 1, but not type 2, diabetes and that this nerve loss is restricted to the islet. We discuss later work demonstrating that while the loss of islet sympathetic nerves and the loss of islet beta cells in type 1 diabetes both require infiltration of the islet by lymphocytes, their respective mechanisms of tissue destruction differ. Uniquely, eSIN requires the activation of a specific neurotrophin receptor and we propose two possible pathways for activation of this receptor during the immune attack on the islet. We also outline what is known about the functional consequences of eSIN, focusing on impairment of sympathetically mediated glucagon secretion and its application to the clinical problem of insulin-induced hypoglycaemia. Finally, we offer our view on the important remaining questions regarding this unique neural defect.
Literatur
1.
Zurück zum Zitat Bliss M (2007) The discovery of insulin. University of Chicago Press, Chicago Bliss M (2007) The discovery of insulin. University of Chicago Press, Chicago
2.
Zurück zum Zitat Kimball CP, Murlin JR (1923) Aqueous extracts of pancreas III. Some precipitation reactions of insulin. J Biol Chem 58:337–348 Kimball CP, Murlin JR (1923) Aqueous extracts of pancreas III. Some precipitation reactions of insulin. J Biol Chem 58:337–348
3.
Zurück zum Zitat Gerich J, Schneider V, Dippe S et al (1974) Characterization of the glucagon response to hypoglycemia in man. J Clin Endocrinol Metab 38:77–82CrossRefPubMed Gerich J, Schneider V, Dippe S et al (1974) Characterization of the glucagon response to hypoglycemia in man. J Clin Endocrinol Metab 38:77–82CrossRefPubMed
4.
Zurück zum Zitat Gerich J, Davis J, Lorenzi M et al (1979) Hormonal mechanisms of recovery from insulin-induced hypoglycemia in man. Am J Physiol 236:E380–E385PubMed Gerich J, Davis J, Lorenzi M et al (1979) Hormonal mechanisms of recovery from insulin-induced hypoglycemia in man. Am J Physiol 236:E380–E385PubMed
5.
Zurück zum Zitat Cryer PE, Gerich J (1983) Relevance of glucose counterregulatory systems to patients with diabetes: critical roles of glucagon and epinephrine. Diabetes Care 6:95–99CrossRefPubMed Cryer PE, Gerich J (1983) Relevance of glucose counterregulatory systems to patients with diabetes: critical roles of glucagon and epinephrine. Diabetes Care 6:95–99CrossRefPubMed
6.
Zurück zum Zitat Gerich J, Langlois M, Noacco C, Karam J, Forsham P (1973) Lack of glucagon response to hypoglycemia in diabetes: evidence for an intrinsic pancreatic alpha cell defect. Science 182:171–173CrossRefPubMed Gerich J, Langlois M, Noacco C, Karam J, Forsham P (1973) Lack of glucagon response to hypoglycemia in diabetes: evidence for an intrinsic pancreatic alpha cell defect. Science 182:171–173CrossRefPubMed
7.
Zurück zum Zitat Arbelaez AM, Xing D, Cryer PE et al (2014) Blunted glucagon but not epinephrine responses to hypoglycemia occurs in youth with less than 1 yr duration of type 1 diabetes mellitus. Pediatr Diabetes 15:127–134CrossRefPubMed Arbelaez AM, Xing D, Cryer PE et al (2014) Blunted glucagon but not epinephrine responses to hypoglycemia occurs in youth with less than 1 yr duration of type 1 diabetes mellitus. Pediatr Diabetes 15:127–134CrossRefPubMed
8.
Zurück zum Zitat Bohme P, Bertin E, Cosson E, Chevalier N, group G (2013) Fear of hypoglycaemia in patients with type 1 diabetes: do patients and diabetologists feel the same way? Diabetes Metab 39:63–70CrossRefPubMed Bohme P, Bertin E, Cosson E, Chevalier N, group G (2013) Fear of hypoglycaemia in patients with type 1 diabetes: do patients and diabetologists feel the same way? Diabetes Metab 39:63–70CrossRefPubMed
10.
Zurück zum Zitat Frier BM (2008) How hypoglycaemia can affect the life of a person with diabetes. Diabetes Metab Res Rev 24:87–92CrossRefPubMed Frier BM (2008) How hypoglycaemia can affect the life of a person with diabetes. Diabetes Metab Res Rev 24:87–92CrossRefPubMed
11.
Zurück zum Zitat DCCT (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 329:977–986CrossRef DCCT (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med 329:977–986CrossRef
12.
Zurück zum Zitat Aiello LP, Sun W, Das A et al (2015) Intensive diabetes therapy and ocular surgery in type 1 diabetes. N Engl J Med 372:1722–1733CrossRefPubMed Aiello LP, Sun W, Das A et al (2015) Intensive diabetes therapy and ocular surgery in type 1 diabetes. N Engl J Med 372:1722–1733CrossRefPubMed
13.
