Skip to main content
Erschienen in: Cardiovascular Ultrasound 1/2019

Open Access 01.12.2019 | Research

Echocardiographic predictors of intraoperative right ventricular dysfunction: a 2D and speckle tracking echocardiography study

verfasst von: Lisa Q. Rong, Brian Yum, Christiane Abouzeid, Maria Chiara Palumbo, Lillian R. Brouwer, Richard B. Devereux, Leonard N. Girardi, Jonathan W. Weinsaft, Mario Gaudino, Jiwon Kim

Erschienen in: Cardiovascular Ultrasound | Ausgabe 1/2019

Abstract

Background

Intraoperative or post procedure right ventricular (RV) dysfunction confers a poor prognosis in the post-operative period. Conventional predictors for RV function are limited due the effect of cardiac surgery on traditional RV indices; novel echocardiographic techniques hold the promise to improve RV functional stratification.

Methods

Comprehensive echocardiographic data were collected prospectively during elective cardiac surgery. Tricuspid annular plane systolic excursion (TAPSE), peak RV systolic velocity (S′), and RV fractional area change (FAC) were quantified on transesophageal echo (TEE). RV global and regional (septal and free wall) longitudinal strain was quantified using speckle-tracking echo in RV-focused views. Two intraoperative time points were used for comparison: pre-sternotomy (baseline) and after chest closure.

Results

The population was comprised of 53 patients undergoing cardiac surgery [15.1% coronary artery bypass graft (CABG) only, 28.3% valve only, 50.9% combination (e.g. valve/CABG, valve/aortic graft) surgeries], among whom 38% had impaired RV function at baseline defined as RV FAC < 35%. All conventional RV functional indices including TAPSE, S′ and FAC declined immediately following CPB (1.5 ± 0.3 vs.1.1 ± 0.3 cm, 8.0 ± 2.1 vs. 6.2 ± 2.5 cm/s, 36.8 ± 9.3 vs. 29.3 ± 10.6%; p < 0.001 for all). However, left ventricular (LV) and RV hemodynamic parameters remained unchanged (LV ejection fraction (EF): 56.8 ± 13.0 vs. 55.8 ± 12.9%; p = 0.40, pulmonary artery systolic pressure (PASP): 26.5 ± 7.4 vs 27.3 ± 6.7 mmHg; p = 0.13). Speckle tracking echocardiographic data demonstrated a significant decline in RV global longitudinal strain (GLS) [19.0 ± 6.5 vs. 13.5 ± 6.9%, p < 0.001]. Pre-procedure FAC, GLS and free wall strain predicted RV dysfunction at chest closure (34.7 ± 9.1 vs. 41.6 ± 8.1%, p = 0.01, 17.7 ± 6.5 vs. 21.8 ± 5.4%; p = 0.03, 20.3 ± 6.4 vs. 24.2 ± 5.8%; p = 0.04), whereas traditional linear RV indices such as TAPSE and RV S′ at baseline had no impact on intraoperative RV dysfunction (p = NS for both).

Conclusions

Global and regional RV function, as measured by 2D indices and strain, acutely decline intraoperatively. Impaired RV strain is associated with intraoperative RV functional decline and provides incremental value to traditional RV indices in predicting those who will develop RV dysfunction.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
2D STE
Two-dimensional speckle tracking echocardiography
3D
Three-dimensional
BMI
Body mass index
CABG
Coronary artery bypass graft
CPB
Cardiopulmonary bypass
CV
Cardiovascular
EDS
End systolic volume
EDV
End diastolic volume
EF
Ejection fraction
FAC
Fractional area change
GLS
Global longitudinal strain
LV
Left ventricular
NYHA
New York Heart Association
PADP
Pulmonary artery diastolic pressure
PALACS
Posterior Left pericardiotomy for the prevention of postoperative Atrial fibrillation after Cardiac Surgery
PASP
Pulmonary artery systolic pressure
RAP
Right atrial pressure
RV
Right ventricular
S′
Peak systolic velocity
TAPSE
Tricuspid annular plane systolic excursion
TDI
Tissue Doppler interrogation
TEE
Transesophageal echo
TTE
Transthoracic echocardiography

