Skip to main content
Erschienen in:

01.03.2025 | Original Paper

EEG Signals Classification Related to Visual Objects Using Long Short-Term Memory Network and Nonlinear Interval Type-2 Fuzzy Regression

verfasst von: Hajar Ahmadieh, Farnaz Ghassemi, Mohammad Hassan Moradi

Erschienen in: Brain Topography | Ausgabe 2/2025

Einloggen, um Zugang zu erhalten

Abstract

By gaining insights into how brain activity is encoded and decoded, we enhance our understanding of brain function. This study introduces a method for classifying EEG signals related to visual objects, employing a combination of an LSTM network and nonlinear interval type-2 fuzzy regression (NIT2FR). Here, ResNet is utilized for feature extraction from images, the LSTM network for feature extraction from EEG signals, and NIT2FR for mapping image features to EEG signal features. The application of type-2 fuzzy logic addresses uncertainties arising from EEG signal nonlinearity, noise, limited data sample size, and diverse mental states among participants. The Stanford database was used for implementation, evaluating effectiveness through metrics like classification accuracy, precision, recall, and F1 score. According to the findings, the LSTM network achieved an accuracy of 55.83% in categorizing images using raw EEG data. When compared to other methods like linear type-2, linear/nonlinear type-1 fuzzy, neural network, and polynomial regression, NIT2FR coupled with an SVM classifier outperformed with a 68.05% accuracy. Thus, NIT2FR demonstrates superiority in handling high uncertainty environments. Moreover, the 6.03% improvement in accuracy over the best previous study using the same dataset underscores its effectiveness. Precision, recall, and F1 score results for NIT2FR were 68.93%, 68.08%, and 68.49% respectively, surpassing outcomes from linear type-2, linear/nonlinear type-1 fuzzy regression methods.
Literatur
Zurück zum Zitat Acharya UR, Shu Lih Oh, Hagiwara Y, Tan JH, Adeli H, Puthankattil D, Subha. (2018) Automated EEG-based screening of depression using deep convolutional neural network. Comput Methods Programs Biomed 161:103–113CrossRefPubMed Acharya UR, Shu Lih Oh, Hagiwara Y, Tan JH, Adeli H, Puthankattil D, Subha. (2018) Automated EEG-based screening of depression using deep convolutional neural network. Comput Methods Programs Biomed 161:103–113CrossRefPubMed
Zurück zum Zitat Ahmadieh H, Gassemi F, Moradi MH (2023) A hybrid deep learning framework for automated visual image classification using EEG signals. Neural Comput Applic 35(28):20989–21005CrossRef Ahmadieh H, Gassemi F, Moradi MH (2023) A hybrid deep learning framework for automated visual image classification using EEG signals. Neural Comput Applic 35(28):20989–21005CrossRef
Zurück zum Zitat Alazrai R, Abuhijleh M, Ali MZ, Daoud MI (2022) A deep learning approach for decoding visually imagined digits and letters using time–frequency–spatial representation of EEG signals. Expert Systems with Appl 203:117417CrossRef Alazrai R, Abuhijleh M, Ali MZ, Daoud MI (2022) A deep learning approach for decoding visually imagined digits and letters using time–frequency–spatial representation of EEG signals. Expert Systems with Appl 203:117417CrossRef
Zurück zum Zitat Brown EN, Kass RE, Mitra PP (2004a) Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat Neurosci 7:456–461CrossRefPubMed Brown EN, Kass RE, Mitra PP (2004a) Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat Neurosci 7:456–461CrossRefPubMed
Zurück zum Zitat Brown EN, Kass RE, Partha P, %J Nature neuroscience Mitra. (2004b) Multiple neural spike train data analysis: state-of-the-art and future challenges. Nature Neurosci 7:456–461CrossRefPubMed Brown EN, Kass RE, Partha P, %J Nature neuroscience Mitra. (2004b) Multiple neural spike train data analysis: state-of-the-art and future challenges. Nature Neurosci 7:456–461CrossRefPubMed
Zurück zum Zitat Byra M, Styczynski G, Szmigielski C, Kalinowski P, Michałowski Ł, Paluszkiewicz R, Ziarkiewicz-Wróblewska B, Zieniewicz K, Sobieraj P, Nowicki A (2018) Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images. Int J Comput Assist Radiol Surg 13:1895–1903CrossRefPubMedPubMedCentral Byra M, Styczynski G, Szmigielski C, Kalinowski P, Michałowski Ł, Paluszkiewicz R, Ziarkiewicz-Wróblewska B, Zieniewicz K, Sobieraj P, Nowicki A (2018) Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images. Int J Comput Assist Radiol Surg 13:1895–1903CrossRefPubMedPubMedCentral