Zurück zum Zitat de Boer IH, Sun W, Cleary PA et al (2011) Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N Engl J Med 365:2366–2376CrossRefPubMed de Boer IH, Sun W, Cleary PA et al (2011) Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N Engl J Med 365:2366–2376CrossRefPubMed
14.
Zurück zum Zitat Nathan DM, Cleary PA, Backlund JY et al (2005) Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 353:2643–2653CrossRefPubMed Nathan DM, Cleary PA, Backlund JY et al (2005) Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 353:2643–2653CrossRefPubMed
15.
Zurück zum Zitat Taborsky GJ Jr, Mundinger TO (2012) The role of the autonomic nervous system in mediating the glucagon response to hypoglycemia. Endocrinology 153:1055–1062CrossRefPubMedPubMedCentral Taborsky GJ Jr, Mundinger TO (2012) The role of the autonomic nervous system in mediating the glucagon response to hypoglycemia. Endocrinology 153:1055–1062CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Havel PJ, Ahren B (1997) Activation of autonomic nerves and the adrenal medulla contributes to increased glucagon secretion during moderate insulin-induced hypoglycemia in women. Diabetes 46:801–807CrossRefPubMed Havel PJ, Ahren B (1997) Activation of autonomic nerves and the adrenal medulla contributes to increased glucagon secretion during moderate insulin-induced hypoglycemia in women. Diabetes 46:801–807CrossRefPubMed
17.
Zurück zum Zitat Hoffman RP, Singer-Granick C, Drash AL, Becker DJ (1994) Abnormal alpha cell hypoglycemic recognition in children with insulin dependent diabetes mellitus (IDDM). J Pediatr Endocrinol 7:225–234CrossRefPubMed Hoffman RP, Singer-Granick C, Drash AL, Becker DJ (1994) Abnormal alpha cell hypoglycemic recognition in children with insulin dependent diabetes mellitus (IDDM). J Pediatr Endocrinol 7:225–234CrossRefPubMed
18.
Zurück zum Zitat Bolli G, De Feo P, Compagnucci P et al (1983) Abnormal glucose counterregulation in insulin-dependent diabetes mellitus: interaction of anti-insulin antibodies and impaired glucagon and epinephrine secretion. Diabetes 32:134–141CrossRefPubMed Bolli G, De Feo P, Compagnucci P et al (1983) Abnormal glucose counterregulation in insulin-dependent diabetes mellitus: interaction of anti-insulin antibodies and impaired glucagon and epinephrine secretion. Diabetes 32:134–141CrossRefPubMed
19.
Zurück zum Zitat Mei Q, Mundinger TO, Lernmark A, Taborsky GJ Jr (2002) Early, selective, and marked loss of sympathetic nerves from the islets of BioBreeder diabetic rats. Diabetes 51:2997–3002CrossRefPubMed Mei Q, Mundinger TO, Lernmark A, Taborsky GJ Jr (2002) Early, selective, and marked loss of sympathetic nerves from the islets of BioBreeder diabetic rats. Diabetes 51:2997–3002CrossRefPubMed
20.
Zurück zum Zitat Taborsky GJ Jr, Mei Q, Hackney DJ, Figlewicz DP, LeBoeuf R, Mundinger TO (2009) Loss of islet sympathetic nerves and impairment of glucagon secretion in the NOD mouse: relationship to invasive insulitis. Diabetologia 52:2602–2611CrossRefPubMed Taborsky GJ Jr, Mei Q, Hackney DJ, Figlewicz DP, LeBoeuf R, Mundinger TO (2009) Loss of islet sympathetic nerves and impairment of glucagon secretion in the NOD mouse: relationship to invasive insulitis. Diabetologia 52:2602–2611CrossRefPubMed
21.
Zurück zum Zitat Martinic MM, von Herrath MG (2008) Real-time imaging of the pancreas during development of diabetes. Immunol Rev 221:200–213CrossRefPubMed Martinic MM, von Herrath MG (2008) Real-time imaging of the pancreas during development of diabetes. Immunol Rev 221:200–213CrossRefPubMed
22.
Zurück zum Zitat Taborsky GJ Jr, Mei Q, Bornfeldt KE, Hackney DJ, Mundinger TO (2014) The p75 neurotrophin receptor is required for the major loss of sympathetic nerves from islets under autoimmune attack. Diabetes 63:2369–2379CrossRefPubMedPubMedCentral Taborsky GJ Jr, Mei Q, Bornfeldt KE, Hackney DJ, Mundinger TO (2014) The p75 neurotrophin receptor is required for the major loss of sympathetic nerves from islets under autoimmune attack. Diabetes 63:2369–2379CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Mundinger TO, Mei Q, Foulis AK, Fligner CL, Hull RL, Taborsky GJ Jr (2016) Human type 1 diabetes is characterized by an early, marked, sustained and islet-selective loss of sympathetic nerves. Diabetes. doi:10.2337/db16-0284 PubMed Mundinger TO, Mei Q, Foulis AK, Fligner CL, Hull RL, Taborsky GJ Jr (2016) Human type 1 diabetes is characterized by an early, marked, sustained and islet-selective loss of sympathetic nerves. Diabetes. doi:10.​2337/​db16-0284 PubMed
24.