Background

RV dysfunction is common; it occurs in nearly one fourth of patients who undergo cardiac surgery. Intraoperative or post procedure RV dysfunction is linked to high post-operative mortality [1, 2]. However, RV assessment can be challenging due to its anterior location and complex crescent-shaped geometry, which pose particular imaging difficulties in the intraoperative setting. Prior studies have shown that commonly used indices of RV function such as tricuspid annular plane systolic excursion (TAPSE) can be altered by pericardiotomy itself [3, 4]. For example, decrements in longitudinal shortening have been shown to result in gains in transverse shortening [5] thereby further limiting traditionally used longitudinal measures of RV performance, TAPSE and RV S′. In addition to these limitations, longitudinal RV contraction in the intraoperative setting has been shown to reflect geometric changes related to cardiac surgery itself, rather than due to true functional decline [6].
Myocardial deformation via two-dimensional speckle tracking echocardiography (2D STE) provides incremental value in prognostic stratification as compared to traditional indices in a wide range of cardiac conditions including heart failure, coronary artery disease and pulmonary hypertension [79]. However, its role in the intraoperative setting has yet to be established. In particular, the angle-independent nature of speckle tracking has the potential to overcome limitations of 2D linear indices of TAPSE and S′ and is thereby uniquely suited for RV assessment in this setting. In addition, RV deformation has been shown to detect subclinical RV dysfunction and therefore may be of utility in predicting post-operative outcomes [10, 11]. The goals of this study were: 1. to address the acute intraoperative impact on RV function by using both standard 2D and deformation echo indices; and 2. to test the performance of conventional and deformation indices to predict intraoperative RV dysfunction.

Methods

Study population

Patients were enrolled prospectively from 11/2017 to the present as part of an established protocol (PALACS Trial) at Weill Cornell Medical College [12].

Imaging protocol

Echocardiography

Comprehensive TEEs were performed prior to sternotomy (baseline) and after chest closure (post procedure) using commercial equipment (GE Vivid 7 [GE Healthcare, Madison, WI]) and Phillips iE33 [Phillips Medical Systems, Andover, MA] echo systems). TEEs were interpreted by experienced investigators within a high-volume laboratory, for which expertise and reproducibility for quantitative RV indices have been validated [13, 14].

2D TEE

RV systolic function was quantified using tricuspid annular plane systolic excursion (TAPSE), right ventricular systolic myocardial velocity (RV-S′) and fractional area of change (FAC), which were acquired in accordance with consensus guidelines [15]. TAPSE was measured on M-mode as the systolic excursion of the lateral tricuspid annulus along its longitudinal plane and RV-S′ on tissue Doppler as the peak tricuspid annular velocity of excursion. FAC was measured via planimetry of end-diastolic and end-systolic contours in mid-esophageal 4-chamber orientation. The established FAC cut off (< 35%) was used to identify post procedure (intraoperative) RV dysfunction [16]. Right atrial area was calculated by planimetry in end systole in mid-esophageal 4-chamber view and volume was quantified by area-length method.

Speckle-tracking strain analysis

2D echocardiographic images were analyzed offline for deformation analysis (2D CPA; TomTec Imaging Systems). Strain measurements were performed by an investigator experienced in the interpretation of echocardiographic images, blinded to the results of the 2D measurements. Each image was acquired in the mid-esophageal four-chamber view of the whole RV cavity and with a frame rate > 50 Hz for analysis of RV strain. The RV end-diastolic endocardial border was manually traced and tracked automatically frame-by-frame throughout the cardiac cycle. Endocardial contour was manually adjusted when necessary to optimize tracking.

Statistical analysis

Comparisons between groups were made using Student’s t-test (expressed as mean ± standard deviation) for continuous variables. Categorical variables were compared using Chi-square or, when fewer than 5 expected outcomes per cell, Fisher’s exact test. Bivariate correlation coefficients, as well as regression analyses were used to evaluate univariable associations between continuous variables. Multivariate modeling was performed via logistic regression and echo indices were tested as continuous variables. Inter-rater and intra reliability was calculated using the intraclass-correlation coefficient. Statistical calculations were performed using SPSS 22.0 (SPSS Inc. [Chicago, IL]). Two-sided p < 0.05 was considered indicative of statistical significance.

Results

The study population included 53 patients who underwent cardiac surgery with dedicated TEE for RV assessment at baseline and post procedure. Intraoperative RV dysfunction was defined as RV FAC < 35% post procedure. In this population, 38% had RV dysfunction at baseline and over two thirds (70%) had some degree of RV dysfunction post procedure. Table 1 details clinical characteristics of the population, stratified by the presence or absence of TEE-verified intraoperative RV dysfunction. As shown, 15.1% coronary artery bypass graft (CABG) only, 28.3% valve only, 50.9% combination (e.g. valve/CABG, valve/aortic graft) surgeries; operation type had no impact on RV function. With respect to clinical characteristics, there were no differences between cardiovascular risk factors. Similarly, there were no differences in symptom status pre-operatively as characterized via New York Heart Association (NYHA) class (p = 0.15).
Table 1
Clinical Characteristics
 
