Skip to main content
Erschienen in: Supportive Care in Cancer 12/2015

Open Access 01.12.2015 | Original Article

Economic and clinical aspects of intravenous versus oral busulfan in adult patients for conditioning prior to HSCT

verfasst von: Karin Berger, Dorothee Schopohl, Christina Rieger, Helmut Ostermann

Erschienen in: Supportive Care in Cancer | Ausgabe 12/2015

Abstract

Purpose

Busulfan (BU) used as cytoreductive conditioning prior to hematopoietic stem cell transplantation (HSCT) is available as intravenous (IV) and oral (O) preparation. IV-BU has clinical advantages associated with relevant incremental costs. The aim was to determine the economic impact of IV-BU versus O-BU in adult HSCT recipients from a German health care providers’ perspective.

Methods

A budget-impact model (BIM) including costs and risks for oral mucositis (OM), infection with OM, and hepatic sinusoidal obstruction syndrome (SOS) was developed. Model inputs are literature data comparing clinical effects of IV-BU versus O-BU and German cost data (conditioning therapy, treatment of OM, infections, SOS without/with multiorgan failure) from literature and tariff lists.

Results

Base case calculations resulted the following: total costs of adverse events were €86,434 with O-BU and €44,376 with IV-BU for ten patients each. Considering costs of adverse events and drugs, about €5840 for ten patients receiving IV-BU are saved. Sensitivity analyses were conducted in several ways. Cost savings range between €4910 and €12,640 per ten patients for all adverse events and €2070 or €1140 per ten patients considering SOS only. Drug treatment of SOS and treatment of multiorgan failure during severe SOS are major cost drivers. Worst case scenario calculations (assuming −25 % risk of all adverse events for O-BU and +25 % for IV-BU) yield up to €27,570 per ten patients with IV-BU.

Conclusions

Considering costs of adverse events and drugs, IV-BU is the dominant alternative from a German providers’ perspective. For more comprehensive economic evaluations, additional epidemiological data, evidence on clinical outcomes, patient-reported outcomes, and treatment patterns are needed.
Hinweise
Karin Berger and Dorothee Schopohl contributed equally to this work.

Introduction

European data from 2001 to 2011 for hematopoietic stem cell transplantation (HSCT) show that the number of allogeneic HSCT doubled and the number of autologous HSCT increased by 32 %, with an ongoing constant increase of about 1100 autologous HSCT per year since 2001 [1]. In Germany, similar increases were observed, in allogeneic HSCT 107 % and in autologous HSCT 37.9 % from 2001 to 2011 (first transplantations only) [2]. In the course of this development, pre-transplant regimens for both myelogenous and lymphoid malignancies are continuously refined with the aim to reduce toxicity and to improve survival [35]. This process resulted also in a continuous replacement of total body irradiation during conditioning therapy for HSCT by the bifunctional DNA alkylating myelotoxic agent busulfan (BU) [4, 6, 5]. The availability of the intravenous (IV) formulation of BU plays an important role in the development of optimized treatment plans [46, 3].
Oral intake of BU is problematic due to the large number of tablets, which are required to achieve recommended BU doses [7]. Oral BU intake causes severe irritation of the gastric mucosa accompanied by nausea and vomiting. Intestinal absorption of the drug is highly variable, and bioavailability is largely unpredictable. Wide inter- and intra-patient variability in BU pharmacokinetics is therefore a concern [5, 7]. The therapeutic range of BU is narrow, and the total exposure to BU seems to be critical for graft rejection and survival [5, 6, 3]. Oral mucositis (OM) and its consequences like severe pain, problems of food intake, and rising risk of infection are observed more frequently with the oral preparation of BU (O-BU). The life-threatening complication of hepatic sinusoidal obstruction syndrome (SOS) is a major complication of BU. In clinical trials, it could be demonstrated that these adverse events are reduced by use of the IV formulation [814].
The advantageous IV formulation of BU is associated with incremental costs compared to O-BU. In Germany, an extra budget, a so-called “Zusatzentgelt” ZE 79, is paid for the use of IV-BU for HSCT recipients below the age of 15 years [15]. So far, IV-BU administration in adult patients is not covered by a “Zusatzentgelt.” Additional costs associated with IV-BU have to be covered by budget reimbursed through the specific diagnosis-related groups (DRG). In 2012, 767 adult German patients, 12.3 % of all HSCT, received BU for conditioning prior to HSCT. Replacing O-BU with IV-BU would result in an increase of total drug costs by approximately € 2.5 to € 3 million. However, from an economic perspective, it might be misleading to consider isolated drug costs only. The impact of total cost in comparison to the previous standard of care has to be evaluated to determine the economic value. New therapies, which are expensive, might be adopted, because they result in essentially the same net total costs as the comparator due to a reduction in costs for the treatment of adverse events. Budget-impact models (BIMs) can be used to calculate “the net cumulative cost of treatment with a particular therapy for a given number of patients in a specific population” [16, 17]. BIMs might give advice to the provider during decision making.
In the following, the development of a BIM is described, analyzing net cumulative costs in adult HSCT recipients from a German providers’ perspective comparing the IV formulation of BU to the oral preparation.

Methods

Budget-impact model (BIM)

Model calculations are recommended to be used when the number of data regarding treatment outcomes and treatment patterns is limited. A decision tree model was developed with Microsoft Excel 2010® to evaluate the budget impact of IV-BU versus O-BU during conditioning for HSCT from a German health care providers’ perspective. Drug costs, as well as frequency and treatment costs of drug-related side effects and adverse reactions, were considered (Fig. 1).