Zurück zum Zitat Erickson JD, Schafer MH, Bonner TI, Eiden LE, Weihe E (1996) Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc Natl Acad Sci 93:5166–5171CrossRefPubMedPubMedCentral Erickson JD, Schafer MH, Bonner TI, Eiden LE, Weihe E (1996) Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc Natl Acad Sci 93:5166–5171CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Allen R, Boublik J, Hauger RL, Scott N, Rivier J, Brown MR (1991) Neuropeptide Y radio-immunoassay: characterization and application. Clin Exp Pharmacol Physiol 18:825–833CrossRefPubMed Allen R, Boublik J, Hauger RL, Scott N, Rivier J, Brown MR (1991) Neuropeptide Y radio-immunoassay: characterization and application. Clin Exp Pharmacol Physiol 18:825–833CrossRefPubMed
26.
Zurück zum Zitat De Potter WP, Dillen L, Annaert W, Tombeur R, Berghmans R, Coen EP (1988) Evidence for the co-storage and co-release of neuropeptide Y and noradrenaline from large dense core vesicles in sympathetic nerves of the bovine vas deferens. Synapse 2:157–162CrossRefPubMed De Potter WP, Dillen L, Annaert W, Tombeur R, Berghmans R, Coen EP (1988) Evidence for the co-storage and co-release of neuropeptide Y and noradrenaline from large dense core vesicles in sympathetic nerves of the bovine vas deferens. Synapse 2:157–162CrossRefPubMed
27.
Zurück zum Zitat Anlauf M, Eissele R, Schafer MK et al (2003) Expression of the two isoforms of the vesicular monoamine transporter (VMAT1 and VMAT2) in the endocrine pancreas and pancreatic endocrine tumors. J Histochem Cytochem 51:1027–1040CrossRefPubMed Anlauf M, Eissele R, Schafer MK et al (2003) Expression of the two isoforms of the vesicular monoamine transporter (VMAT1 and VMAT2) in the endocrine pancreas and pancreatic endocrine tumors. J Histochem Cytochem 51:1027–1040CrossRefPubMed
28.
Zurück zum Zitat Upchurch BH, Aponte GW, Leiter AB (1994) Expression of peptide YY in all four islet cell types in the developing mouse pancreas suggests a common peptide YY-producing progenitor. Development 120:245–252 Upchurch BH, Aponte GW, Leiter AB (1994) Expression of peptide YY in all four islet cell types in the developing mouse pancreas suggests a common peptide YY-producing progenitor. Development 120:245–252
29.
Zurück zum Zitat Korsgren O, Andersson A, Jansson L, Sundler F (1992) Reinnervation of syngeneic mouse pancreatic islets transplanted into renal subcapsular space. Diabetes 41:130–135CrossRefPubMed Korsgren O, Andersson A, Jansson L, Sundler F (1992) Reinnervation of syngeneic mouse pancreatic islets transplanted into renal subcapsular space. Diabetes 41:130–135CrossRefPubMed
30.
Zurück zum Zitat Mundinger TO, Cooper E, Coleman MP, Taborsky GJ Jr (2015) Short-term diabetic hyperglycemia suppresses celiac ganglia neurotransmission, thereby impairing sympathetically mediated glucagon responses. Am J Physiol Endocrinol Metab 309:E246–E255CrossRefPubMedPubMedCentral Mundinger TO, Cooper E, Coleman MP, Taborsky GJ Jr (2015) Short-term diabetic hyperglycemia suppresses celiac ganglia neurotransmission, thereby impairing sympathetically mediated glucagon responses. Am J Physiol Endocrinol Metab 309:E246–E255CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Scheib J, Hoke A (2013) Advances in peripheral nerve regeneration. Nat Rev Neurol 9:668–676CrossRefPubMed Scheib J, Hoke A (2013) Advances in peripheral nerve regeneration. Nat Rev Neurol 9:668–676CrossRefPubMed
32.
Zurück zum Zitat Kennedy JM, Zochodne DW (2005) Impaired peripheral nerve regeneration in diabetes mellitus. J Peripher Nerv Syst 10:144–157CrossRefPubMed Kennedy JM, Zochodne DW (2005) Impaired peripheral nerve regeneration in diabetes mellitus. J Peripher Nerv Syst 10:144–157CrossRefPubMed
33.
