Skip to main content
Erschienen in: Calcified Tissue International 2/2016

04.04.2016 | Original Research

Effect of miR-26a-5p on the Wnt/Ca2+ Pathway and Osteogenic Differentiation of Mouse Adipose-Derived Mesenchymal Stem Cells

verfasst von: Shasha Li, Chen Hu, Jianwei Li, Lei Liu, Wei Jing, Wei Tang, Weidong Tian, Jie Long

Erschienen in: Calcified Tissue International | Ausgabe 2/2016

Einloggen, um Zugang zu erhalten

Abstract

Elucidation of the molecular mechanisms that regulate the differentiation of adipose-derived mesenchymal stem cells into osteogenic cells may lead to new methods for bone tissue engineering. We examined the role of miR-26a-5p in the regulation of osteogenic differentiation of mouse adipose-derived mesenchymal stem cells (mADSCs) by using mimics and inhibitors of this microRNA. Our results showed that over-expression of miR-26a-5p inhibited osteogenesis and that suppression of endogenous miR-26a-5p promoted osteogenesis. Four bioinformatics algorithms indicated that the 3′UTR of Wnt5a was a potential target of miR-26a-5p. We confirmed this prediction by use of dual-luciferase reporter assay and GFP/RFP assay. We also examined the molecular mechanisms by which miR-26a-5p regulates osteogenesis. Fura-2AM and Western blot assays after transfection indicated that miR-26a-5p repressed WNT5A, inhibited calcium flux and protein kinase C, and suppressed osteogenic differentiation of mADSCs. By contrast, miR-26a-5p inhibition activated these signal proteins and promoted osteogenic differentiation. Taken together, our results suggest that up-regulation of miR-26a-5p inhibits osteogenic differentiation of mADSCs by directly targeting the 3′UTR of Wnt5a, thereby down-regulating the Wnt/Ca2+ signaling pathway.
Literatur
1.
Zurück zum Zitat Lu CH, Chang YH, Lin SY, Li KC, Hu YC (2013) Recent progresses in gene delivery-based bone tissue engineering. Biotechnol Adv 31:1695–1706CrossRefPubMed Lu CH, Chang YH, Lin SY, Li KC, Hu YC (2013) Recent progresses in gene delivery-based bone tissue engineering. Biotechnol Adv 31:1695–1706CrossRefPubMed
2.
Zurück zum Zitat Sriram M, Sainitya R, Kalyanaraman V, Dhivya S, Selvamurugan N (2015) Biomaterials mediated microRNA delivery for bone tissue engineering. Int J Biol Macromol 74:404–412CrossRefPubMed Sriram M, Sainitya R, Kalyanaraman V, Dhivya S, Selvamurugan N (2015) Biomaterials mediated microRNA delivery for bone tissue engineering. Int J Biol Macromol 74:404–412CrossRefPubMed
3.
Zurück zum Zitat Konno M, Hamabe A, Hasegawa S, Ogawa H, Fukusumi T, Nishikawa S, Ohta K, Kano Y, Ozaki M, Noguchi Y, Sakai D, Kudoh T, Kawamoto K, Eguchi H, Satoh T, Tanemura M, Nagano H, Doki Y, Mori M, Ishii H (2013) Adipose-derived mesenchymal stem cells and regenerative medicine. Dev Growth Differ 55:309–318CrossRefPubMed Konno M, Hamabe A, Hasegawa S, Ogawa H, Fukusumi T, Nishikawa S, Ohta K, Kano Y, Ozaki M, Noguchi Y, Sakai D, Kudoh T, Kawamoto K, Eguchi H, Satoh T, Tanemura M, Nagano H, Doki Y, Mori M, Ishii H (2013) Adipose-derived mesenchymal stem cells and regenerative medicine. Dev Growth Differ 55:309–318CrossRefPubMed
4.