Zurück zum Zitat Coupland, Simon, and Robert John. 2008. ‘Type-2 fuzzy logic and the modelling of uncertainty.’ in, Fuzzy sets and their extensions: Representation, aggregation and models (Springer). Coupland, Simon, and Robert John. 2008. ‘Type-2 fuzzy logic and the modelling of uncertainty.’ in, Fuzzy sets and their extensions: Representation, aggregation and models (Springer).
Zurück zum Zitat Craik A, He Y, Contreras-Vidal JL (2019) Deep learning for electroencephalogram (EEG) classification tasks: a review. J Neural Eng 16:031001CrossRefPubMed Craik A, He Y, Contreras-Vidal JL (2019) Deep learning for electroencephalogram (EEG) classification tasks: a review. J Neural Eng 16:031001CrossRefPubMed
Zurück zum Zitat Daliri MR, Taghizadeh M, Niksirat KS (2013) EEG signature of object categorization from event-related potentials. J Med Signals and Sens 3:37CrossRef Daliri MR, Taghizadeh M, Niksirat KS (2013) EEG signature of object categorization from event-related potentials. J Med Signals and Sens 3:37CrossRef
Zurück zum Zitat Fang X, Yuan Z (2019) Performance enhancing techniques for deep learning models in time series forecasting. Eng Appl Artif Intell 85:533–542CrossRef Fang X, Yuan Z (2019) Performance enhancing techniques for deep learning models in time series forecasting. Eng Appl Artif Intell 85:533–542CrossRef
Zurück zum Zitat Fares, Ahmed, Shenghua Zhong, and Jianmin Jiang. 2018. "Region level bi-directional deep learning framework for eeg-based image classification." In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 368–73. IEEE. Fares, Ahmed, Shenghua Zhong, and Jianmin Jiang. 2018. "Region level bi-directional deep learning framework for eeg-based image classification." In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 368–73. IEEE.
Zurück zum Zitat Gadhoumi K, Lina J-M, Mormann F, Gotman J (2016) Seizure prediction for therapeutic devices: a review. J Neurosci Methods 260:270–282CrossRefPubMed Gadhoumi K, Lina J-M, Mormann F, Gotman J (2016) Seizure prediction for therapeutic devices: a review. J Neurosci Methods 260:270–282CrossRefPubMed
Zurück zum Zitat Gers, Felix. 2001. ‘Long short-term memory in recurrent neural networks’, Verlag nicht ermittelbar. Gers, Felix. 2001. ‘Long short-term memory in recurrent neural networks’, Verlag nicht ermittelbar.
Zurück zum Zitat He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. "Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 770–78. He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. "Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, 770–78.
Zurück zum Zitat Hisdal E (1981) The IF THEN ELSE statement and interval-valued fuzzy sets of higher type. Int J Man Mach Stud 15:385–455CrossRef Hisdal E (1981) The IF THEN ELSE statement and interval-valued fuzzy sets of higher type. Int J Man Mach Stud 15:385–455CrossRef
Zurück zum Zitat Jafakesh S, Jahromy FZ, Daliri MR (2016) Decoding of object categories from brain signals using cross frequency coupling methods. Biomed Signal Process Control 27:60–67CrossRef Jafakesh S, Jahromy FZ, Daliri MR (2016) Decoding of object categories from brain signals using cross frequency coupling methods. Biomed Signal Process Control 27:60–67CrossRef
Zurück zum Zitat Janssen RJ, Mourão-Miranda J, Schnack HG (2018) Making individual prognoses in psychiatry using neuroimaging and machine learning. Biol Psychiatry: Cognitive Neurosci Neuroimaging 3:798–808 Janssen RJ, Mourão-Miranda J, Schnack HG (2018) Making individual prognoses in psychiatry using neuroimaging and machine learning. Biol Psychiatry: Cognitive Neurosci Neuroimaging 3:798–808
Zurück zum Zitat Kaneshiro B, Guimaraes MP, Kim H-S, Norcia AM, Suppes P (2015) A representational similarity analysis of the dynamics of object processing using single-trial EEG classification. PLoS ONE 10:e0135697CrossRefPubMedPubMedCentral Kaneshiro B, Guimaraes MP, Kim H-S, Norcia AM, Suppes P (2015) A representational similarity analysis of the dynamics of object processing using single-trial EEG classification. PLoS ONE 10:e0135697CrossRefPubMedPubMedCentral
Zurück zum Zitat Kappel SL, Looney D, Mandic DP, Kidmose P (2017) Physiological artifacts in scalp EEG and ear-EEG. Biomed Eng Online 16:1–16CrossRef Kappel SL, Looney D, Mandic DP, Kidmose P (2017) Physiological artifacts in scalp EEG and ear-EEG. Biomed Eng Online 16:1–16CrossRef