Model input

PubMED was searched for data comparing IV-BU versus O-BU regarding risks for OM, infection with OM and SOS with or without multiorgan failure (MOF). The following searches were conducted: (“Busulfan”[Mesh]) and “Administration, Intravenous”[Mesh]; (“Economics”[Mesh]) and “Stomatitis”[Mesh]; (“Hepatic Veno-Occlusive Disease”[Mesh]) and “Busulfan”[Mesh]; “Busulfan”[Mesh] review, last 10 years; “Hepatic Veno-Occlusive Disease”[Mesh] review, last 10 years. In addition, free search terms, e.g., “oral mucositis” and “intravenous busulfan” were applied. Citations of identified journal articles were searched for further relevant publications. Desktop researches were conducted. The model input consists of event rates and cost data. Event rates for the base case and a short characterization of the study populations are given in Table 1 [10, 11, 13, 14, 18, 19]. Mild SOS was not considered. Reliable treatment cost data and event rates are lacking for mild SOS due to generally spontaneous cessation of the disease. German cost data shown in Table 2 were taken from literature [2025] and tariff lists, except for cost of OM grade 1–2. Due to a lack of published cost data, average costs of OM grade 1–2 were determined based on resource use (time of physicians and nurses, rinsing solutions, local anesthetics, antimycotics, morphine gel) estimated by clinical experts and trained nurses.
Table 1
Model input: event rates base case
Parameter
Event rate [%]
Study population
Source
O-BU
IV-BU
Risk of oral mucositis (OM)
 Patients without OM
44.18
97.5
Allogeneic HSCT; conditioning: BU/cyclophosphamide; 93 patients O-BU compared to 42 patients IV-BU
Sobecks et al. (2012) [14]
 Patients with OM Grade 1–2
31.4
0
 Patients with OM Grade 3–4
24.42
2.5
Risk of documented infection with OM
 Patients with infection without OM
18.12
599 Cancer patients with chemotherapy-induced myelosuppression
Elting et al. (2003) [19]
 Patients with infection with OM Grade 1–2
18.98
 Patients with infection with OM Grade 3–4
35.71
Risk of hepatic sinusoidal obstruction syndrome (SOS)
 Patients with moderate SOS
16.67
14.55
Allogeneic HSCT; conditioning: BU/cyclophosphamide; 186 patients O-BU compared to 55 patients IV-BU
Lee et al. (2005) [13]
 Patients with severe SOS
5.91
0
 Patients with severe SOS with MOF
4.98
0
Frequency to develop fatal multiorgan failure (MOF) with severe SOS
84.3
Meta-analysis of published studies from 1979 to October 2007
Coppell et al. (2010) [18]
Table 2
Model input: cost
Parameter
Cost [€]
Source
Drug costs
 O-BU 1 mg
1.18
Wholesale price 2013 exclusive of VAT [25]
 IV-BU 1 mg
5.51
Wholesale price 2013 exclusive of VAT [25]
 Defibrotide 1 mg
0.82
German NUB Antrag 2012/2013 [24]
Total costs for adverse events
 OM Grade 1–2
50
Own estimation based on clinical experts
 OM Grade 3–4
312
Banz et al.(2011) [20]
 Infection
7 093
Paessens et al. (2011) [22]
 Moderate SOS
21 398
a
 Severe SOS
35 663
a
 Severe SOS with MOF
61 109
b
VAT value-added tax
aCosts of SOS were estimated calculating the costs of treatment with defibrotide according to the German NUB Antrag (new examination and treatment methods application) 2012/2013 assuming dosing according to Richardson et al. [23, 24]. Average duration of moderate and severe SOS (15 and 25 days, respectively) were taken from the study of Lee et al. [13]
bCost of MOF was estimated by addition of German costs for fatal sepsis to costs of severe SOS [21]

Assumption

Due to a lack of German cost data on SOS or length of hospital stay with SOS in Germany, it was assumed that cost of SOS is represented by treatment with defibrotide as a major cost component. Defibrotide is recommended for treatment of SOS [26].

Base case

Calculations in the model were started with a base case. Adult patient weighed 70 kg was conditioned prior to HSCT with 1.0 mg/kg O-BU or 0.8 mg/kg IV-BU four times daily for 4 days. The event rates of OM and SOS for the base case were taken from the studies of Sobecks et al. [14] and Lee et al. [13] (Table 1). Both are more recent studies with large study populations concerning allogeneic HSCT and conditioning with BU and cyclophosphamide.

Sensitivity analyses

Sensitivity analyses were conducted in several ways. (1) Event rates of OM from the study of Ferrara et al. [10] and event rates of SOS from the study of Kashyap et al. [11] were inserted in the model (Table 3). (2) Calculations were conducted considering SOS only without costs for OM and infection with OM. (3) Minus and plus 25 % of risks of all adverse events for O-BU and IV-BU were applied. (4) A worst case scenario was calculated assuming minus 25 % of risks of all adverse events for O-BU and plus 25 % for IV-BU [27].
Table 3
Model input: event rates sensitivity analyses
Parameter
Event rate [%]
Study population
Source
O-BU
IV-BU
Risk of oral mucositis (OM)
 Patients without OM
7
72
Autologous HSCT; conditioning: BU/idarubicin; 30 patients O-BU compared to 25 patients IV-BU
Ferrara et al. (2009) [10]
 Patients with OM Grade 1–2
13
16
 Patients with OM Grade 3–4
80
12
Risk of hepatic sinusoidal obstruction syndrome (SOS)
 Patients with moderate SOS
13.33
4.92
Allogeneic HSCT; conditioning: BU/cyclophosphamide; 30 patients O-BU compared to 61 patients IV-BU
Kashyap et al. (2002) [11]
 Patients with severe SOS
6.67
3.28
 Patients with severe SOS with MOF
5.62
2.77