Zurück zum Zitat Peppo GMD, Marolt D (2013) Modulating the biochemical and biophysical culture environment to enhance osteogenic differentiation and maturation of human pluripotent stem cell-derived mesenchymal progenitors. de Peppo Marolt Stem Cell Res Therapy 4:106 Peppo GMD, Marolt D (2013) Modulating the biochemical and biophysical culture environment to enhance osteogenic differentiation and maturation of human pluripotent stem cell-derived mesenchymal progenitors. de Peppo Marolt Stem Cell Res Therapy 4:106
5.
Zurück zum Zitat Grottkau BE, Lin Y (2013) Osteogenesis of adipose—derived stem cells. Bone Res 2:133–145CrossRef Grottkau BE, Lin Y (2013) Osteogenesis of adipose—derived stem cells. Bone Res 2:133–145CrossRef
6.
Zurück zum Zitat Zhang Z, Wang J, Lu X (2014) An integrated study of natural hydroxyapatite-induced osteogenic differentiation of mesenchymal stem cells using transcriptomics, proteomics and microRNA analyses. Biomed Mater 9:045005CrossRefPubMed Zhang Z, Wang J, Lu X (2014) An integrated study of natural hydroxyapatite-induced osteogenic differentiation of mesenchymal stem cells using transcriptomics, proteomics and microRNA analyses. Biomed Mater 9:045005CrossRefPubMed
7.
Zurück zum Zitat Martin EC, Qureshi AT, Dasa V, Freitas MA, Gimble JM, Davis TA (2015) MicroRNA regulation of stem cell differentiation and diseases of the bone and adipose tissue: perspectives on miRNA biogenesis and cellular transcriptome. Biochimie. doi:10.1016/j.biochi.2015.02.012 Martin EC, Qureshi AT, Dasa V, Freitas MA, Gimble JM, Davis TA (2015) MicroRNA regulation of stem cell differentiation and diseases of the bone and adipose tissue: perspectives on miRNA biogenesis and cellular transcriptome. Biochimie. doi:10.​1016/​j.​biochi.​2015.​02.​012
8.
Zurück zum Zitat Zhang J, Tu Q, Bonewald LF, He X, Stein G, Lian J, Chen J (2011) Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Mineral Res 26:1953–1963CrossRef Zhang J, Tu Q, Bonewald LF, He X, Stein G, Lian J, Chen J (2011) Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Mineral Res 26:1953–1963CrossRef
9.
Zurück zum Zitat Huszar JM, Payne CJ (2014) MIR146A inhibits JMJD3 expression and osteogenic differentiation in human mesenchymal stem cells. FEBS Lett 588:1850–1856CrossRefPubMedPubMedCentral Huszar JM, Payne CJ (2014) MIR146A inhibits JMJD3 expression and osteogenic differentiation in human mesenchymal stem cells. FEBS Lett 588:1850–1856CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Zeng Y, Qu X, Li H, Huang S, Wang S, Xu Q, Lin R, Han Q, Li J, Zhao RC (2012) MicroRNA-100 regulates osteogenic differentiation of human adipose-derived mesenchymal stem cells by targeting BMPR2. FEBS Lett 586:2375–2381CrossRefPubMed Zeng Y, Qu X, Li H, Huang S, Wang S, Xu Q, Lin R, Han Q, Li J, Zhao RC (2012) MicroRNA-100 regulates osteogenic differentiation of human adipose-derived mesenchymal stem cells by targeting BMPR2. FEBS Lett 586:2375–2381CrossRefPubMed
11.
Zurück zum Zitat Li Z, Hassan MQ, Volinia S, van Wijnen AJ, Stein JL, Croce CM, Lian JB, Stein GS (2008) A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci USA 105:13906–13911CrossRefPubMedPubMedCentral Li Z, Hassan MQ, Volinia S, van Wijnen AJ, Stein JL, Croce CM, Lian JB, Stein GS (2008) A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci USA 105:13906–13911CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Luzi E, Marini F, Sala SC, Tognarini I, Galli G, Brandi ML (2008) Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J Bone Mineral Res 23:287–295CrossRef Luzi E, Marini F, Sala SC, Tognarini I, Galli G, Brandi ML (2008) Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J Bone Mineral Res 23:287–295CrossRef
13.