Overall
(n = 53)
RV Dysfunction +a
(n = 37)
RV Dysfunction –
(n = 16)
p
Age (years)
63 ± 11
61 ± 11
67 ± 10
0.09
Male gender
69.8% (37)
75.7% (28)
54.3% (9)
0.20
BMI
27.8 ± 4.6
28.2 ± 4.7
27.2 ± 4.3
0.60
CV Risk Factors
 Hypertension
78.8% (41)
73.0% (27)
87.5% (14)
0.47
 Diabetes
11.3% (6)
13.5% (5)
6.3% (1)
0.66
 Prior Myocardial Infarction
9.4% (5)
13.5% (5)
0.0% (0)
0.31
Operation
 CABG Only
15.1% (8)
18.9% (7)
6.3% (1)
0.41
 Valve Surgery Only
28.3% (15)
29.7% (11)
25.0% (4)
1.00
 Concurrent Aortic Surgery
39.6% (21)
37.8% (14)
43.8% (7)
0.69
 Aortic Surgery Only
3.8% (2)
5.4% (2)
0% (0)
1.00
 Combination
50.9% (27)
45.9% (17)
62.5% (10)
0.27
 Other
1.9% (1)
0% (0)
6.3% (1)
0.30
NYHA Class (I/II/III/IV)
72% (36)/ 18% (9)/ 10% (5)/ 0% (0)
66% (23)/ 23% (8)/ 11% (4)/ 0% (0)
86% (13)/ 7% (1)/ 7% (1)/ 0% (0)
0.15
BMI body mass index, CV cardiovascular, CABG coronary artery bypass graft, NYHA New York Heart Association
aCategorized based on established echo cut off FAC < 35% (post chest closure)
Table 2 demonstrates LV, RA, RV and hemodynamic indices at baseline and post procedure in relation to RV dysfunction. As shown, RV echocardiographic indices including conventional parameters and global longitudinal strain declined after chest closure (p < 0.05 for all). In support of the concept that RV functional decline is driven predominantly by effects on the RV free wall, there was no significant change in post procedure interventricular septal deformation (p = 0.23) (Fig. 1). When examining predictors for RV dysfunction post chest closure, baseline FAC, GLS and free wall strain were impaired in those patients with intraoperative RV dysfunction (34.7 ± 9.1 vs. 41.6 ± 8.1%; p = 0.01, 17.7 ± 6.5 vs. 21.8 ± 5.4% p = 0.03, 20.3 ± 6.4 vs. 24.2 ± 5.8%; p = 0.04, respectively). On the other hand, traditional linear RV indices such as TAPSE and S′ had no impact on post chest closure RV dysfunction (1.4 ± 0.3 vs. 1.6 ± 0.4 and 7.9 ± 2.4 vs. 8.5 ± 2.4; p = NS for both). Figure 2 represents a patient who developed intraoperative RV dysfunction with baseline impaired RV deformation and normal function as defined as FAC > 35%.
Table 2
Echocardiographic and Hemodynamic Parameters
 