Model output

Model output was expressed as total costs of adverse events with O-BU, total costs of adverse events with IV-BU, total costs of adverse events with O-BU plus drug costs of O-BU, and total costs of adverse events with IV-BU plus drug costs of IV-BU. Results were presented as follows: cost savings or additional costs with IV-BU for ten patients; total costs for groups of ten patients receiving O-BU or IV-BU, respectively. In worst case scenarios assuming minus 25 % of risks of all adverse events for O-BU and plus 25 % for IV-BU, potentially arising additional costs per ten patients with IV-BU were calculated. All calculations were done using the event rates from the different studies available. All adverse events were considered, as well as drug costs for O-BU and IV-BU, if not otherwise stated.

Number needed to treat

The number needed to treat (NNT) to prevent one additional severe SOS was calculated using the base case event rates from the study of Lee et al. (Table 1) [13]. A range was given: lower border is a high hypothetical case of occurrence of SOS with ten times higher event rates; upper border is a low hypothetical case of occurrence of SOS with ten times lower event rates [28].

Results

Drug costs considering ten patients for conditioning with O-BU are €13,160 and with IV-BU €49,380 [25].
Results for base case calculations and sensitivity analyses are displayed in Fig. 2. All calculations ended up in cost savings with IV-BU.
Considering SOS only as a relevant adverse event and disregarding OM and infection with OM, cost savings in the model are approximately €2070 per ten patients applying the data of Lee et al. [13] and €1140 per ten patients with the data of Kashyap et al. [11].
In the base case, total costs of adverse events were €86,434 with O-BU and €44,376 with IV-BU for ten patients each. Total costs of adverse events with O-BU plus drug costs of O-BU were €99,594 and with IV-BU plus drug costs of IV-BU €93,755 for ten patients each (Fig. 3a, base case: event rates from Sobecks/Elting/Lee et al.). Cost of adverse events plus drug costs of BU using the different study data available are shown in Fig. 3b–d. The development of total costs in sensitivity analyses assuming either minus 25 % (minimum) or plus 25 % (maximum) of risks of all adverse events for O-BU and IV-BU for the base case and all different study data available is included in Fig. 3a–d.
Calculating worst case scenarios assuming minus 25 % of risks of all adverse events for O-BU and plus 25 % for IV-BU results in additional costs with IV-BU of €27,570 per ten patients with the data of Sobecks et al. [14] and Lee et al. [13] (base case), €25,040 per ten patients with the data of Sobecks et al. [14] and Kashyap et al. [11], €24,970 per ten patients with the data of Ferrara et al. [10] and Lee et al. [13], €22,440 per ten patients with the data of Ferrara et al. [10] and Kashyap et al. [11]. Omitting the costs for OM and infection with OM in the worst case scenario leads to additional costs with IV-BU of €23,070 per ten patients using the data of Lee et al. [13] for SOS and of €22,830 per ten patients using the data of Kashyap et al. [11] for SOS.
The average NNT results in 17 patients needed to treat to prevent one case of severe SOS, with a range of 2 to 169 patients using high and low hypothetical cases of occurrence of SOS [28].