Zurück zum Zitat Saleh A, Chowdhury SK, Smith DR et al (2013) Diabetes impairs an interleukin-1β-dependent pathway that enhances neurite outgrowth through JAK/STAT3 modulation of mitochondrial bioenergetics in adult sensory neurons. Mol Brain 6:45CrossRefPubMedPubMedCentral Saleh A, Chowdhury SK, Smith DR et al (2013) Diabetes impairs an interleukin-1β-dependent pathway that enhances neurite outgrowth through JAK/STAT3 modulation of mitochondrial bioenergetics in adult sensory neurons. Mol Brain 6:45CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Saleh A, Roy Chowdhury SK, Smith DR et al (2013) Ciliary neurotrophic factor activates NF-kB to enhance mitochondrial bioenergetics and prevent neuropathy in sensory neurons of streptozotocin-induced diabetic rodents. Neuropharmacology 65:65–73CrossRefPubMed Saleh A, Roy Chowdhury SK, Smith DR et al (2013) Ciliary neurotrophic factor activates NF-kB to enhance mitochondrial bioenergetics and prevent neuropathy in sensory neurons of streptozotocin-induced diabetic rodents. Neuropharmacology 65:65–73CrossRefPubMed
35.
Zurück zum Zitat Fernyhough P, Jonathan M (2014) Mechanisms of disease: mitochondrial dysfunction in sensory neuropathy and other complications in diabetes. Handb Clin Neurol 126:353–377CrossRefPubMed Fernyhough P, Jonathan M (2014) Mechanisms of disease: mitochondrial dysfunction in sensory neuropathy and other complications in diabetes. Handb Clin Neurol 126:353–377CrossRefPubMed
36.
Zurück zum Zitat Chowdhury SK, Smith DR, Fernyhough P (2013) The role of aberrant mitochondrial bioenergetics in diabetic neuropathy. Neurobiol Dis 51:56–65CrossRefPubMed Chowdhury SK, Smith DR, Fernyhough P (2013) The role of aberrant mitochondrial bioenergetics in diabetic neuropathy. Neurobiol Dis 51:56–65CrossRefPubMed
37.
Zurück zum Zitat Ali S, Driscoll HE, Newton VL, Gardiner NJ (2014) Matrix metalloproteinase-2 is downregulated in sciatic nerve by streptozotocin induced diabetes and/or treatment with minocycline: implications for nerve regeneration. Exp Neurol 261:654–665CrossRefPubMedPubMedCentral Ali S, Driscoll HE, Newton VL, Gardiner NJ (2014) Matrix metalloproteinase-2 is downregulated in sciatic nerve by streptozotocin induced diabetes and/or treatment with minocycline: implications for nerve regeneration. Exp Neurol 261:654–665CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Dey I, Midha N, Singh G et al (2013) Diabetic Schwann cells suffer from nerve growth factor and neurotrophin-3 underproduction and poor associability with axons. Glia 61:1990–1999CrossRefPubMed Dey I, Midha N, Singh G et al (2013) Diabetic Schwann cells suffer from nerve growth factor and neurotrophin-3 underproduction and poor associability with axons. Glia 61:1990–1999CrossRefPubMed
39.
Zurück zum Zitat Gumy LF, Bampton ET, Tolkovsky AM (2008) Hyperglycaemia inhibits Schwann cell proliferation and migration and restricts regeneration of axons and Schwann cells from adult murine DRG. Mol Cell Neurosci 37:298–311CrossRefPubMed Gumy LF, Bampton ET, Tolkovsky AM (2008) Hyperglycaemia inhibits Schwann cell proliferation and migration and restricts regeneration of axons and Schwann cells from adult murine DRG. Mol Cell Neurosci 37:298–311CrossRefPubMed
40.
Zurück zum Zitat Eckersley L (2002) Role of the Schwann cell in diabetic neuropathy. Int Rev Neurobiol 50:293–321CrossRefPubMed Eckersley L (2002) Role of the Schwann cell in diabetic neuropathy. Int Rev Neurobiol 50:293–321CrossRefPubMed
41.
Zurück zum Zitat Stenberg L, Dahlin LB (2014) Gender differences in nerve regeneration after sciatic nerve injury and repair in healthy and in type 2 diabetic Goto-Kakizaki rats. BMC Neurosci 15:107CrossRefPubMedPubMedCentral Stenberg L, Dahlin LB (2014) Gender differences in nerve regeneration after sciatic nerve injury and repair in healthy and in type 2 diabetic Goto-Kakizaki rats. BMC Neurosci 15:107CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Singh B, Singh V, Krishnan A et al (2014) Regeneration of diabetic axons is enhanced by selective knockdown of the PTEN gene. Brain 137:1051–1067CrossRefPubMedPubMedCentral Singh B, Singh V, Krishnan A et al (2014) Regeneration of diabetic axons is enhanced by selective knockdown of the PTEN gene. Brain 137:1051–1067CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Edwards RH, Rutter WJ, Hanahan D (1989) Directed expression of NGF to pancreatic B cells in transgenic mice leads to selective hyperinnervation of the islets. Cell 58:161–170CrossRefPubMed Edwards RH, Rutter WJ, Hanahan D (1989) Directed expression of NGF to pancreatic B cells in transgenic mice leads to selective hyperinnervation of the islets. Cell 58:161–170CrossRefPubMed
44.