Zurück zum Zitat Khan SanaUllah, Islam N, Jan Z, Din IU, Rodrigues JJPC (2019) A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recogn Lett 125:1–6CrossRef Khan SanaUllah, Islam N, Jan Z, Din IU, Rodrigues JJPC (2019) A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recogn Lett 125:1–6CrossRef
Zurück zum Zitat Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. 2012. "Imagenet classification with deep convolutional neural networks." In Advances in neural information processing systems, 1097–105. Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. 2012. "Imagenet classification with deep convolutional neural networks." In Advances in neural information processing systems, 1097–105.
Zurück zum Zitat Li R, Johansen JS, Ahmed H, Ilyevsky TV, Wilbur RB, Bharadwaj HM, Siskind JM (2018) Training on the test set? an analysis of Spampinato et al. [31]. arXiv preprint arXiv:1812.07697 Li R, Johansen JS, Ahmed H, Ilyevsky TV, Wilbur RB, Bharadwaj HM, Siskind JM (2018) Training on the test set? an analysis of Spampinato et al. [31]. arXiv preprint arXiv:​1812.​07697
Zurück zum Zitat Li R, Johansen JS, Ahmed H, Ilyevsky TV, Wilbur RB, Bharadwaj HM, Siskind JM (2020) The perils and pitfalls of block design for EEG classification experiments. IEEE Trans Pattern Anal Mach Intell 43:316–333 Li R, Johansen JS, Ahmed H, Ilyevsky TV, Wilbur RB, Bharadwaj HM, Siskind JM (2020) The perils and pitfalls of block design for EEG classification experiments. IEEE Trans Pattern Anal Mach Intell 43:316–333
Zurück zum Zitat Malmivuo, Jaakko, Sari Ahokas, and Toni Välkky. 2014. "High-resolution EEG recording system using smart electrodes." In 2014 14th biennial baltic electronic Conference (BEC), 21–24. IEEE. Malmivuo, Jaakko, Sari Ahokas, and Toni Välkky. 2014. "High-resolution EEG recording system using smart electrodes." In 2014 14th biennial baltic electronic Conference (BEC), 21–24. IEEE.
Zurück zum Zitat McCartney B, Devereux B, Martinez-del-Rincon J (2022) A zero-shot deep metric learning approach to brain–computer interfaces for image retrieval. Knowl-Based Syst 246:108556CrossRef McCartney B, Devereux B, Martinez-del-Rincon J (2022) A zero-shot deep metric learning approach to brain–computer interfaces for image retrieval. Knowl-Based Syst 246:108556CrossRef
Zurück zum Zitat McCartney, Ben, Jesus Martinez-del-Rincon, Barry Devereux, and Brian Murphy. 2019. ‘Towards a real-world brain-computer interface for image retrieval’, bioRxiv: 576983. McCartney, Ben, Jesus Martinez-del-Rincon, Barry Devereux, and Brian Murphy. 2019. ‘Towards a real-world brain-computer interface for image retrieval’, bioRxiv: 576983.
Zurück zum Zitat Miyawaki Y, Uchida H, Yamashita O, Sato M-A, Morito Y, Tanabe HC, Sadato N, Kamitani Y (2008) Visual image reconstruction from human brain activity using a combination of multiscale local image decoders. Neuron 60:915–929CrossRefPubMed Miyawaki Y, Uchida H, Yamashita O, Sato M-A, Morito Y, Tanabe HC, Sadato N, Kamitani Y (2008) Visual image reconstruction from human brain activity using a combination of multiscale local image decoders. Neuron 60:915–929CrossRefPubMed
Zurück zum Zitat Moravvej SV, Alizadehsani R, Khanam S, Sobhaninia Z, Shoeibi A, Khozeimeh F, Sani ZA, Tan RS, Khosravi A, Nahavandi S, Kadri NA, Azizan MM, Arunkumar N, Acharya UR (2022) RLMD-PA: a reinforcement learning-based myocarditis diagnosis combined with a population-based algorithm for pretraining weights. Contrast Med Mol Imaging 2022(1):8733632CrossRef Moravvej SV, Alizadehsani R, Khanam S, Sobhaninia Z, Shoeibi A, Khozeimeh F, Sani ZA, Tan RS, Khosravi A, Nahavandi S, Kadri NA, Azizan MM, Arunkumar N, Acharya UR (2022) RLMD-PA: a reinforcement learning-based myocarditis diagnosis combined with a population-based algorithm for pretraining weights. Contrast Med Mol Imaging 2022(1):8733632CrossRef
Zurück zum Zitat Münßinger JI, Halder S, Kleih SC, Furdea A, Raco V, Hösle A, Kübler A (2010) Brain painting: first evaluation of a new brain–computer interface application with ALS-patients and healthy volunteers. Front Neurosci 4:182CrossRefPubMedPubMedCentral Münßinger JI, Halder S, Kleih SC, Furdea A, Raco V, Hösle A, Kübler A (2010) Brain painting: first evaluation of a new brain–computer interface application with ALS-patients and healthy volunteers. Front Neurosci 4:182CrossRefPubMedPubMedCentral