Discussion

This is the first economic assessment of IV-BU compared to O-BU presented for Germany. Considering risks and treatment costs for OM, infection with OM and SOS, as well as drug costs, IV-BU is cost saving and therefore dominant compared to O-BU. IV-BU remains the dominant alternative, even if the study data used for the base case are replaced by other available study data or if solely the adverse event SOS is considered.
Two other economic models have been presented so far as conference abstracts comparing costs arising with O-BU compared to IV-BU taking only SOS into consideration. Based on US costs for SOS [29], a French model calculated additional costs of €1605.4 per patient with IV-BU [30]. A cost-effectiveness analysis from Mexico demonstrated that IV-BU was dominant over O-BU [31]. Taking different event rates and different health care systems into consideration, a comparison with these studies is limited.
In sensitivity analyses, changes in total cost of adverse events calculating with plus and minus 25 % of all risks were chosen for the following reasons: the historical nature of the available study data leads to considerable uncertainties despite a similar trend regarding the favorable results with IV-BU. The cost components could not be based on up-to-date data of treatment patterns and resource use and were estimated in a most conservative way, e.g., not including costs of hospital stay for SOS. Therefore, it did not seem adequate to analyze the influence of individual parameters in this context of uncertainties of event rates and cost components. Worst case scenarios assuming minimal risks of adverse events for O-BU (−25 %) and maximal risks of adverse events for IV-BU (+25 %) result in additional costs for IV-BU amounting to a maximum of 56 % of the drug costs using base case data. These extra costs appear relatively modest in the context of HSCT [32].
The average NNT with IV-BU is 17 patients to prevent one case of severe SOS. Regarding the total number of patients treated in Germany with BU for conditioning prior to HSCT, potentially up to 45 patients are spared severe SOS. In view of the considerable mortality of severe SOS after allogeneic HSCT, IV-BU appears highly favorable [18].
If pharmacokinetic-directed high-dose BU is used, similar results can be achieved with O-BU and IV-BU. However, the data indicated a slightly improved 5-year overall survival with IV-BU compared to O-BU [33]. A prospective cohort study comparing IV-BU with total body irradiation (TBI) used for conditioning prior to HSCT demonstrated non-inferiority of IV-BU. Two-year probabilities of survival were improved with IV-BU compared to TBI [4]. An earlier study comparing O-BU with IV-BU during reduced intensity conditioning for allogeneic HSCT found lower incidence of acute graft-versus-host disease (GvHD) and early infectious complications leading to significantly improved overall survival with IV-BU [34]. Further studies are required to understand the mechanisms by which IV-BU-based regimens result in superior survival outcomes and to evaluate possible influences on GvHD. Due to increasing rates of GvHD with increasing toxicity of the regimens preceding allogeneic HSCT, the advantages of IV-BU may be even more pronounced [35]. In contrast to a cost-effectiveness analysis, a BIM does not consider differences in mortality rates of therapies, i.e., differences in life years gained [32]. Improvements in quality of life, which are achieved by less and less severe OM during treatment with IV-BU compared to O-BU, are not reflected in the calculations.
There are some limitations concerning studies and cost data inserted in the model. The data used for the model comparing frequencies of adverse events with O-BU and IV-BU were from four retrospective clinical studies [11, 13, 14, 19] and one prospective and retrospective comparison [10] with obviously heterogenous patient populations. In one study, the groups had variable use of methotrexate [14]; in another study, patients with a different ethnic background as compared to German patients were investigated [13], and another study comprised autologous HSCT instead of allogeneic HSCT and used an experimental drug combination of BU and idarubicin [10]. The conclusions of the model had to be based exclusively on literature historical data due to lack of up-to-date evidence-based studies. Infection rates with OM were derived from a study on chemotherapy-induced OM in cancer patients, because comparative data on infections in patients with or without OM after HSCT were not available [19]. Cost data for treatment of OM grade 3–4 and for treatment of infection were both from publications on cancer patients receiving chemotherapy [20, 22]. Published data on treatment costs of OM and infection of patients after allogeneic HSCT were not available and might differ in patients after chemotherapy due to potentially different severity and duration or different influence on length of hospital stay or readmission to the hospital. Estimations had also to be made for German cost data on SOS. Treatment costs of SOS were based on the assumption that defibrotide is a major cost component. This is a simplification of a probably much more complex issue. However again, German cost data on SOS or length of hospital stay with SOS in Germany were not available. Therefore, this estimation close to current clinical practice was chosen. Various approaches in the sensitivity analyses were used to account for these uncertainties. The applicability of this economic assessment of IV-BU compared to O-BU from a German providers’ perspective to other countries is limited. The influence of IV-BU on costs may produce variable results as a function of differences in treatment patterns, costs, health care systems, and the country-specific type of health economic evaluation. However, the basic approach of our model calculations can be transferred to other countries using country-specific costs for treatment of adverse events and, if available, up-to-date study data comparing IV-BU with O-BU.

Conclusions

The presented budget-impact calculations (IV-BU compared to O-BU) from a German health care providers’ perspective show cost savings in overall costs of HSCT. Sensitivity analyses result in moderate cost increase for IV-BU when calculating worst case scenarios. Based on model calculations, the use of IV-BU in adult patients undergoing HSCT seems to be reasonable. Contemporary real-life data on frequencies of OM and SOS in the course of HSCT with IV-BU compared to O-BU, up-to-date treatment patterns for OM and SOS, as well as resource use and costs of OM, SOS, and HSCT are needed to allow for further analyses.

Acknowledgments

We thank Pierre Fabre Pharma Germany for the research support.