Zurück zum Zitat Rosenbaum T, Vidaltamayo R, Sanchez-Soto MC, Zentella A, Hiriart M (1998) Pancreatic B cells synthesize and secrete nerve growth factor. Proc Natl Acad Sci U S A 95:7784–7788CrossRefPubMedPubMedCentral Rosenbaum T, Vidaltamayo R, Sanchez-Soto MC, Zentella A, Hiriart M (1998) Pancreatic B cells synthesize and secrete nerve growth factor. Proc Natl Acad Sci U S A 95:7784–7788CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Navarro-Tableros V, Sanchez-Soto MC, Garcia S, Hiriart M (2004) Autocrine regulation of single pancreatic β-cell survival. Diabetes 53:2018–2023CrossRefPubMed Navarro-Tableros V, Sanchez-Soto MC, Garcia S, Hiriart M (2004) Autocrine regulation of single pancreatic β-cell survival. Diabetes 53:2018–2023CrossRefPubMed
46.
Zurück zum Zitat Myersen U, Keymeulen B, Pipeleers DG, Sundler F (1996) Beta cells are important for islet innervation: evidence from purified rat islet-cells grafts. Diabetologia 39:54–59 Myersen U, Keymeulen B, Pipeleers DG, Sundler F (1996) Beta cells are important for islet innervation: evidence from purified rat islet-cells grafts. Diabetologia 39:54–59
48.
Zurück zum Zitat Campbell-Thompson ML, Atkinson MA, Butler AE et al (2013) The diagnosis of insulitis in human type 1 diabetes. Diabetologia 56:2541–2543CrossRefPubMed Campbell-Thompson ML, Atkinson MA, Butler AE et al (2013) The diagnosis of insulitis in human type 1 diabetes. Diabetologia 56:2541–2543CrossRefPubMed
49.
Zurück zum Zitat Campbell-Thompson M, Fu A, Kaddis JS et al (2016) Insulitis and β-cell mass in the natural history of type 1 diabetes. Diabetes 65:719–731CrossRefPubMed Campbell-Thompson M, Fu A, Kaddis JS et al (2016) Insulitis and β-cell mass in the natural history of type 1 diabetes. Diabetes 65:719–731CrossRefPubMed
50.
Zurück zum Zitat Foulis AK, Stewart JA (1984) The pancreas in recent-onset type 1 (insulin-dependent) diabetes mellitus: insulin content of islets, insulitis and associated changes in the exocrine acinar tissue. Diabetologia 26:456–461CrossRefPubMed Foulis AK, Stewart JA (1984) The pancreas in recent-onset type 1 (insulin-dependent) diabetes mellitus: insulin content of islets, insulitis and associated changes in the exocrine acinar tissue. Diabetologia 26:456–461CrossRefPubMed
51.
Zurück zum Zitat von Herrath M, Sanda S, Herold K (2007) Type 1 diabetes as a relapsing-remitting disease? Nat Rev Immunol 7:988–994CrossRef von Herrath M, Sanda S, Herold K (2007) Type 1 diabetes as a relapsing-remitting disease? Nat Rev Immunol 7:988–994CrossRef
52.
Zurück zum Zitat Eisenbarth GS, Connelly J, Soeldner JS (1987) The ʻnaturalʼ history of type I diabetes. Diabetes Metab Rev 3:873–891CrossRefPubMed Eisenbarth GS, Connelly J, Soeldner JS (1987) The ʻnaturalʼ history of type I diabetes. Diabetes Metab Rev 3:873–891CrossRefPubMed
53.
Zurück zum Zitat Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG (2009) Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol 155:173–181CrossRefPubMedPubMedCentral Willcox A, Richardson SJ, Bone AJ, Foulis AK, Morgan NG (2009) Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol 155:173–181CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Singh KK, Park KJ, Hong EJ et al (2008) Developmental axon pruning mediated by BDNF-p75NTR-dependent axon degeneration. Nat Neurosci 11:649–658CrossRefPubMed Singh KK, Park KJ, Hong EJ et al (2008) Developmental axon pruning mediated by BDNF-p75NTR-dependent axon degeneration. Nat Neurosci 11:649–658CrossRefPubMed
55.
Zurück zum Zitat Schmidt RE, Plurad SB, Modert CW (1983) Experimental diabetic autonomic neuropathy: characterization in STZ-diabetic Sprague-Dawley rats. Lab Invest 49:538–552PubMed Schmidt RE, Plurad SB, Modert CW (1983) Experimental diabetic autonomic neuropathy: characterization in STZ-diabetic Sprague-Dawley rats. Lab Invest 49:538–552PubMed
56.