Zurück zum Zitat Trompeter H-I, Dreesen J, Hermann E, Iwaniuk KM, Hafner M, Renwick N, Tuschl T, Wernet P (2013) MicroRNAsmiR-26a, miR-26b, and miR-29b accelerate osteogenic differentiation of unrestricted somatic stem cells from human cord blood. BMC Genomics 14:1471–2164CrossRef Trompeter H-I, Dreesen J, Hermann E, Iwaniuk KM, Hafner M, Renwick N, Tuschl T, Wernet P (2013) MicroRNAsmiR-26a, miR-26b, and miR-29b accelerate osteogenic differentiation of unrestricted somatic stem cells from human cord blood. BMC Genomics 14:1471–2164CrossRef
14.
Zurück zum Zitat Luzi E, Marini F, Tognarini I, Galli G, Falchetti A, Brandi ML (2012) The regulatory network menin-microRNA 26a as a possible target for RNA-based therapy of bone diseases. Nucl Acid Ther 22:103–108 Luzi E, Marini F, Tognarini I, Galli G, Falchetti A, Brandi ML (2012) The regulatory network menin-microRNA 26a as a possible target for RNA-based therapy of bone diseases. Nucl Acid Ther 22:103–108
15.
Zurück zum Zitat Li Y, Fan L, Hu J, Zhang L, Liao L, Liu S, Wu D, Yang P, Shen L, Chen J, Jin Y (2015) MiR-26a rescues bone regeneration deficiency of mesenchymal stem cells derived from osteoporotic mice. Mol Therapy J Am Soc Gene Therapy 23:1349–1357CrossRef Li Y, Fan L, Hu J, Zhang L, Liao L, Liu S, Wu D, Yang P, Shen L, Chen J, Jin Y (2015) MiR-26a rescues bone regeneration deficiency of mesenchymal stem cells derived from osteoporotic mice. Mol Therapy J Am Soc Gene Therapy 23:1349–1357CrossRef
16.
Zurück zum Zitat Li Y, Fan L, Liu S, Liu W, Zhang H, Zhou T, Wu D, Yang P, Shen L, Chen J, Jin Y (2013) The promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a. Biomaterials 34:5048–5058CrossRefPubMed Li Y, Fan L, Liu S, Liu W, Zhang H, Zhou T, Wu D, Yang P, Shen L, Chen J, Jin Y (2013) The promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a. Biomaterials 34:5048–5058CrossRefPubMed
17.
Zurück zum Zitat Su X, Liao L, Shuai Y, Jing H, Liu S, Zhou H, Liu Y, Jin Y (2015) MiR-26a functions oppositely in osteogenic differentiation of BMSCs and ADSCs depending on distinct activation and roles of Wnt and BMP signaling pathway. Cell Death Dis 6:e1851CrossRefPubMedPubMedCentral Su X, Liao L, Shuai Y, Jing H, Liu S, Zhou H, Liu Y, Jin Y (2015) MiR-26a functions oppositely in osteogenic differentiation of BMSCs and ADSCs depending on distinct activation and roles of Wnt and BMP signaling pathway. Cell Death Dis 6:e1851CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Wang Y, Li Y-P, Paulson C, Shao J-Z, Zhang X, Wu M, Chen W (2014) Wnt and the Wnt signaling pathway in bone development and disease. Front Biosci (Landmark Ed) 19:379–407CrossRef Wang Y, Li Y-P, Paulson C, Shao J-Z, Zhang X, Wu M, Chen W (2014) Wnt and the Wnt signaling pathway in bone development and disease. Front Biosci (Landmark Ed) 19:379–407CrossRef
19.
Zurück zum Zitat Veeman MT, Axelrod JD, Moon RT (2003) A second canon: functions and mechanisms of β-catenin-independent Wnt signaling. Dev Cell 5:367–377CrossRefPubMed Veeman MT, Axelrod JD, Moon RT (2003) A second canon: functions and mechanisms of β-catenin-independent Wnt signaling. Dev Cell 5:367–377CrossRefPubMed
20.