Overall
(n = 53)
RV Dysfunction +a
(n = 37)
RV Dysfunction –
(n = 16)
p
Baseline
 LV
  EDV (mL/m2)
104.1 ± 45.5
108.4 ± 39.6
93.1 ± 58.3
0.31
  ESV (mL/m2)
48.0 ± 31.3
51.6 ± 30.9
39.0 ± 31.7
0.22
  EF (%)
56.8 ± 13.0
55.9 ± 14.0
59.2 ± 10.0
0.45
 RV
  EDA (cm2)
19.3 ± 6.9
19.4 ± 6.7
19 ± 7.5
0.85
  ESA (cm2)
12.2 ± 4.9
12.6 ± 4.6
11.2 ± 5.4
0.34
  TAPSE (cm)
1.5 ± 0.4
1.4 ± 0.3
1.6 ± 0.4
0.14
  S′ (cm/s)
8.0 ± 2.1
7.9 ± 2.4
8.5 ± 2.4
0.48
  GLS (%)
−19.0 ± 6.5
−17.7 ± 6.5
−21.8 ± 5.4
0.03
  Septal Strain (%)
−17.9 ± 5.9
−16.9 ± 5.5
−20.0 ± 6.4
0.08
  Free Wall Strain (%)
−21.5 ± 6.4
−20.3 ± 6.4
−24.2 ± 5.8
0.04
  FAC (%)
36.8 ± 9.3
34.7 ± 9.1
41.6 ± 8.1
0.01
 RA
  Area (cm2)
14.9 ± 4.9
14.4 ± 4.8
16 ± 5.3
0.35
  Length (cm)
3.9 ± 0.8
3.8 ± 0.7
4.1 ± 0.9
0.33
  Volume Index (mL/m2)
30.3 ± 13.9
28.6 ± 13.1
34.4 ± 15.5
0.21
 Hemodynamics
  LV EDP (mmHg)
13.8 ± 4.6
13.3 ± 4.0
15.3 ± 5.9
0.23
  PASP (mmHg)
26.5 ± 7.4
27.0 ± 7.3
25.5 ± 7.9
0.50
  PADP (mmHg)
10.5 ± 4.0
10.9 ± 3.9
9.8 ± 4.1
0.34
  RAP (mmHg)
7.2 ± 2.7
7.6 ± 2.8
6.4 ± 2.6
0.13
  RV CO (L)
4.6 ± 1.8
4.5 ± 1.9
4.8 ± 1.6
0.67
Post procedure
 LV
  EDV (mL/m2)
79.7 ± 30.3
82.2 ± 27.2
73.1 ± 37.5
0.36
  ESV (mL/m2)
37.0 ± 20.5
38.7 ± 19.2
32.8 ± 23.6
0.39
  EF (%)
55.8 ± 12.9
54.1 ± 13.0
60.0 ± 12.2
0.17
 RV
  TAPSE (cm)
1.1 ± 0.3
1.1 ± 0.3
1.1 ± 0.4
0.94
  S′ (cm/s)
6.2 ± 2.5
6.0 ± 2.3
6.7 ± 2.9
0.41
  GLS (%)
−13.5 ± 6.9
−10.1 ± 4.3
−21.2 ± 5.3
< 0.001
  Septal Strain (%)
−12.4 ± 6.6
−9.9 ± 5.2
−18.2 ± 5.9
< 0.001
  Free Wall Strain (%)
−15.5 ± 7.8
−12.4 ± 5.6
−22.8 ± 7.6
< 0.001
  FAC (%)
29.3 ± 10.6
24.0 ± 6.9
41.7 ± 6.6
< 0.001
 Hemodynamics
  PASP (mmHg)
27.3 ± 6.7
27.8 ± 6.6
26.1 ± 6.7
0.39
  PADP (mmHg)
11.2 ± 4.3
11.5 ± 4.3
10.6 ± 4.3
0.49
  RAP (mmHg)
8.5 ± 3.0
8.8 ± 3.0
7.9 ± 3.1
0.37
  RV CO (L)
5.5 ± 1.3
5.5 ± 1.3
5.5 ± 1.3
0.98
LV left ventricle, RV right ventricle, RA right atrium, EDV end diastolic volume, EDS end systolic volume, EF ejection fraction, EDA end diastolic area, ESA end systolic area, TAPSE tricuspid annular plane systolic excursion, S′ peak systolic velocity, GLS global longitudinal strain, FAC fractional area of change, EDP end diastolic pressure, PASP pulmonary artery systolic pressure, PADP pulmonary artery diastolic pressure, RAP right atrial pressure, CO cardiac output. Bold values indicate p < 0.05
aCategorized based on established echo cut off FAC < 35% (post chest closure)
Regarding LV parameters, there were no differences in baseline or post chest closure LV volumes and LV ejection fraction when stratified by intraoperative RV dysfunction. This finding adds to the concept that intraoperative RV dysfunction occurs independently of LV performance. Hemodynamic indices, including pre and post pulmonary artery (PA) and right atrial (RA) pressures, also had no association with development of RV dysfunction after chest closure. Table 3 reports multivariate analysis concerning RV strain components for prediction of RV dysfunction. As shown, baseline free wall RV strain was independently associated with post-procedure RV dysfunction (OR 1.24 [CI 1.01 to 1.53] p = 0.04) even after controlling for septal wall strain. These results indicate that post procedure RV dysfunction is closely linked to altered RV free wall contraction rather than interventricular septal function. Table 4 shows the intra-observer and interobserver measurements for 15 cases as well as the intraclass coefficient. As shown, the intraclass correlation coefficient ranged from 0.92 between measurements and 0.85 between observers.
Table 3
Multivariate Regression for Post Procedure (Intraoperative) RV Dysfunction
Variable
Univariate Regression
Multivariate Regression Chi Square = 25.3, p < 0.001
Odds Ratio (95% Confidence Interval)
p
Odds Ratio (95% Confidence Interval)
p
Free Wall Strain
1.33 (1.13–1.56)
< 0.001
1.24 (1.01–1.53)
0.04
Septal Strain
1.29 (1.12–1.49)
< 0.001
1.10 (0.90–1.34)
0.36
Bold values indicate p < 0.05
Table 4
Reproducibility
 
Inter-observer Reproducibility
Intra-observer Reproducibility
Mean ± SD
Intraclass Correlation Coefficient
Limits of Agreement
Mean ± SD
Intraclass Correlation Coefficient
Limits of Agreement
RV GLS
−0.9 ± 4.5
0.85
−9.6 to 7.9
0.1 ± 3.1
0.92
−6.0 to 6.3