Zurück zum Zitat Yagihashi S, Sima AA (1985) Diabetic autonomic neuropathy. The distribution of structural changes in sympathetic nerves of the BB rat. Am J Pathol 121:138–147PubMedPubMedCentral Yagihashi S, Sima AA (1985) Diabetic autonomic neuropathy. The distribution of structural changes in sympathetic nerves of the BB rat. Am J Pathol 121:138–147PubMedPubMedCentral
57.
Zurück zum Zitat Krizsan-Agbas D, Pedchenko T, Hasan W, Smith PG (2003) Oestrogen regulates sympathetic neurite outgrowth by modulating brain derived neurotrophic factor synthesis and release by the rodent uterus. Eur J Neurosci 18:2760–2768CrossRefPubMed Krizsan-Agbas D, Pedchenko T, Hasan W, Smith PG (2003) Oestrogen regulates sympathetic neurite outgrowth by modulating brain derived neurotrophic factor synthesis and release by the rodent uterus. Eur J Neurosci 18:2760–2768CrossRefPubMed
58.
Zurück zum Zitat Kohn J, Aloyz RS, Toma JG, Haak-Frendscho M, Miller FD (1999) Functionally antagonistic interactions between the TrkA and p75 neurotrophin receptors regulate sympathetic neuron growth and target innervation. J Neurosci 19:5393–5408PubMed Kohn J, Aloyz RS, Toma JG, Haak-Frendscho M, Miller FD (1999) Functionally antagonistic interactions between the TrkA and p75 neurotrophin receptors regulate sympathetic neuron growth and target innervation. J Neurosci 19:5393–5408PubMed
59.
Zurück zum Zitat Juang JH, Peng SJ, Kuo CH, Tang SC (2014) Three-dimensional islet graft histology: panoramic imaging of neural plasticity in sympathetic reinnervation of transplanted islets under the kidney capsule. Am J Physiol Endocrinol Metab 306:E559–E570CrossRefPubMed Juang JH, Peng SJ, Kuo CH, Tang SC (2014) Three-dimensional islet graft histology: panoramic imaging of neural plasticity in sympathetic reinnervation of transplanted islets under the kidney capsule. Am J Physiol Endocrinol Metab 306:E559–E570CrossRefPubMed
60.
Zurück zum Zitat Benner C, van der Meulen T, Caceres E, Tigyi K, Donaldson C, Huising M (2014) The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression. BMC Genomics 15:620–636CrossRefPubMedPubMedCentral Benner C, van der Meulen T, Caceres E, Tigyi K, Donaldson C, Huising M (2014) The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression. BMC Genomics 15:620–636CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Kanning KC, Hudson M, Amieux PS, Wiley JC, Bothwell M, Schecterson LC (2003) Proteolytic processing of the p75 neurotrophin receptor and two homologs generates C-terminal fragments with signaling capability. J Neurosci 23:5425–5436PubMed Kanning KC, Hudson M, Amieux PS, Wiley JC, Bothwell M, Schecterson LC (2003) Proteolytic processing of the p75 neurotrophin receptor and two homologs generates C-terminal fragments with signaling capability. J Neurosci 23:5425–5436PubMed
62.
Zurück zum Zitat Kraemer BR, Snow JP, Vollbrecht P et al (2014) A role for the p75 neurotrophin receptor in axonal degeneration and apoptosis induced by oxidative stress. J Biol Chem 289:21205–21216CrossRefPubMedPubMedCentral Kraemer BR, Snow JP, Vollbrecht P et al (2014) A role for the p75 neurotrophin receptor in axonal degeneration and apoptosis induced by oxidative stress. J Biol Chem 289:21205–21216CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Padgett LE, Broniowska KA, Hansen PA, Corbett JA, Tse HM (2013) The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis. Ann N Y Acad Sci 1281:16–35CrossRefPubMedPubMedCentral Padgett LE, Broniowska KA, Hansen PA, Corbett JA, Tse HM (2013) The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis. Ann N Y Acad Sci 1281:16–35CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Barten DM, Meredith JE Jr, Zaczek R, Houston JG, Albright CF (2006) Gamma-secretase inhibitors for Alzheimer's disease: balancing efficacy and toxicity. Drugs R D 7:87–97CrossRefPubMed Barten DM, Meredith JE Jr, Zaczek R, Houston JG, Albright CF (2006) Gamma-secretase inhibitors for Alzheimer's disease: balancing efficacy and toxicity. Drugs R D 7:87–97CrossRefPubMed
66.
Zurück zum Zitat Radtke F, Fasnacht N, Macdonald HR (2010) Notch signaling in the immune system. Immunity 32:14–27CrossRefPubMed Radtke F, Fasnacht N, Macdonald HR (2010) Notch signaling in the immune system. Immunity 32:14–27CrossRefPubMed
67.