Zurück zum Zitat Lin SS, Ueng SW, Niu CC, Yuan LJ, Yang CY, Chen WJ, Lee MS, Chen JK (2014) Hyperbaric oxygen promotes osteogenic differentiation of bone marrow stromal cells by regulating Wnt3a/beta-catenin signaling–an in vitro and in vivo study. Stem Cell Rese 12:260–274CrossRef Lin SS, Ueng SW, Niu CC, Yuan LJ, Yang CY, Chen WJ, Lee MS, Chen JK (2014) Hyperbaric oxygen promotes osteogenic differentiation of bone marrow stromal cells by regulating Wnt3a/beta-catenin signaling–an in vitro and in vivo study. Stem Cell Rese 12:260–274CrossRef
21.
Zurück zum Zitat Egea V, Zahler S, Rieth N, Neth P, Popp T, Kehe K, Jochum M, Ries C (2012) Tissue inhibitor of metalloproteinase-1 (TIMP-1) regulates mesenchymal stem cells through let-7f microRNA and Wnt/beta-catenin signaling. Proc Natl Acad Sci USA 109:E309–E316CrossRefPubMedPubMedCentral Egea V, Zahler S, Rieth N, Neth P, Popp T, Kehe K, Jochum M, Ries C (2012) Tissue inhibitor of metalloproteinase-1 (TIMP-1) regulates mesenchymal stem cells through let-7f microRNA and Wnt/beta-catenin signaling. Proc Natl Acad Sci USA 109:E309–E316CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Liu N, Shi S, Deng M, Tang L, Zhang G, Liu N, Ding B, Liu W, Liu Y, Shi H, Liu L, Jin Y (2011) High levels of beta-catenin signaling reduce osteogenic differentiation of stem cells in inflammatory microenvironments through inhibition of the noncanonical Wnt pathway. J Bone Mineral Res 26:2082–2095CrossRef Liu N, Shi S, Deng M, Tang L, Zhang G, Liu N, Ding B, Liu W, Liu Y, Shi H, Liu L, Jin Y (2011) High levels of beta-catenin signaling reduce osteogenic differentiation of stem cells in inflammatory microenvironments through inhibition of the noncanonical Wnt pathway. J Bone Mineral Res 26:2082–2095CrossRef
23.
Zurück zum Zitat Tu X, Joeng KS, Nakayama KI, Nakayama K, Rajagopal J, Carroll TJ, McMahon AP, Long F (2007) Noncanonical Wnt signaling through G protein-linked PKCdelta activation promotes bone formation. Dev Cell 12:113–127CrossRefPubMedPubMedCentral Tu X, Joeng KS, Nakayama KI, Nakayama K, Rajagopal J, Carroll TJ, McMahon AP, Long F (2007) Noncanonical Wnt signaling through G protein-linked PKCdelta activation promotes bone formation. Dev Cell 12:113–127CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Li J, Hu C, Han L, Liu L, Jing W, Tang W, Tian W, Long J (2015) MiR-154-5p regulates osteogenic differentiation of adipose-derived mesenchymal stem cells under tensile stress through the Wnt/PCP pathway by targeting Wnt11. Bone 78:130–141CrossRefPubMed Li J, Hu C, Han L, Liu L, Jing W, Tang W, Tian W, Long J (2015) MiR-154-5p regulates osteogenic differentiation of adipose-derived mesenchymal stem cells under tensile stress through the Wnt/PCP pathway by targeting Wnt11. Bone 78:130–141CrossRefPubMed
25.
Zurück zum Zitat Santos A, Bakker AD, de Blieck-Hogervorst JM, Klein-Nulend J (2010) WNT5A induces osteogenic differentiation of human adipose stem cells via rho-associated kinase ROCK. Cytotherapy 12:924–932CrossRefPubMed Santos A, Bakker AD, de Blieck-Hogervorst JM, Klein-Nulend J (2010) WNT5A induces osteogenic differentiation of human adipose stem cells via rho-associated kinase ROCK. Cytotherapy 12:924–932CrossRefPubMed
26.