Zurück zum Zitat Murphy, Brian, Marco Baroni, and Massimo Poesio. 2009. "eeg responds to conceptual stimuli and corpus semantics." in proceedings of the 2009 conference on empirical methods in natural language processing, 619–27. Murphy, Brian, Marco Baroni, and Massimo Poesio. 2009. "eeg responds to conceptual stimuli and corpus semantics." in proceedings of the 2009 conference on empirical methods in natural language processing, 619–27.
Zurück zum Zitat Nguyen T, Khosravi A, Creighton D, Nahavandi S (2015) EEG signal classification for BCI applications by wavelets and interval type-2 fuzzy logic systems. Expert Syst Appl 42:4370–4380CrossRef Nguyen T, Khosravi A, Creighton D, Nahavandi S (2015) EEG signal classification for BCI applications by wavelets and interval type-2 fuzzy logic systems. Expert Syst Appl 42:4370–4380CrossRef
Zurück zum Zitat Nijboer F, Sellers EW, Mellinger J, Jordan MA, Matuz T, Furdea A, Halder S, Ursula Mochty DJ, Krusienski, and TM Vaughan. (2008) A P300-based brain–computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol 119:1909–1916CrossRefPubMedPubMedCentral Nijboer F, Sellers EW, Mellinger J, Jordan MA, Matuz T, Furdea A, Halder S, Ursula Mochty DJ, Krusienski, and TM Vaughan. (2008) A P300-based brain–computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol 119:1909–1916CrossRefPubMedPubMedCentral
Zurück zum Zitat Palazzo, Simone, Concetto Spampinato, Isaak Kavasidis, Daniela Giordano, and Mubarak Shah. 2017. "Generative adversarial networks conditioned by brain signals." In Proceedings of the IEEE international conference on computer vision, 3410–18. Palazzo, Simone, Concetto Spampinato, Isaak Kavasidis, Daniela Giordano, and Mubarak Shah. 2017. "Generative adversarial networks conditioned by brain signals." In Proceedings of the IEEE international conference on computer vision, 3410–18.
Zurück zum Zitat Park, Ho-Sung, Dong-Won Kim, and Sung-Kwun Oh. 2000. "Fuzzy polynomial neural networks with fuzzy activation node." In Proceedings of the KIEE Conference, 2946–48. the korean institute of electrical engineers. Park, Ho-Sung, Dong-Won Kim, and Sung-Kwun Oh. 2000. "Fuzzy polynomial neural networks with fuzzy activation node." In Proceedings of the KIEE Conference, 2946–48. the korean institute of electrical engineers.
Zurück zum Zitat Piccialli F, Di Somma V, Giampaolo F, Cuomo S, Fortino G (2021) A survey on deep learning in medicine: why, how and when? Information Fusion 66:111–137CrossRef Piccialli F, Di Somma V, Giampaolo F, Cuomo S, Fortino G (2021) A survey on deep learning in medicine: why, how and when? Information Fusion 66:111–137CrossRef
Zurück zum Zitat Shin H-C, Roth HR, Gao M, Le Lu, Ziyue Xu, Nogues I, Yao J, Mollura D, Summers RM (2016) Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35:1285–1298CrossRefPubMed Shin H-C, Roth HR, Gao M, Le Lu, Ziyue Xu, Nogues I, Yao J, Mollura D, Summers RM (2016) Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35:1285–1298CrossRefPubMed
Zurück zum Zitat Shoeibi, Afshin, Mitra Rezaei, Navid Ghassemi, Zahra Namadchian, Assef Zare, and Juan M Gorriz. 2022. "Automatic diagnosis of schizophrenia in EEG signals using functional connectivity features and CNN-LSTM model." In International work-conference on the interplay between natural and artificial computation, 63–73. Springer. Shoeibi, Afshin, Mitra Rezaei, Navid Ghassemi, Zahra Namadchian, Assef Zare, and Juan M Gorriz. 2022. "Automatic diagnosis of schizophrenia in EEG signals using functional connectivity features and CNN-LSTM model." In International work-conference on the interplay between natural and artificial computation, 63–73. Springer.
Zurück zum Zitat Spampinato, Concetto, Simone Palazzo, Isaak Kavasidis, Daniela Giordano, Nasim Souly, and Mubarak Shah. 2017. "Deep learning human mind for automated visual classification." In Proceedings of the IEEE conference on computer vision and pattern recognition, 6809–17. Spampinato, Concetto, Simone Palazzo, Isaak Kavasidis, Daniela Giordano, Nasim Souly, and Mubarak Shah. 2017. "Deep learning human mind for automated visual classification." In Proceedings of the IEEE conference on computer vision and pattern recognition, 6809–17.
Zurück zum Zitat Tafreshi TF, Daliri MR, Ghodousi M (2019) Functional and effective connectivity based features of EEG signals for object recognition. Cogn Neurodyn 13:555–566CrossRefPubMedPubMedCentral Tafreshi TF, Daliri MR, Ghodousi M (2019) Functional and effective connectivity based features of EEG signals for object recognition. Cogn Neurodyn 13:555–566CrossRefPubMedPubMedCentral