Zurück zum Zitat Ma D, Zhu Y, Ji C, Hou M (2010) Targeting the Notch signaling pathway in autoimmune diseases. Expert Opin Ther Targets 14:553–565CrossRefPubMed Ma D, Zhu Y, Ji C, Hou M (2010) Targeting the Notch signaling pathway in autoimmune diseases. Expert Opin Ther Targets 14:553–565CrossRefPubMed
68.
Zurück zum Zitat Straub RH, Grum F, Strauch U et al (2008) Anti-inflammatory role of sympathetic nerves in chronic intestinal inflammation. Gut 57:911–921CrossRefPubMed Straub RH, Grum F, Strauch U et al (2008) Anti-inflammatory role of sympathetic nerves in chronic intestinal inflammation. Gut 57:911–921CrossRefPubMed
69.
Zurück zum Zitat Miller LE, Justen HP, Scholmerich J, Straub RH (2000) The loss of sympathetic nerve fibers in the synovial tissue of patients with rheumatoid arthritis is accompanied by increased norepinephrine release from synovial macrophages. FASEB J 14:2097–2107CrossRefPubMed Miller LE, Justen HP, Scholmerich J, Straub RH (2000) The loss of sympathetic nerve fibers in the synovial tissue of patients with rheumatoid arthritis is accompanied by increased norepinephrine release from synovial macrophages. FASEB J 14:2097–2107CrossRefPubMed
70.
Zurück zum Zitat Mundinger TO, Mei Q, Figlewicz DP, Lernmark A, Taborsky GJ Jr (2003) Impaired glucagon response to sympathetic nerve stimulation in the BB diabetic rat: effect of early sympathetic islet neuropathy. Am J Physiol Endocrinol Metab 285:E1047–E1054CrossRefPubMed Mundinger TO, Mei Q, Figlewicz DP, Lernmark A, Taborsky GJ Jr (2003) Impaired glucagon response to sympathetic nerve stimulation in the BB diabetic rat: effect of early sympathetic islet neuropathy. Am J Physiol Endocrinol Metab 285:E1047–E1054CrossRefPubMed
71.
Zurück zum Zitat Benson JW Jr, Johnson DG, Palmer JP, Werner PL, Ensinck JW (1977) Glucagon and catecholamine secretion during hypoglycemia in normal and diabetic man. J Clin Endocrinol Metab 44:459–464CrossRefPubMed Benson JW Jr, Johnson DG, Palmer JP, Werner PL, Ensinck JW (1977) Glucagon and catecholamine secretion during hypoglycemia in normal and diabetic man. J Clin Endocrinol Metab 44:459–464CrossRefPubMed
72.
Zurück zum Zitat Dunning BE, Scott MF, Neal DW, Cherrington AD (1997) Direct quantification of norepinephrine spillover and hormone output from the pancreas of the conscious dog. Am J Physiol 272:E746–E755PubMed Dunning BE, Scott MF, Neal DW, Cherrington AD (1997) Direct quantification of norepinephrine spillover and hormone output from the pancreas of the conscious dog. Am J Physiol 272:E746–E755PubMed
73.
Zurück zum Zitat Havel PJ, Mundinger TO, Taborsky GJ Jr (1996) Pancreatic sympathetic nerves contribute to increased glucagon secretion during severe hypoglycemia in dogs. Am J Physiol 270:E20–E26PubMed Havel PJ, Mundinger TO, Taborsky GJ Jr (1996) Pancreatic sympathetic nerves contribute to increased glucagon secretion during severe hypoglycemia in dogs. Am J Physiol 270:E20–E26PubMed
74.
Zurück zum Zitat Heller SR, Macdonald IA, Tattersall RB (1987) Counterregulation in type 2 (non-insulin-dependent) diabetes mellitus. Normal endocrine and glycaemic responses, up to ten years after diagnosis. Diabetologia 30:924–929CrossRefPubMed Heller SR, Macdonald IA, Tattersall RB (1987) Counterregulation in type 2 (non-insulin-dependent) diabetes mellitus. Normal endocrine and glycaemic responses, up to ten years after diagnosis. Diabetologia 30:924–929CrossRefPubMed
75.
Zurück zum Zitat Sherck SM, Shiota M, Saccomando J et al (2001) Pancreatic response to mild non-insulin-induced hypoglycemia does not involve extrinsic neural input. Diabetes 50:2487–2496CrossRefPubMed Sherck SM, Shiota M, Saccomando J et al (2001) Pancreatic response to mild non-insulin-induced hypoglycemia does not involve extrinsic neural input. Diabetes 50:2487–2496CrossRefPubMed
76.