Discussion

The primary aim of this study was to characterize and predict the acute intraoperative change in RV function using established deformational RV techniques. The findings of this study are as follows: 1. RV dysfunction occurs in over two thirds of patients undergoing cardiac surgery and is associated with impaired RV global longitudinal strain but not conventional 2D RV parameters at baseline. 2. RV functional decline is predominantly associated with impairments in RV free wall deformation rather than that of the interventricular septum. 3.Whereas deformational indices predict intraoperative RV dysfunction, traditional linear RV indices had no association with post-operative RV dysfunction.
While RV function is an important determinant of cardiac surgical outcomes, there are few known predictors of acute intraoperative dysfunction. Studies demonstrate that RV FAC < 35% is associated with the greatest risk of post-operative mortality [2, 17] and that among patients with preserved RV FAC, those with abnormal longitudinal strain are at higher risk for post-operative mortality [18]. Despite our finding that all linear indices decreased at the time of chest closure, only baseline deformation parameters, which included GLS and free wall strain, predicted intraoperative RV dysfunction. This suggests that RV strain may be an important index to stratify RV dysfunction risk intraoperatively, and may have important clinical implications. Regarding prevalence of RV dysfunction pre-operatively, we found that a large number of patients had RV dysfunction at time of surgery (38%). This prevalence is similar to that reported in the literature: for example, Lella et al. showed that CMR-evidenced RV dysfunction occurred in 44% (48/109) among patients undergoing elective CABG and valve surgery [19]. Similarly, Haddad et al. demonstrated echo-evidenced RV dysfunction to occur in 22% (11/50) patients undergoing aortic or mitral valve surgery [17]. Our population, the majority of whom are undergoing CABG and/or valve surgery, had similar high prevalence of RV dysfunction pre-operatively.
Previous studies demonstrate a decline in RV function measured by 2D indices including TAPSE and S′ with transthoracic echocardiography (TTE) 3–6 months after surgery. This may be the result of intraoperative factors such as ischemia, pericardial opening, and myocardial stunning secondary to poor protection during CPB [20]. However, other studies report that RV systolic function was preserved after cardiac surgery, as measured by three-dimensional (3D) TEE and 3D RVEF. Interestingly, Unsworth et al. evaluated TAPSE and S′ after pericardial opening and found that these declined acutely intraoperatively, which supports the hypothesis that a geometric, rather than a functional, change occurs to the RV during surgery [3]. Similar to the above finding, preservation of FAC intraoperatively has been linked to a decrease in TAPSE in the setting of increased right-sided filling pressures after CPB [21]. To our knowledge, this is the most comprehensive study of changes in RV systolic function intraoperatively with correlation of changes in 2D indices with regional and global RV strain. We demonstrate that intraoperative RV systolic function significantly declines across all parameters; in particular, GLS significantly predicts subnormal RV function at the end of the surgery. Our TEE measurements were taken before sternotomy and after chest closure, which suggests that changes in RV indices were due to functional, rather than geometric differences.
At present, 2D STE is a relatively new imaging technique that is not routinely used intraoperatively. Unlike Doppler interrogation, strain measured by 2D is angle independent. Therefore, it may be more accurate and easily applied than tissue Doppler interrogation (TDI). However, 2D STE is dependent on image quality and has lower temporal resolution than TDI. While 2D STE is used to demonstrate subclinical LV dysfunction independent of changes in ejection fraction, it is not yet routinely used to characterize RV dysfunction. Our study demonstrates that it is feasible to use strain as a comparable index to predict RV function in the intraoperative period. We found that free-wall strain, septal strain, global strain, and baseline deformation predicted intraoperative dysfunction [20].
Our study had several limitations. First, 3D RV imaging was not performed routinely as part of this protocol and therefore the effect of cardiac surgery on RV volumes and global EF is not assessed here. Second, the impact of RV dysfunction on post-operative morbidity and mortality is not assessed though it should be noted that intraoperative RV dysfunction has been linked to adverse outcomes in prior studies [1, 2]. Lastly, this study tested immediate intraoperative RV function rather than RV function over time. Future studies evaluating long-term effects of cardiac surgery on the RV are warranted.

Conclusions

Global and regional RV function, as measured by 2D indices and strain, acutely decline intraoperatively. Moreover, 2D STE of the RV at baseline predicts intraoperative RV dysfunction whereas conventional techniques do not. These findings add to the growing body of literature demonstrating that RV function is significantly impaired during cardiac surgery and suggests that deformational imaging provides incremental value in predicting those who will develop RV dysfunction. The ability to predict this dysfunction could help identify those patients in whom support is needed intraoperatively.