Zurück zum Zitat Chakravorty N, Ivanovski S, Prasadam I, Crawford R, Oloyede A, Xiao Y (2012) The microRNA expression signature on modified titanium implant surfaces influences genetic mechanisms leading to osteogenic differentiation. Acta Biomater 8:3516–3523CrossRefPubMed Chakravorty N, Ivanovski S, Prasadam I, Crawford R, Oloyede A, Xiao Y (2012) The microRNA expression signature on modified titanium implant surfaces influences genetic mechanisms leading to osteogenic differentiation. Acta Biomater 8:3516–3523CrossRefPubMed
27.
Zurück zum Zitat Lin YF, Jing W, Wu L, Li XY, Wu Y, Liu L, Tang W, Long J, Tian WD, Mo XM (2008) Identification of osteo-adipo progenitor cells in fat tissue. Cell Prolif 41:803–812CrossRefPubMed Lin YF, Jing W, Wu L, Li XY, Wu Y, Liu L, Tang W, Long J, Tian WD, Mo XM (2008) Identification of osteo-adipo progenitor cells in fat tissue. Cell Prolif 41:803–812CrossRefPubMed
28.
Zurück zum Zitat Yoshizawa S, Brown A, Barchowsky A, Sfeir C (2014) Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater 10:2834–2842CrossRefPubMed Yoshizawa S, Brown A, Barchowsky A, Sfeir C (2014) Magnesium ion stimulation of bone marrow stromal cells enhances osteogenic activity, simulating the effect of magnesium alloy degradation. Acta Biomater 10:2834–2842CrossRefPubMed
29.
Zurück zum Zitat Santos A, Bakker AD, Zandieh-Doulabi B, Semeins CM, Klein-Nulend J (2009) Pulsating fluid flow modulates gene expression of proteins involved in Wnt signaling pathways in osteocytes. J Orthop Res 27:1280–1287CrossRefPubMed Santos A, Bakker AD, Zandieh-Doulabi B, Semeins CM, Klein-Nulend J (2009) Pulsating fluid flow modulates gene expression of proteins involved in Wnt signaling pathways in osteocytes. J Orthop Res 27:1280–1287CrossRefPubMed
30.
Zurück zum Zitat Hagenmueller M, Riffel JH, Bernhold E, Fan J, Katus HA, Hardt SE (2014) Dapper-1 is essential for Wnt5a induced cardiomyocyte hypertrophy by regulating the Wnt/PCP pathway. FEBS Lett 588:2230–2237CrossRefPubMed Hagenmueller M, Riffel JH, Bernhold E, Fan J, Katus HA, Hardt SE (2014) Dapper-1 is essential for Wnt5a induced cardiomyocyte hypertrophy by regulating the Wnt/PCP pathway. FEBS Lett 588:2230–2237CrossRefPubMed
31.
Zurück zum Zitat Vivancos V, Chen P, Spassky N, Qian D, Dabdoub A, Kelley M, Studer M, Guthrie S (2009) Wnt activity guides facial branchiomotor neuron migration, and involves the PCP pathway and JNK and ROCK kinases. Neural Dev 4:7CrossRefPubMedPubMedCentral Vivancos V, Chen P, Spassky N, Qian D, Dabdoub A, Kelley M, Studer M, Guthrie S (2009) Wnt activity guides facial branchiomotor neuron migration, and involves the PCP pathway and JNK and ROCK kinases. Neural Dev 4:7CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Nitzki F, Zibat A, Konig S, Wijgerde M, Rosenberger A, Brembeck FH, Carstens PO, Frommhold A, Uhmann A, Klingler S, Reifenberger J, Pukrop T, Aberger F, Schulz-Schaeffer W, Hahn H (2010) Tumor stroma-derived Wnt5a induces differentiation of basal cell carcinoma of Ptch-mutant mice via CaMKII. Cancer Res 70:2739–2748CrossRefPubMed Nitzki F, Zibat A, Konig S, Wijgerde M, Rosenberger A, Brembeck FH, Carstens PO, Frommhold A, Uhmann A, Klingler S, Reifenberger J, Pukrop T, Aberger F, Schulz-Schaeffer W, Hahn H (2010) Tumor stroma-derived Wnt5a induces differentiation of basal cell carcinoma of Ptch-mutant mice via CaMKII. Cancer Res 70:2739–2748CrossRefPubMed
33.