Conflict of interest

Prof. Ostermann, senior author, received funding from Pierre Fabre Pharma Germany. The other authors have no financial conflicts of interest to disclose and have full control of all primary data. The authors agree to allow the journal to review the data if requested.
Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Literatur
1.
Zurück zum Zitat Passweg JR, Baldomero H, Bregni M, Cesaro S, Dreger P, Duarte RF, Falkenburg JH, Kroger N, Farge-Bancel D, Gaspar HB, Marsh J, Mohty M, Peters C, Sureda A, Velardi A, Ruiz de Elvira C, Madrigal A (2013) Hematopoietic SCT in Europe: data and trends in 2011. Bone Marrow Transplant 48(9):1161–1167. doi:10.1038/bmt.2013.51 PubMedCentralCrossRefPubMed Passweg JR, Baldomero H, Bregni M, Cesaro S, Dreger P, Duarte RF, Falkenburg JH, Kroger N, Farge-Bancel D, Gaspar HB, Marsh J, Mohty M, Peters C, Sureda A, Velardi A, Ruiz de Elvira C, Madrigal A (2013) Hematopoietic SCT in Europe: data and trends in 2011. Bone Marrow Transplant 48(9):1161–1167. doi:10.​1038/​bmt.​2013.​51 PubMedCentralCrossRefPubMed
3.
Zurück zum Zitat Parmar S, Rondon G, de Lima M, Thall P, Bassett R, Anderlini P, Kebriaei P, Khouri I, Ganesan P, Champlin R, Giralt S (2013) Dose intensification of busulfan in the preparative regimen is associated with improved survival: a phase I/II controlled, randomized study. Biol Blood Marrow Transplant 19(3):474–480. doi:10.1016/j.bbmt.2012.12.001 PubMedCentralCrossRefPubMed Parmar S, Rondon G, de Lima M, Thall P, Bassett R, Anderlini P, Kebriaei P, Khouri I, Ganesan P, Champlin R, Giralt S (2013) Dose intensification of busulfan in the preparative regimen is associated with improved survival: a phase I/II controlled, randomized study. Biol Blood Marrow Transplant 19(3):474–480. doi:10.​1016/​j.​bbmt.​2012.​12.​001 PubMedCentralCrossRefPubMed
4.
Zurück zum Zitat Bredeson C, LeRademacher J, Kato K, Dipersio JF, Agura E, Devine SM, Appelbaum FR, Tomblyn MR, Laport GG, Zhu X, McCarthy PL, Ho VT, Cooke KR, Armstrong E, Smith A, Rizzo JD, Burkart JM, Pasquini MC (2013) Prospective cohort study comparing intravenous busulfan to total body irradiation in hematopoietic cell transplantation. Blood 122(24):3871–3878. doi:10.1182/blood-2013-08-519009 PubMedCentralCrossRefPubMed Bredeson C, LeRademacher J, Kato K, Dipersio JF, Agura E, Devine SM, Appelbaum FR, Tomblyn MR, Laport GG, Zhu X, McCarthy PL, Ho VT, Cooke KR, Armstrong E, Smith A, Rizzo JD, Burkart JM, Pasquini MC (2013) Prospective cohort study comparing intravenous busulfan to total body irradiation in hematopoietic cell transplantation. Blood 122(24):3871–3878. doi:10.​1182/​blood-2013-08-519009 PubMedCentralCrossRefPubMed
6.
Zurück zum Zitat Copelan EA, Hamilton BK, Avalos B, Ahn KW, Bolwell BJ, Zhu X, Aljurf M, van Besien K, Bredeson C, Cahn JY, Costa LJ, de Lima M, Gale RP, Hale GA, Halter J, Hamadani M, Inamoto Y, Kamble RT, Litzow MR, Loren AW, Marks DI, Olavarria E, Roy V, Sabloff M, Savani BN, Seftel M, Schouten HC, Ustun C, Waller EK, Weisdorf DJ, Wirk B, Horowitz MM, Arora M, Szer J, Cortes J, Kalaycio ME, Maziarz RT, Saber W (2013) Better leukemia-free and overall survival in AML in first remission following cyclophosphamide in combination with busulfan compared with TBI. Blood 122(24):3863–3870. doi:10.1182/blood-2013-07-514448 PubMedCentralCrossRefPubMed Copelan EA, Hamilton BK, Avalos B, Ahn KW, Bolwell BJ, Zhu X, Aljurf M, van Besien K, Bredeson C, Cahn JY, Costa LJ, de Lima M, Gale RP, Hale GA, Halter J, Hamadani M, Inamoto Y, Kamble RT, Litzow MR, Loren AW, Marks DI, Olavarria E, Roy V, Sabloff M, Savani BN, Seftel M, Schouten HC, Ustun C, Waller EK, Weisdorf DJ, Wirk B, Horowitz MM, Arora M, Szer J, Cortes J, Kalaycio ME, Maziarz RT, Saber W (2013) Better leukemia-free and overall survival in AML in first remission following cyclophosphamide in combination with busulfan compared with TBI. Blood 122(24):3863–3870. doi:10.​1182/​blood-2013-07-514448 PubMedCentralCrossRefPubMed
7.
Zurück zum Zitat Nath CE, Shaw PJ (2007) Busulphan in blood and marrow transplantation: dose, route, frequency and role of therapeutic drug monitoring. Curr Clin Pharmacol 2(1):75–91CrossRefPubMed Nath CE, Shaw PJ (2007) Busulphan in blood and marrow transplantation: dose, route, frequency and role of therapeutic drug monitoring. Curr Clin Pharmacol 2(1):75–91CrossRefPubMed
8.
Zurück zum Zitat Aggarwal C, Gupta S, Vaughan WP, Saylors GB, Salzman DE, Katz RO, Nance AG, Tilden AB, Carabasi MH (2006) Improved outcomes in intermediate- and high-risk aggressive non-Hodgkin lymphoma after autologous hematopoietic stem cell transplantation substituting intravenous for oral busulfan in a busulfan, cyclophosphamide, and etoposide preparative regimen. Biol Blood Marrow Transplant 12(7):770–777. doi:10.1016/j.bbmt.2006.03.016 CrossRefPubMed Aggarwal C, Gupta S, Vaughan WP, Saylors GB, Salzman DE, Katz RO, Nance AG, Tilden AB, Carabasi MH (2006) Improved outcomes in intermediate- and high-risk aggressive non-Hodgkin lymphoma after autologous hematopoietic stem cell transplantation substituting intravenous for oral busulfan in a busulfan, cyclophosphamide, and etoposide preparative regimen. Biol Blood Marrow Transplant 12(7):770–777. doi:10.​1016/​j.​bbmt.​2006.​03.​016 CrossRefPubMed
