Skip to main content
Erschienen in: Journal of Assisted Reproduction and Genetics 8/2018

07.06.2018 | Commentary Editorial

Editing the human genome: where ART and science intersect

verfasst von: Avner Hershlag, Sara L. Bristow

Erschienen in: Journal of Assisted Reproduction and Genetics | Ausgabe 8/2018

Einloggen, um Zugang zu erhalten

Abstract

The rapid development of gene-editing technologies has led to an exponential rise in both basic and translational research initiatives studying molecular processes and investigating possible clinical applications. Early experiments using genome editing to study human embryo development have contradicted findings in studies on model organisms. Additionally, a series of four experiments over the past 2 years set out to investigate the possibilities of introducing genetic modifications to human embryos, each with varying levels of success. Here, we discuss the key findings of these studies, including the efficiency, the safety, the potential untoward effects, major flaws of the studies, and emerging alternative genome editing methods that may allow overcoming the hurdles encountered so far. Given these results, we also raise several questions about the clinical utilization of germline gene editing: For which indications is gene editing appropriate? How do gene-editing technologies compare with genetic testing methods currently used for screening embryos? What are the ethical considerations we should be concerned about? While further research is underway, and our understanding of how to implement this technology continues to evolve, it is critical to contemplate if and how it should be translated from the bench to clinical practice.
Literatur
1.
Zurück zum Zitat Cornu TI, Mussolino C, Cathomen T. Refining strategies to translate genome editing to the clinic. Nat Med. 2017;23:415–23.CrossRefPubMed Cornu TI, Mussolino C, Cathomen T. Refining strategies to translate genome editing to the clinic. Nat Med. 2017;23:415–23.CrossRefPubMed
2.
Zurück zum Zitat Chen AE, Egli D, Niakan K, Deng J, Akutsu H, Yamaki M, et al. Optimal timing of inner cell mass isolation increases the efficiency of human embryonic stem cell derivation and allows generation of sibling cell lines. Cell Stem Cell. 2009;4:103–6. Chen AE, Egli D, Niakan K, Deng J, Akutsu H, Yamaki M, et al. Optimal timing of inner cell mass isolation increases the efficiency of human embryonic stem cell derivation and allows generation of sibling cell lines. Cell Stem Cell. 2009;4:103–6.
3.
Zurück zum Zitat Niakan KK, Eggan K. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev Biol. 2013;375:54–64.CrossRefPubMed Niakan KK, Eggan K. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev Biol. 2013;375:54–64.CrossRefPubMed
4.
Zurück zum Zitat Blakeley P, Fogarty NME, del Valle I, Wamaitha SE, Hu TX, Elder K, et al. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development. 2015;142:3613–3. Blakeley P, Fogarty NME, del Valle I, Wamaitha SE, Hu TX, Elder K, et al. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Development. 2015;142:3613–3.
5.
Zurück zum Zitat Callaway E. UK scientists gain licence to edit genes in human embryos. Nature. 2016;530:18–8. Callaway E. UK scientists gain licence to edit genes in human embryos. Nature. 2016;530:18–8.
6.
Zurück zum Zitat Frum T, Halbisen MA, Wang C, Amiri H, Robson P, Ralston A. Oct4 cell-autonomously promotes primitive endoderm development in the mouse blastocyst. Dev Cell. 2013;25:610–22.CrossRefPubMedPubMedCentral Frum T, Halbisen MA, Wang C, Amiri H, Robson P, Ralston A. Oct4 cell-autonomously promotes primitive endoderm development in the mouse blastocyst. Dev Cell. 2013;25:610–22.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95:379–91. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95:379–91.
8.
Zurück zum Zitat Fogarty NME, McCarthy A, Snijders KE, Powell BE, Kubikova N, Blakeley P, et al. Genome editing reveals a role for OCT4 in human embryogenesis. Nature. 2017;550:67–73. Fogarty NME, McCarthy A, Snijders KE, Powell BE, Kubikova N, Blakeley P, et al. Genome editing reveals a role for OCT4 in human embryogenesis. Nature. 2017;550:67–73.
9.
Zurück zum Zitat Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 2015;6:363–72. Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 2015;6:363–72.
10.
Zurück zum Zitat Kang X, He W, Huang Y, Yu Q, Chen Y, Gao X, et al. Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J Assist Reprod Genet Springer US. 2016;33:581–8. Kang X, He W, Huang Y, Yu Q, Chen Y, Gao X, et al. Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing. J Assist Reprod Genet Springer US. 2016;33:581–8.
11.
Zurück zum Zitat Tang L, Zeng Y, Du H, Gong M, Peng J, Zhang B, et al. CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol Gen Genomics. 2017;292:525–33.CrossRef Tang L, Zeng Y, Du H, Gong M, Peng J, Zhang B, et al. CRISPR/Cas9-mediated gene editing in human zygotes using Cas9 protein. Mol Gen Genomics. 2017;292:525–33.CrossRef
12.