Acknowledgements

Not applicable.
This study was part of the established protocol PALACS, which was approved by the Weill Cornell institutional review board (reference number 1502015867).
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Bootsma IT, de Lange F, Koopmans M, Haenen J, Boonstra PW, Symersky T, Boerma EC. Right ventricular function after cardiac surgery is a strong independent predictor for long-term mortality. J Cardiothorac Vasc Anesth. 2017;31(5):1656–62.CrossRef Bootsma IT, de Lange F, Koopmans M, Haenen J, Boonstra PW, Symersky T, Boerma EC. Right ventricular function after cardiac surgery is a strong independent predictor for long-term mortality. J Cardiothorac Vasc Anesth. 2017;31(5):1656–62.CrossRef
2.
Zurück zum Zitat Maslow AD, Regan MM, Panzica P, Heindel S, Mashikian J, Comunale ME. Precardiopulmonary bypass right ventricular function is associated with poor outcome after coronary artery bypass grafting in patients with severe left ventricular systolic dysfunction. Anesth Analg. 2002;95(6):1507–18 table of contents.CrossRef Maslow AD, Regan MM, Panzica P, Heindel S, Mashikian J, Comunale ME. Precardiopulmonary bypass right ventricular function is associated with poor outcome after coronary artery bypass grafting in patients with severe left ventricular systolic dysfunction. Anesth Analg. 2002;95(6):1507–18 table of contents.CrossRef
3.
Zurück zum Zitat Unsworth B, Casula RP, Kyriacou AA, Yadav H, Chukwuemeka A, Cherian A, Stanbridge Rde L, Athanasiou T, Mayet J, Francis DP. The right ventricular annular velocity reduction caused by coronary artery bypass graft surgery occurs at the moment of pericardial incision. Am Heart J. 2010;159(2):314–22.CrossRef Unsworth B, Casula RP, Kyriacou AA, Yadav H, Chukwuemeka A, Cherian A, Stanbridge Rde L, Athanasiou T, Mayet J, Francis DP. The right ventricular annular velocity reduction caused by coronary artery bypass graft surgery occurs at the moment of pericardial incision. Am Heart J. 2010;159(2):314–22.CrossRef
4.
Zurück zum Zitat Okada DR, Rahmouni HW, Herrmann HC, Bavaria JE, Forfia PR, Han Y. Assessment of right ventricular function by transthoracic echocardiography following aortic valve replacement. Echocardiography. 2014;31(5):552–7.CrossRef Okada DR, Rahmouni HW, Herrmann HC, Bavaria JE, Forfia PR, Han Y. Assessment of right ventricular function by transthoracic echocardiography following aortic valve replacement. Echocardiography. 2014;31(5):552–7.CrossRef
5.
Zurück zum Zitat Raina A, Vaidya A, Gertz ZM, Susan C, Forfia PR. Marked changes in right ventricular contractile pattern after cardiothoracic surgery: implications for post-surgical assessment of right ventricular function. J Heart Lung Transplant. 2013;32(8):777–83.CrossRef Raina A, Vaidya A, Gertz ZM, Susan C, Forfia PR. Marked changes in right ventricular contractile pattern after cardiothoracic surgery: implications for post-surgical assessment of right ventricular function. J Heart Lung Transplant. 2013;32(8):777–83.CrossRef
6.
Zurück zum Zitat Tamborini G, Muratori M, Brusoni D, Celeste F, Maffessanti F, Caiani EG, Alamanni F, Pepi M. Is right ventricular systolic function reduced after cardiac surgery? A two- and three-dimensional echocardiographic study. Eur J Echocardiogr. 2009;10(5):630–4.CrossRef Tamborini G, Muratori M, Brusoni D, Celeste F, Maffessanti F, Caiani EG, Alamanni F, Pepi M. Is right ventricular systolic function reduced after cardiac surgery? A two- and three-dimensional echocardiographic study. Eur J Echocardiogr. 2009;10(5):630–4.CrossRef
7.
Zurück zum Zitat Motoki H, Borowski AG, Shrestha K, Hu B, Kusunose K, Troughton RW, Tang WH, Klein AL. Right ventricular global longitudinal strain provides prognostic value incremental to left ventricular ejection fraction in patients with heart failure. J Am Soc Echocardiogr. 2014;27(7):726–32.CrossRef Motoki H, Borowski AG, Shrestha K, Hu B, Kusunose K, Troughton RW, Tang WH, Klein AL. Right ventricular global longitudinal strain provides prognostic value incremental to left ventricular ejection fraction in patients with heart failure. J Am Soc Echocardiogr. 2014;27(7):726–32.CrossRef
8.