9.
Zurück zum Zitat Dean RM, Pohlman B, Sweetenham JW, Sobecks RM, Kalaycio ME, Smith SD, Copelan EA, Andresen S, Rybicki LA, Curtis J, Bolwell BJ (2010) Superior survival after replacing oral with intravenous busulfan in autologous stem cell transplantation for non-Hodgkin lymphoma with busulfan, cyclophosphamide and etoposide. Br J Haematol 148(2):226–234. doi:10.1111/j.1365-2141.2009.07940.x CrossRefPubMed Dean RM, Pohlman B, Sweetenham JW, Sobecks RM, Kalaycio ME, Smith SD, Copelan EA, Andresen S, Rybicki LA, Curtis J, Bolwell BJ (2010) Superior survival after replacing oral with intravenous busulfan in autologous stem cell transplantation for non-Hodgkin lymphoma with busulfan, cyclophosphamide and etoposide. Br J Haematol 148(2):226–234. doi:10.​1111/​j.​1365-2141.​2009.​07940.​x CrossRefPubMed
10.
Zurück zum Zitat Ferrara F, Mele G, Palmieri S, Pedata M, Copia C, Riccardi C, Izzo T, Criscuolo C, Musto P (2009) Continuous infusion idarubicin and intravenous busulphan as conditioning regimen to autologous stem cell transplantation for patients with acute myeloid leukaemia. Hematol Oncol 27(4):198–202. doi:10.1002/hon.903 CrossRefPubMed Ferrara F, Mele G, Palmieri S, Pedata M, Copia C, Riccardi C, Izzo T, Criscuolo C, Musto P (2009) Continuous infusion idarubicin and intravenous busulphan as conditioning regimen to autologous stem cell transplantation for patients with acute myeloid leukaemia. Hematol Oncol 27(4):198–202. doi:10.​1002/​hon.​903 CrossRefPubMed
11.
Zurück zum Zitat Kashyap A, Wingard J, Cagnoni P, Roy J, Tarantolo S, Hu W, Blume K, Niland J, Palmer JM, Vaughan W, Fernandez H, Champlin R, Forman S, Andersson BS (2002) Intravenous versus oral busulfan as part of a busulfan/cyclophosphamide preparative regimen for allogeneic hematopoietic stem cell transplantation: decreased incidence of hepatic venoocclusive disease (HVOD), HVOD-related mortality, and overall 100-day mortality. Biol Blood Marrow Transplant 8(9):493–500CrossRefPubMed Kashyap A, Wingard J, Cagnoni P, Roy J, Tarantolo S, Hu W, Blume K, Niland J, Palmer JM, Vaughan W, Fernandez H, Champlin R, Forman S, Andersson BS (2002) Intravenous versus oral busulfan as part of a busulfan/cyclophosphamide preparative regimen for allogeneic hematopoietic stem cell transplantation: decreased incidence of hepatic venoocclusive disease (HVOD), HVOD-related mortality, and overall 100-day mortality. Biol Blood Marrow Transplant 8(9):493–500CrossRefPubMed
12.
Zurück zum Zitat Kim SE, Lee JH, Choi SJ, Ryu SG, Lee KH (2005) Morbidity and non-relapse mortality after allogeneic bone marrow transplantation in adult leukemia patients conditioned with busulfan plus cyclophosphamide: a retrospective comparison of oral versus intravenous busulfan. Haematologica 90(2):285–286PubMed Kim SE, Lee JH, Choi SJ, Ryu SG, Lee KH (2005) Morbidity and non-relapse mortality after allogeneic bone marrow transplantation in adult leukemia patients conditioned with busulfan plus cyclophosphamide: a retrospective comparison of oral versus intravenous busulfan. Haematologica 90(2):285–286PubMed
13.
Zurück zum Zitat Lee JH, Choi SJ, Kim SE, Park CJ, Chi HS, Lee MS, Lee JS, Kim WK, Lee KH (2005) Decreased incidence of hepatic veno-occlusive disease and fewer hemostatic derangements associated with intravenous busulfan vs oral busulfan in adults conditioned with busulfan + cyclophosphamide for allogeneic bone marrow transplantation. Ann Hematol 84(5):321–330. doi:10.1007/s00277-004-0982-4 CrossRefPubMed Lee JH, Choi SJ, Kim SE, Park CJ, Chi HS, Lee MS, Lee JS, Kim WK, Lee KH (2005) Decreased incidence of hepatic veno-occlusive disease and fewer hemostatic derangements associated with intravenous busulfan vs oral busulfan in adults conditioned with busulfan + cyclophosphamide for allogeneic bone marrow transplantation. Ann Hematol 84(5):321–330. doi:10.​1007/​s00277-004-0982-4 CrossRefPubMed
14.
Zurück zum Zitat Sobecks RM, Rybicki L, Yurch M, Kalaycio M, Dean R, Andresen S, Pohlman B, Duong H, Bolwell B, Copelan E (2012) Intravenous compared with oral busulfan as preparation for allogeneic hematopoietic progenitor cell transplantation for AML and MDS. Bone Marrow Transplant 47(5):633–638. doi:10.1038/bmt.2011.167 CrossRefPubMed Sobecks RM, Rybicki L, Yurch M, Kalaycio M, Dean R, Andresen S, Pohlman B, Duong H, Bolwell B, Copelan E (2012) Intravenous compared with oral busulfan as preparation for allogeneic hematopoietic progenitor cell transplantation for AML and MDS. Bone Marrow Transplant 47(5):633–638. doi:10.​1038/​bmt.​2011.​167 CrossRefPubMed