Zurück zum Zitat Hutchins BI, Li L, Kalil K (2011) Wnt/calcium signaling mediates axon growth and guidance in the developing corpus callosum. Dev Neurobiol 71:269–283CrossRefPubMed Hutchins BI, Li L, Kalil K (2011) Wnt/calcium signaling mediates axon growth and guidance in the developing corpus callosum. Dev Neurobiol 71:269–283CrossRefPubMed
34.
Zurück zum Zitat Dissanayake SK, Weeraratna AT (2008) Detecting PKC phosphorylation as part of the Wnt/calcium pathway in cutaneous melanoma. Methods Mol Biol 468:157–172CrossRefPubMedPubMedCentral Dissanayake SK, Weeraratna AT (2008) Detecting PKC phosphorylation as part of the Wnt/calcium pathway in cutaneous melanoma. Methods Mol Biol 468:157–172CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Olivares-Navarrete R, Hyzy SL, Hutton DL, Dunn GR, Appert C, Boyan BD, Schwartz Z (2011) Role of non-canonical Wnt signaling in osteoblast maturation on microstructured titanium surfaces. Acta Biomater 7:2740–2750CrossRefPubMedPubMedCentral Olivares-Navarrete R, Hyzy SL, Hutton DL, Dunn GR, Appert C, Boyan BD, Schwartz Z (2011) Role of non-canonical Wnt signaling in osteoblast maturation on microstructured titanium surfaces. Acta Biomater 7:2740–2750CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Baksh D, Boland GM, Tuan RS (2007) Cross-talk between Wnt signaling pathways in human mesenchymal stem cells leads to functional antagonism during osteogenic differentiation. J Cell Biochem 101:1109–1124CrossRefPubMed Baksh D, Boland GM, Tuan RS (2007) Cross-talk between Wnt signaling pathways in human mesenchymal stem cells leads to functional antagonism during osteogenic differentiation. J Cell Biochem 101:1109–1124CrossRefPubMed
38.
Zurück zum Zitat Oishi I, Suzuki H, Onishi N, Takada R, Kani S, Ohkawara B, Koshida I, Suzuki K, Yamada G, Schwabe GC, Mundlos S, Shibuya H, Takada S, Minami Y (2003) The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells 8:645–654CrossRefPubMed Oishi I, Suzuki H, Onishi N, Takada R, Kani S, Ohkawara B, Koshida I, Suzuki K, Yamada G, Schwabe GC, Mundlos S, Shibuya H, Takada S, Minami Y (2003) The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells 8:645–654CrossRefPubMed
39.
Zurück zum Zitat Mikels AJ, Nusse R (2006) Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 4:e115CrossRefPubMedPubMedCentral Mikels AJ, Nusse R (2006) Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol 4:e115CrossRefPubMedPubMedCentral
Metadaten
Titel
Effect of miR-26a-5p on the Wnt/Ca2+ Pathway and Osteogenic Differentiation of Mouse Adipose-Derived Mesenchymal Stem Cells
verfasst von
Shasha Li
Chen Hu
Jianwei Li
Lei Liu
Wei Jing
Wei Tang
Weidong Tian
Jie Long
Publikationsdatum
04.04.2016
Verlag
Springer US
Erschienen in
Calcified Tissue International / Ausgabe 2/2016
Print ISSN: 0171-967X
Elektronische ISSN: 1432-0827
DOI
https://doi.org/10.1007/s00223-016-0137-3

Weitere Artikel der Ausgabe 2/2016

Calcified Tissue International 2/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.