Zurück zum Zitat Rorsman P, Salehi SA, Abdulkader F, Braun M, MacDonald PE (2008) KATP-channels and glucose-regulated glucagon secretion. Trends Endocrinol Metab 19:277–284CrossRefPubMed Rorsman P, Salehi SA, Abdulkader F, Braun M, MacDonald PE (2008) KATP-channels and glucose-regulated glucagon secretion. Trends Endocrinol Metab 19:277–284CrossRefPubMed
78.
Zurück zum Zitat Banarer S, McGregor VP, Cryer PE (2002) Intraislet hyperinsulinemia prevents the glucagon response to hypoglycemia despite an intact autonomic response. Diabetes 51:958–965CrossRefPubMed Banarer S, McGregor VP, Cryer PE (2002) Intraislet hyperinsulinemia prevents the glucagon response to hypoglycemia despite an intact autonomic response. Diabetes 51:958–965CrossRefPubMed
79.
Zurück zum Zitat Zhou H, Tran PO, Yang S et al (2004) Regulation of alpha-cell function by the β-cell during hypoglycemia in Wistar rats: the ʻswitch-offʼ hypothesis. Diabetes 53:1482–1487CrossRefPubMed Zhou H, Tran PO, Yang S et al (2004) Regulation of alpha-cell function by the β-cell during hypoglycemia in Wistar rats: the ʻswitch-offʼ hypothesis. Diabetes 53:1482–1487CrossRefPubMed
80.
Zurück zum Zitat Raju B, Cryer PE (2005) Loss of the decrement in intraislet insulin plausibly explains loss of the glucagon response to hypoglycemia in insulin-deficient diabetes: documentation of the intraislet insulin hypothesis in humans. Diabetes 54:757–764CrossRefPubMed Raju B, Cryer PE (2005) Loss of the decrement in intraislet insulin plausibly explains loss of the glucagon response to hypoglycemia in insulin-deficient diabetes: documentation of the intraislet insulin hypothesis in humans. Diabetes 54:757–764CrossRefPubMed
81.
Zurück zum Zitat Quinson N, Robbins HL, Clark MJ, Furness JB (2001) Locations and innervation of cell bodies of sympathetic neurons projecting to the gastrointestinal tract in the rat. Arch Histol Cytol 64:281–294CrossRefPubMed Quinson N, Robbins HL, Clark MJ, Furness JB (2001) Locations and innervation of cell bodies of sympathetic neurons projecting to the gastrointestinal tract in the rat. Arch Histol Cytol 64:281–294CrossRefPubMed
82.
Zurück zum Zitat Liu DT, Adamson UC, Lins P-ES, Kollind ME, Moberg EA, Andréasson K (1992) Inhibitory effect of circulating insulin on glucagon secretion during hypoglycemia in type 1 diabetic patients. Diabetes Care 15:59–65CrossRefPubMed Liu DT, Adamson UC, Lins P-ES, Kollind ME, Moberg EA, Andréasson K (1992) Inhibitory effect of circulating insulin on glucagon secretion during hypoglycemia in type 1 diabetic patients. Diabetes Care 15:59–65CrossRefPubMed
83.
Zurück zum Zitat Igawa K, Mugavero M, Shiota M, Neal DW, Cherrington AD (2002) Insulin sensitively controls the glucagon response to mild hypoglycemia in the dog. Diabetes 51:3033–3042CrossRefPubMed Igawa K, Mugavero M, Shiota M, Neal DW, Cherrington AD (2002) Insulin sensitively controls the glucagon response to mild hypoglycemia in the dog. Diabetes 51:3033–3042CrossRefPubMed
84.
Zurück zum Zitat Asplin CM, Paquette TL, Palmer JP (1981) In vivo inhibition of glucagon secretion by paracrine beta cell activity in man. J Clin Invest 68:314–318CrossRefPubMedPubMedCentral Asplin CM, Paquette TL, Palmer JP (1981) In vivo inhibition of glucagon secretion by paracrine beta cell activity in man. J Clin Invest 68:314–318CrossRefPubMedPubMedCentral
85.
Zurück zum Zitat Taborsky GJ, Mei Q, Hackney DJ, Mundinger TO (2014) The search for the mechanism of early sympathetic islet neuropathy in autoimmune diabetes. Diabetes Obes Metab 16(Suppl 1):96–101CrossRefPubMedPubMedCentral Taborsky GJ, Mei Q, Hackney DJ, Mundinger TO (2014) The search for the mechanism of early sympathetic islet neuropathy in autoimmune diabetes. Diabetes Obes Metab 16(Suppl 1):96–101CrossRefPubMedPubMedCentral
Metadaten
Titel
Early sympathetic islet neuropathy in autoimmune diabetes: lessons learned and opportunities for investigation
verfasst von
Thomas O. Mundinger
Gerald J. Taborsky Jr
Publikationsdatum
24.06.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 10/2016
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-4026-0

Weitere Artikel der Ausgabe 10/2016

Diabetologia 10/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.