17.
Zurück zum Zitat Mauskopf JA, Sullivan SD, Annemans L, Caro J, Mullins CD, Nuijten M, Orlewska E, Watkins J, Trueman P (2007) Principles of good practice for budget impact analysis: report of the ISPOR Task Force on good research practices—budget impact analysis. Value Health 10(5):336–347. doi:10.1111/j.1524-4733.2007.00187.x CrossRefPubMed Mauskopf JA, Sullivan SD, Annemans L, Caro J, Mullins CD, Nuijten M, Orlewska E, Watkins J, Trueman P (2007) Principles of good practice for budget impact analysis: report of the ISPOR Task Force on good research practices—budget impact analysis. Value Health 10(5):336–347. doi:10.​1111/​j.​1524-4733.​2007.​00187.​x CrossRefPubMed
18.
Zurück zum Zitat Coppell JA, Richardson PG, Soiffer R, Martin PL, Kernan NA, Chen A, Guinan E, Vogelsang G, Krishnan A, Giralt S, Revta C, Carreau NA, Iacobelli M, Carreras E, Ruutu T, Barbui T, Antin JH, Niederwieser D (2010) Hepatic veno-occlusive disease following stem cell transplantation: incidence, clinical course, and outcome. Biol Blood Marrow Transplant 16(2):157–168. doi:10.1016/j.bbmt.2009.08.024 PubMedCentralCrossRefPubMed Coppell JA, Richardson PG, Soiffer R, Martin PL, Kernan NA, Chen A, Guinan E, Vogelsang G, Krishnan A, Giralt S, Revta C, Carreau NA, Iacobelli M, Carreras E, Ruutu T, Barbui T, Antin JH, Niederwieser D (2010) Hepatic veno-occlusive disease following stem cell transplantation: incidence, clinical course, and outcome. Biol Blood Marrow Transplant 16(2):157–168. doi:10.​1016/​j.​bbmt.​2009.​08.​024 PubMedCentralCrossRefPubMed
19.
Zurück zum Zitat Elting LS, Cooksley C, Chambers M, Cantor SB, Manzullo E, Rubenstein EB (2003) The burdens of cancer therapy. Clinical and economic outcomes of chemotherapy-induced mucositis. Cancer 98(7):1531–1539. doi:10.1002/cncr.11671 CrossRefPubMed Elting LS, Cooksley C, Chambers M, Cantor SB, Manzullo E, Rubenstein EB (2003) The burdens of cancer therapy. Clinical and economic outcomes of chemotherapy-induced mucositis. Cancer 98(7):1531–1539. doi:10.​1002/​cncr.​11671 CrossRefPubMed
20.
Zurück zum Zitat Banz K, Bischoff H, Brunner M, Chouaid C, de Castro Carpeno J, de Marinis F, Grossi F, Vergnenegre A, Walzer S (2011) Comparison of treatment costs of grade 3/4 adverse events associated with erlotinib or pemetrexed maintenance therapy for patients with advanced non-small-cell lung cancer (NSCLC) in Germany, France, Italy, and Spain. Lung Cancer 74(3):529–534. doi:10.1016/j.lungcan.2011.04.010 CrossRefPubMed Banz K, Bischoff H, Brunner M, Chouaid C, de Castro Carpeno J, de Marinis F, Grossi F, Vergnenegre A, Walzer S (2011) Comparison of treatment costs of grade 3/4 adverse events associated with erlotinib or pemetrexed maintenance therapy for patients with advanced non-small-cell lung cancer (NSCLC) in Germany, France, Italy, and Spain. Lung Cancer 74(3):529–534. doi:10.​1016/​j.​lungcan.​2011.​04.​010 CrossRefPubMed
21.
Zurück zum Zitat Moerer O, Schmid A, Hofmann M, Herklotz A, Reinhart K, Werdan K, Schneider H, Burchardi H (2002) Direct costs of severe sepsis in three German intensive care units based on retrospective electronic patient record analysis of resource use. Intensive Care Med 28(10):1440–1446. doi:10.1007/s00134-002-1429-9 CrossRefPubMed Moerer O, Schmid A, Hofmann M, Herklotz A, Reinhart K, Werdan K, Schneider H, Burchardi H (2002) Direct costs of severe sepsis in three German intensive care units based on retrospective electronic patient record analysis of resource use. Intensive Care Med 28(10):1440–1446. doi:10.​1007/​s00134-002-1429-9 CrossRefPubMed
22.
Zurück zum Zitat Paessens BJ, von Schilling C, Berger K, Shlaen M, Muller-Thomas C, Bernard R, Peschel C, Ihbe-Heffinger A (2011) Health resource consumption and costs attributable to chemotherapy-induced toxicity in German routine hospital care in lymphoproliferative disorder and NSCLC patients. Ann Oncol 22(10):2310–2319. doi:10.1093/annonc/mdq759 CrossRefPubMed Paessens BJ, von Schilling C, Berger K, Shlaen M, Muller-Thomas C, Bernard R, Peschel C, Ihbe-Heffinger A (2011) Health resource consumption and costs attributable to chemotherapy-induced toxicity in German routine hospital care in lymphoproliferative disorder and NSCLC patients. Ann Oncol 22(10):2310–2319. doi:10.​1093/​annonc/​mdq759 CrossRefPubMed
23.
Zurück zum Zitat Richardson PG, Soiffer RJ, Antin JH, Uno H, Jin Z, Kurtzberg J, Martin PL, Steinbach G, Murray KF, Vogelsang GB, Chen AR, Krishnan A, Kernan NA, Avigan DE, Spitzer TR, Shulman HM, Di Salvo DN, Revta C, Warren D, Momtaz P, Bradwin G, Wei LJ, Iacobelli M, McDonald GB, Guinan EC (2010) Defibrotide for the treatment of severe hepatic veno-occlusive disease and multiorgan failure after stem cell transplantation: a multicenter, randomized, dose-finding trial. Biol Blood Marrow Transplant 16(7):1005–1017. doi:10.1016/j.bbmt.2010.02.009 PubMedCentralCrossRefPubMed Richardson PG, Soiffer RJ, Antin JH, Uno H, Jin Z, Kurtzberg J, Martin PL, Steinbach G, Murray KF, Vogelsang GB, Chen AR, Krishnan A, Kernan NA, Avigan DE, Spitzer TR, Shulman HM, Di Salvo DN, Revta C, Warren D, Momtaz P, Bradwin G, Wei LJ, Iacobelli M, McDonald GB, Guinan EC (2010) Defibrotide for the treatment of severe hepatic veno-occlusive disease and multiorgan failure after stem cell transplantation: a multicenter, randomized, dose-finding trial. Biol Blood Marrow Transplant 16(7):1005–1017. doi:10.​1016/​j.​bbmt.​2010.​02.​009 PubMedCentralCrossRefPubMed