Zurück zum Zitat Taghizadeh-Sarabi M, Daliri MR, Niksirat KS (2015) Decoding objects of basic categories from electroencephalographic signals using wavelet transform and support vector machines. Brain Topogr 28:33–46CrossRefPubMed Taghizadeh-Sarabi M, Daliri MR, Niksirat KS (2015) Decoding objects of basic categories from electroencephalographic signals using wavelet transform and support vector machines. Brain Topogr 28:33–46CrossRefPubMed
Zurück zum Zitat Takagi, Tomohiro, and Michio Sugeno. 1985. ‘Fuzzy identification of systems and its applications to modeling and control’, IEEE transactions on systems, man, and cybernetics: 116–32. Takagi, Tomohiro, and Michio Sugeno. 1985. ‘Fuzzy identification of systems and its applications to modeling and control’, IEEE transactions on systems, man, and cybernetics: 116–32.
Zurück zum Zitat Tirupattur, Praveen, Yogesh Singh Rawat, Concetto Spampinato, and Mubarak Shah. 2018. "thoughtviz: visualizing human thoughts using generative adversarial network." In Proceedings of the 26th ACM international conference on Multimedia, 950–58. Tirupattur, Praveen, Yogesh Singh Rawat, Concetto Spampinato, and Mubarak Shah. 2018. "thoughtviz: visualizing human thoughts using generative adversarial network." In Proceedings of the 26th ACM international conference on Multimedia, 950–58.
Zurück zum Zitat Tonin, Luca, Tom Carlson, Robert Leeb, and José del R Millán. 2011. "Brain-controlled telepresence robot by motor-disabled people." In 2011 Annual International conference of the ieee engineering in medicine and biology society, 4227–30. IEEE. Tonin, Luca, Tom Carlson, Robert Leeb, and José del R Millán. 2011. "Brain-controlled telepresence robot by motor-disabled people." In 2011 Annual International conference of the ieee engineering in medicine and biology society, 4227–30. IEEE.
Zurück zum Zitat Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X, Xiaoou Tang X (2017) Residual attention network for image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3156–3164 Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X, Xiaoou Tang X (2017) Residual attention network for image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3156–3164
Zurück zum Zitat Wen H, Shi J, Chen W, Liu Z (2018) Deep residual network predicts cortical representation and organization of visual features for rapid categorization. Sci Rep 8:1–17 Wen H, Shi J, Chen W, Liu Z (2018) Deep residual network predicts cortical representation and organization of visual features for rapid categorization. Sci Rep 8:1–17
Zurück zum Zitat Wu D (2012) Twelve considerations in choosing between Gaussian and trapezoidal membership functions in interval type-2 fuzzy logic controllers. In: 2012 IEEE International conference on fuzzy systems. IEEE, pp 1–8 Wu D (2012) Twelve considerations in choosing between Gaussian and trapezoidal membership functions in interval type-2 fuzzy logic controllers. In: 2012 IEEE International conference on fuzzy systems. IEEE, pp 1–8
Zurück zum Zitat Yu R, Qiao L, Chen M, Lee S-W, Fei X, Shen D (2019) Weighted graph regularized sparse brain network construction for MCI identification. Pattern Recogn 90:220–231CrossRef Yu R, Qiao L, Chen M, Lee S-W, Fei X, Shen D (2019) Weighted graph regularized sparse brain network construction for MCI identification. Pattern Recogn 90:220–231CrossRef
Zurück zum Zitat Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning-III. Inf Sci 9(1):43–80CrossRef Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning-III. Inf Sci 9(1):43–80CrossRef
Zurück zum Zitat Zheng X, Chen W, You Y, Jiang Y, Li M, Zhang T (2020) Ensemble deep learning for automated visual classification using EEG signals. Pattern Recogn 102:107147CrossRef Zheng X, Chen W, You Y, Jiang Y, Li M, Zhang T (2020) Ensemble deep learning for automated visual classification using EEG signals. Pattern Recogn 102:107147CrossRef
Metadaten
Titel
EEG Signals Classification Related to Visual Objects Using Long Short-Term Memory Network and Nonlinear Interval Type-2 Fuzzy Regression
verfasst von
Hajar Ahmadieh
Farnaz Ghassemi
Mohammad Hassan Moradi
Publikationsdatum
01.03.2025
Verlag
Springer US
Erschienen in
Brain Topography / Ausgabe 2/2025
Print ISSN: 0896-0267
Elektronische ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-024-01080-0