Zurück zum Zitat Ma H, Marti-Gutierrez N, Park S-W, Wu J, Lee Y, Suzuki K, et al. Correction of a pathogenic gene mutation in human embryos. Nature. 2017;548:413–9.CrossRefPubMed Ma H, Marti-Gutierrez N, Park S-W, Wu J, Lee Y, Suzuki K, et al. Correction of a pathogenic gene mutation in human embryos. Nature. 2017;548:413–9.CrossRefPubMed
13.
Zurück zum Zitat Callaway E. Doubts raised about CRISPR gene-editing study in human embryos. Nature. 2017; Callaway E. Doubts raised about CRISPR gene-editing study in human embryos. Nature. 2017;
14.
Zurück zum Zitat Egli D, Zuccaro M, Kosicki M, Church G, Bradley A, Jasin M. Inter-homologue repair in fertilized human eggs? Cold Spring Harbor Laboratory; 2017;181255. Egli D, Zuccaro M, Kosicki M, Church G, Bradley A, Jasin M. Inter-homologue repair in fertilized human eggs? Cold Spring Harbor Laboratory; 2017;181255.
15.
Zurück zum Zitat Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4.CrossRefPubMedPubMedCentral Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–4.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Chen Y, Wang Z, Ni H, Xu Y, Chen Q, Jiang L. CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis. Sci China Life Sci. 2017;60:520–3.CrossRefPubMed Chen Y, Wang Z, Ni H, Xu Y, Chen Q, Jiang L. CRISPR/Cas9-mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis. Sci China Life Sci. 2017;60:520–3.CrossRefPubMed
17.
Zurück zum Zitat Kim K, Ryu S-M, Kim S-T, Baek G, Kim D, Lim K, et al. Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol. 2017;35:435–7. Kim K, Ryu S-M, Kim S-T, Baek G, Kim D, Lim K, et al. Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol. 2017;35:435–7.
18.
Zurück zum Zitat Li J, Sun Y, Du J, Zhao Y, Xia L. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol Plant. 2017;10:526–9.CrossRefPubMed Li J, Sun Y, Du J, Zhao Y, Xia L. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol Plant. 2017;10:526–9.CrossRefPubMed
19.
Zurück zum Zitat Li G, Liu Y, Zeng Y, Li J, Wang L, Yang G, et al. Highly efficient and precise base editing in discarded human tripronuclear embryos. Protein cell. Higher Education Press; 2017;1–4. Li G, Liu Y, Zeng Y, Li J, Wang L, Yang G, et al. Highly efficient and precise base editing in discarded human tripronuclear embryos. Protein cell. Higher Education Press; 2017;1–4.
20.
Zurück zum Zitat Liang P, Sun H, Sun Y, Zhang X, Xie X, Zhang J, et al. Effective gene editing by high-fidelity base editor 2 in mouse zygotes. Protein Cell. 2017;8:601–11. Liang P, Sun H, Sun Y, Zhang X, Xie X, Zhang J, et al. Effective gene editing by high-fidelity base editor 2 in mouse zygotes. Protein Cell. 2017;8:601–11.
21.
Zurück zum Zitat Lu Y, Zhu J-K. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant. 2017;10:523–5.CrossRefPubMed Lu Y, Zhu J-K. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol Plant. 2017;10:523–5.CrossRefPubMed
22.
Zurück zum Zitat Ren B, Yan F, Kuang Y, Li N, Zhang D, Lin H, et al. A CRISPR/Cas9 toolkit for efficient targeted base editing to induce genetic variations in rice. Sci China Life Sci. 2017;60:516–9. Ren B, Yan F, Kuang Y, Li N, Zhang D, Lin H, et al. A CRISPR/Cas9 toolkit for efficient targeted base editing to induce genetic variations in rice. Sci China Life Sci. 2017;60:516–9.
23.
Zurück zum Zitat Zhou C, Zhang M, Wei Y, Sun Y, Sun Y, Pan H, et al. Highly efficient base editing in human tripronuclear zygotes. Protein cell. Higher Education Press; 2017;1–4. Zhou C, Zhang M, Wei Y, Sun Y, Sun Y, Pan H, et al. Highly efficient base editing in human tripronuclear zygotes. Protein cell. Higher Education Press; 2017;1–4.
24.
Zurück zum Zitat Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol. 2017;35:438–40. Zong Y, Wang Y, Li C, Zhang R, Chen K, Ran Y, et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol. 2017;35:438–40.
25.
Zurück zum Zitat Liang P, Ding C, Sun H, Xie X, Xu Y, Zhang X, et al. Correction of β-thalassemia mutant by base editor in human embryos. Protein cell. Higher Education Press; 2017;1–12. Liang P, Ding C, Sun H, Xie X, Xu Y, Zhang X, et al. Correction of β-thalassemia mutant by base editor in human embryos. Protein cell. Higher Education Press; 2017;1–12.
26.
Zurück zum Zitat Shevidi S, Uchida A, Schudrowitz N, Wessel GM, Yajima M. Single nucleotide editing without DNA cleavage using CRISPR/Cas9-deaminase in the sea urchin embryo. Dev Dyn. 2017;246:1036–46.CrossRefPubMedPubMedCentral Shevidi S, Uchida A, Schudrowitz N, Wessel GM, Yajima M. Single nucleotide editing without DNA cleavage using CRISPR/Cas9-deaminase in the sea urchin embryo. Dev Dyn. 2017;246:1036–46.CrossRefPubMedPubMedCentral
Metadaten
Titel
Editing the human genome: where ART and science intersect
verfasst von
Avner Hershlag
Sara L. Bristow
Publikationsdatum
07.06.2018
Verlag
Springer US
Erschienen in
Journal of Assisted Reproduction and Genetics / Ausgabe 8/2018
Print ISSN: 1058-0468
Elektronische ISSN: 1573-7330
DOI
https://doi.org/10.1007/s10815-018-1219-0

Weitere Artikel der Ausgabe 8/2018

Journal of Assisted Reproduction and Genetics 8/2018 Zur Ausgabe

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.