Zurück zum Zitat Kim J, Alakbarli J, Yum B, Tehrani NH, Pollie MP, Abouzeid C, Di Franco A, Ratcliffe MB, Poppas A, Levine RA, et al. Tissue-based markers of right ventricular dysfunction in ischemic mitral regurgitation assessed via stress cardiac magnetic resonance and three-dimensional echocardiography. Int J Cardiovasc Imaging. 2019;35(4):683-93.CrossRef Kim J, Alakbarli J, Yum B, Tehrani NH, Pollie MP, Abouzeid C, Di Franco A, Ratcliffe MB, Poppas A, Levine RA, et al. Tissue-based markers of right ventricular dysfunction in ischemic mitral regurgitation assessed via stress cardiac magnetic resonance and three-dimensional echocardiography. Int J Cardiovasc Imaging. 2019;35(4):683-93.CrossRef
9.
Zurück zum Zitat Motoji Y, Tanaka H, Fukuda Y, Ryo K, Emoto N, Kawai H, Hirata K. Efficacy of right ventricular free-wall longitudinal speckle-tracking strain for predicting long-term outcome in patients with pulmonary hypertension. Circ J. 2013;77(3):756–63.CrossRef Motoji Y, Tanaka H, Fukuda Y, Ryo K, Emoto N, Kawai H, Hirata K. Efficacy of right ventricular free-wall longitudinal speckle-tracking strain for predicting long-term outcome in patients with pulmonary hypertension. Circ J. 2013;77(3):756–63.CrossRef
10.
Zurück zum Zitat Lemarie J, Huttin O, Girerd N, Mandry D, Juilliere Y, Moulin F, Lemoine S, Beaumont M, Marie PY, Selton-Suty C. Usefulness of speckle-tracking imaging for right ventricular assessment after acute myocardial infarction: a magnetic resonance imaging/echocardiographic comparison within the relation between aldosterone and cardiac remodeling after myocardial infarction study. J Am Soc Echocardiogr. 2015;28(7):818–827 e814.CrossRef Lemarie J, Huttin O, Girerd N, Mandry D, Juilliere Y, Moulin F, Lemoine S, Beaumont M, Marie PY, Selton-Suty C. Usefulness of speckle-tracking imaging for right ventricular assessment after acute myocardial infarction: a magnetic resonance imaging/echocardiographic comparison within the relation between aldosterone and cardiac remodeling after myocardial infarction study. J Am Soc Echocardiogr. 2015;28(7):818–827 e814.CrossRef
11.
Zurück zum Zitat Carluccio E, Biagioli P, Alunni G, Murrone A, Zuchi C, Coiro S, Riccini C, Mengoni A, D'Antonio A, Ambrosio G. Prognostic value of right ventricular dysfunction in heart failure with reduced ejection fraction: superiority of longitudinal strain over tricuspid annular plane systolic excursion. Circ Cardiovasc Imaging. 2018;11(1):e006894.CrossRef Carluccio E, Biagioli P, Alunni G, Murrone A, Zuchi C, Coiro S, Riccini C, Mengoni A, D'Antonio A, Ambrosio G. Prognostic value of right ventricular dysfunction in heart failure with reduced ejection fraction: superiority of longitudinal strain over tricuspid annular plane systolic excursion. Circ Cardiovasc Imaging. 2018;11(1):e006894.CrossRef
12.
Zurück zum Zitat Abouarab AA, Leonard JR, Ohmes LB, Lau C, Rong LQ, Ivascu NS, Pryor KO, Munjal M, Crea F, Massetti M, et al. Posterior left pericardiotomy for the prevention of postoperative atrial fibrillation after cardiac surgery (PALACS): study protocol for a randomized controlled trial. Trials. 2017;18(1):593.CrossRef Abouarab AA, Leonard JR, Ohmes LB, Lau C, Rong LQ, Ivascu NS, Pryor KO, Munjal M, Crea F, Massetti M, et al. Posterior left pericardiotomy for the prevention of postoperative atrial fibrillation after cardiac surgery (PALACS): study protocol for a randomized controlled trial. Trials. 2017;18(1):593.CrossRef
13.
Zurück zum Zitat Kim J, Di Franco A, Seoane T, Srinivasan A, Kampaktsis PN, Geevarghese A, Goldburg SR, Khan SA, Szulc M, Ratcliffe MB, et al. Right ventricular dysfunction impairs effort tolerance independent of left ventricular function among patients undergoing exercise stress myocardial perfusion imaging. Circ Cardiovasc Imaging. 2016;9(11):e005115. Kim J, Di Franco A, Seoane T, Srinivasan A, Kampaktsis PN, Geevarghese A, Goldburg SR, Khan SA, Szulc M, Ratcliffe MB, et al. Right ventricular dysfunction impairs effort tolerance independent of left ventricular function among patients undergoing exercise stress myocardial perfusion imaging. Circ Cardiovasc Imaging. 2016;9(11):e005115.
14.