Kompaktes Leitlinien-Wissen Neurologie (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Neurologie

Neuartige Antikörpertherapie bremst MS über zwei Jahre hinweg

Eine Therapie mit dem C40-Ligand-Blocker Frexalimab kann MS-Schübe und neue MRT-Läsionen über zwei Jahre hinweg verhindern. Dafür spricht die Auswertung einer offen fortgeführten Phase-2-Studie.

Therapiestopp bei älteren MS-Kranken kann sich lohnen

Eine Analyse aus Kanada bestätigt: Setzen ältere MS-Kranke die Behandlung mit Basistherapeutika ab, müssen sie kaum mit neuen Schüben und MRT-Auffälligkeiten rechnen.

Schadet Schichtarbeit dem Gehirn?

Eine große Registerstudie bestätigt, dass Schichtarbeit mit einem erhöhten Risiko für psychische und neurologische Erkrankungen einhergeht, sowie mit einer Volumenabnahme in Gehirnarealen, die für Depression, Angst und kognitive Funktionen relevant sind.

Positive Phase IIb-Studie zu spezifischer CAR-T-Zell-Therapie bei Myasthenia gravis

Eine auf das B-Zell-Reifungsantigen gerichtete mRNA-basierte CAR-T-Zell-Therapie wurde jetzt in einer ersten Phase IIb-Studie zur Behandlung der generalisierten Myasthenia gravis mit Placebo verglichen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.