26.
Zurück zum Zitat Dignan FL, Wynn RF, Hadzic N, Karani J, Quaglia A, Pagliuca A, Veys P, Potter MN (2013) BCSH/BSBMT guideline: diagnosis and management of veno-occlusive disease (sinusoidal obstruction syndrome) following haematopoietic stem cell transplantation. Br J Haematol 163(4):444–457. doi:10.1111/bjh.12558 CrossRefPubMed Dignan FL, Wynn RF, Hadzic N, Karani J, Quaglia A, Pagliuca A, Veys P, Potter MN (2013) BCSH/BSBMT guideline: diagnosis and management of veno-occlusive disease (sinusoidal obstruction syndrome) following haematopoietic stem cell transplantation. Br J Haematol 163(4):444–457. doi:10.​1111/​bjh.​12558 CrossRefPubMed
27.
Zurück zum Zitat Graf von der Schulenburg JM, Greiner W, Jost F, Klusen N, Kubin M, Leidl R, Mittendorf T, Rebscher H, Schoeffski O, Vauth C, Volmer T, Wahler S, Wasem J, Weber C (2008) German recommendations on health economic evaluation: third and updated version of the Hanover Consensus. Value Health 11(4):539–544. doi:10.1111/j.1524-4733.2007.00301.x CrossRefPubMed Graf von der Schulenburg JM, Greiner W, Jost F, Klusen N, Kubin M, Leidl R, Mittendorf T, Rebscher H, Schoeffski O, Vauth C, Volmer T, Wahler S, Wasem J, Weber C (2008) German recommendations on health economic evaluation: third and updated version of the Hanover Consensus. Value Health 11(4):539–544. doi:10.​1111/​j.​1524-4733.​2007.​00301.​x CrossRefPubMed
29.
Zurück zum Zitat Lee SJ, Klar N, Weeks JC, Antin JH (2000) Predicting costs of stem-cell transplantation. J Clin Oncol 18(1):64–71PubMed Lee SJ, Klar N, Weeks JC, Antin JH (2000) Predicting costs of stem-cell transplantation. J Clin Oncol 18(1):64–71PubMed
31.
Zurück zum Zitat Tellez Giron G, Salgado JL, Soto H (2012) Cost effectiveness analysis of busulfan–cyclophosphamide (BuCy2) as conditioning regimen before allogeneic human stem cell transplantation (HSCT): comparison of oral versus IV busulfan. Value Health 15(4):A220CrossRef Tellez Giron G, Salgado JL, Soto H (2012) Cost effectiveness analysis of busulfan–cyclophosphamide (BuCy2) as conditioning regimen before allogeneic human stem cell transplantation (HSCT): comparison of oral versus IV busulfan. Value Health 15(4):A220CrossRef
33.
Zurück zum Zitat Zhang H, Graiser M, Hutcherson DA, Dada MO, McMillan S, Ali Z, Flowers CR, Waller EK (2012) Pharmacokinetic-directed high-dose busulfan combined with cyclophosphamide and etoposide results in predictable drug levels and durable long-term survival in lymphoma patients undergoing autologous stem cell transplantation. Biol Blood Marrow Transplant 18(8):1287–1294. doi:10.1016/j.bbmt.2012.02.006 CrossRefPubMed Zhang H, Graiser M, Hutcherson DA, Dada MO, McMillan S, Ali Z, Flowers CR, Waller EK (2012) Pharmacokinetic-directed high-dose busulfan combined with cyclophosphamide and etoposide results in predictable drug levels and durable long-term survival in lymphoma patients undergoing autologous stem cell transplantation. Biol Blood Marrow Transplant 18(8):1287–1294. doi:10.​1016/​j.​bbmt.​2012.​02.​006 CrossRefPubMed
34.
Zurück zum Zitat Lim ZY, Thanigaikumar M, Gandhi S, Pearce L, Kenyon M, Ho AYL, Devereux S, Pagliuca A, Mufti GJ (2007) Use of intravenous busulphan for reduced intensity conditioning (RIC) haematopoietic stem cell transplantation (HSCT) is associated with delayed T-cell full donor chimerism and lower incidence of acute graft versus host disease. Blood (ASH Annual Meeting Abstracts) 110 (Abstract 1994) Lim ZY, Thanigaikumar M, Gandhi S, Pearce L, Kenyon M, Ho AYL, Devereux S, Pagliuca A, Mufti GJ (2007) Use of intravenous busulphan for reduced intensity conditioning (RIC) haematopoietic stem cell transplantation (HSCT) is associated with delayed T-cell full donor chimerism and lower incidence of acute graft versus host disease. Blood (ASH Annual Meeting Abstracts) 110 (Abstract 1994)
Metadaten
Titel
Economic and clinical aspects of intravenous versus oral busulfan in adult patients for conditioning prior to HSCT
verfasst von
Karin Berger
Dorothee Schopohl
Christina Rieger
Helmut Ostermann
Publikationsdatum
01.12.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Supportive Care in Cancer / Ausgabe 12/2015
Print ISSN: 0941-4355
Elektronische ISSN: 1433-7339
DOI
https://doi.org/10.1007/s00520-015-2695-8

Weitere Artikel der Ausgabe 12/2015

Supportive Care in Cancer 12/2015 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.