Zurück zum Zitat Kim J, Srinivasan A, Seoane T, Di Franco A, Peskin CS, McQueen DM, Paul TK, Feher A, Geevarghese A, Rozenstrauch M, et al. Echocardiographic linear dimensions for assessment of right ventricular chamber volume as demonstrated by cardiac magnetic resonance. J Am Soc Echocardiogr. 2016;29(9):861–70.CrossRef Kim J, Srinivasan A, Seoane T, Di Franco A, Peskin CS, McQueen DM, Paul TK, Feher A, Geevarghese A, Rozenstrauch M, et al. Echocardiographic linear dimensions for assessment of right ventricular chamber volume as demonstrated by cardiac magnetic resonance. J Am Soc Echocardiogr. 2016;29(9):861–70.CrossRef
15.
Zurück zum Zitat Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685–713 quiz 786-688.CrossRef Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685–713 quiz 786-688.CrossRef
16.
Zurück zum Zitat Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233–70.CrossRef Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233–70.CrossRef
17.
Zurück zum Zitat Haddad F, Denault AY, Couture P, Cartier R, Pellerin M, Levesque S, Lambert J, Tardif JC. Right ventricular myocardial performance index predicts perioperative mortality or circulatory failure in high-risk valvular surgery. J Am Soc Echocardiogr. 2007;20(9):1065–72.CrossRef Haddad F, Denault AY, Couture P, Cartier R, Pellerin M, Levesque S, Lambert J, Tardif JC. Right ventricular myocardial performance index predicts perioperative mortality or circulatory failure in high-risk valvular surgery. J Am Soc Echocardiogr. 2007;20(9):1065–72.CrossRef
18.
Zurück zum Zitat Ternacle J, Gallet R, Champagne S, Teiger E, Gellen B, Dubois Rande JL, Gueret P, Lim P. Changes in three-dimensional speckle-tracking-derived myocardial strain during percutaneous coronary intervention. J Am Soc Echocardiogr. 2013;26(12):1444–9.CrossRef Ternacle J, Gallet R, Champagne S, Teiger E, Gellen B, Dubois Rande JL, Gueret P, Lim P. Changes in three-dimensional speckle-tracking-derived myocardial strain during percutaneous coronary intervention. J Am Soc Echocardiogr. 2013;26(12):1444–9.CrossRef
19.
Zurück zum Zitat Lella LK, Sales VL, Goldsmith Y, Chan J, Iskandir M, Gulkarov I, Tortolani A, Brener SJ, Sacchi TJ, Heitner JF. Reduced right ventricular function predicts long-term cardiac re-hospitalization after cardiac surgery. PLoS One. 2015;10(7):e0132808.CrossRef Lella LK, Sales VL, Goldsmith Y, Chan J, Iskandir M, Gulkarov I, Tortolani A, Brener SJ, Sacchi TJ, Heitner JF. Reduced right ventricular function predicts long-term cardiac re-hospitalization after cardiac surgery. PLoS One. 2015;10(7):e0132808.CrossRef
20.
Zurück zum Zitat Maffessanti F, Gripari P, Tamborini G, Muratori M, Fusini L, Alamanni F, Zanobini M, Fiorentini C, Caiani EG, Pepi M. Evaluation of right ventricular systolic function after mitral valve repair: a two-dimensional Doppler, speckle-tracking, and three-dimensional echocardiographic study. J Am Soc Echocardiogr. 2012;25(7):701–8.CrossRef Maffessanti F, Gripari P, Tamborini G, Muratori M, Fusini L, Alamanni F, Zanobini M, Fiorentini C, Caiani EG, Pepi M. Evaluation of right ventricular systolic function after mitral valve repair: a two-dimensional Doppler, speckle-tracking, and three-dimensional echocardiographic study. J Am Soc Echocardiogr. 2012;25(7):701–8.CrossRef
21.
Zurück zum Zitat Denault AY, Couture P, Beaulieu Y, Haddad F, Deschamps A, Nozza A, Page P, Tardif JC, Lambert J. Right ventricular depression after cardiopulmonary bypass for Valvular surgery. J Cardiothorac Vasc Anesth. 2015;29(4):836–44.CrossRef Denault AY, Couture P, Beaulieu Y, Haddad F, Deschamps A, Nozza A, Page P, Tardif JC, Lambert J. Right ventricular depression after cardiopulmonary bypass for Valvular surgery. J Cardiothorac Vasc Anesth. 2015;29(4):836–44.CrossRef
Metadaten
Titel
Echocardiographic predictors of intraoperative right ventricular dysfunction: a 2D and speckle tracking echocardiography study
verfasst von
Lisa Q. Rong
Brian Yum
Christiane Abouzeid
Maria Chiara Palumbo
Lillian R. Brouwer
Richard B. Devereux
Leonard N. Girardi
Jonathan W. Weinsaft
Mario Gaudino
Jiwon Kim
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Cardiovascular Ultrasound / Ausgabe 1/2019
Elektronische ISSN: 1476-7120
DOI
https://doi.org/10.1186/s12947-019-0161-3

Weitere Artikel der Ausgabe 1/2019

Cardiovascular Ultrasound 1/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.