Skip to main content
Erschienen in: Lasers in Medical Science 4/2019

19.09.2018 | Original Article

Effect of photobiomodulation on neural differentiation of human umbilical cord mesenchymal stem cells

verfasst von: Hongli Chen, Hongjun Wu, Huijuan Yin, Jinhai Wang, Huajiang Dong, Qianqian Chen, Yingxin Li

Erschienen in: Lasers in Medical Science | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Abstract

Photobiomodulation therapy (PBMT) can enhance the mesenchymal stem cell (MSC) proliferation, differentiation, and tissue repair and can therefore be used in regenerative medicine. The objective of this study is to investigate the effects of photobiomodulation on the directional neural differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) and provide a theoretical basis for neurogenesis. hUC-MSCs were divided into control, inducer, laser, and lasers combined with inducer groups. A 635-nm laser and an 808-nm laser delivering energy densities from 0 to 10 J/cm2 were used in the study. Normal cerebrospinal fluid (CSF) and injured cerebrospinal fluid (iCSF) were used as inducers. The groups were continuously induced for 3 days. Cellular proliferation was evaluated using MTT. The marker proteins nestin (marker protein of the neural precursor cells), NeuN (marker protein of neuron), and GFAP (glial fibrillary acidic protein, marker proteins of glial cells) were detected by immunofluorescence and western blot. We found that irradiation with 635-nm laser increased cell proliferation, and that with 808 nm laser by itself and combined with cerebrospinal fluid treatment generated significant neuron-like morphological changes in the cells at 72 h. Nestin showed high positive expression at 24 h in the 808 nm group. The expression of GFAP increased in the 808-nm combined inducer group at 24 h but decreased at 72 h. The expression of neuN protein increased only at 72 h in both the 808-nm combined inducer group and inducer group. We concluded that 808 nm laser irradiation could help CSF to induce neuronal differentiation of hUC-MSCs in early stage and tend to change to neuron rather than glial cells.
Literatur
2.
Zurück zum Zitat Fisher SA, Doree C, Mathur A (2017) Cochrane corner: stem cell therapy for chronic ischaemic heart disease and congestive heart failure. Heart 104:8–10CrossRefPubMed Fisher SA, Doree C, Mathur A (2017) Cochrane corner: stem cell therapy for chronic ischaemic heart disease and congestive heart failure. Heart 104:8–10CrossRefPubMed
3.
Zurück zum Zitat Jackson WM, Nesti LJ, Tuan RS (2016) Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. China Med Her 3:1–9 Jackson WM, Nesti LJ, Tuan RS (2016) Mesenchymal stem cell therapy for attenuation of scar formation during wound healing. China Med Her 3:1–9
4.
Zurück zum Zitat Mead B, Logan A, Berry M (2017) Concise review: dental pulp stem cells: a novel cell therapy for retinal and central nervous system repair. Stem Cells 35:61CrossRefPubMed Mead B, Logan A, Berry M (2017) Concise review: dental pulp stem cells: a novel cell therapy for retinal and central nervous system repair. Stem Cells 35:61CrossRefPubMed
5.
Zurück zum Zitat Wei L, Wei ZZ, Jiang MQ (2017) Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke. Prog Neurobiol 157:49–78 Wei L, Wei ZZ, Jiang MQ (2017) Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke. Prog Neurobiol 157:49–78
6.
Zurück zum Zitat Maas AI, Stocchetti N, Bullock R (2008) Moderate and severe traumatic brain injury in adults. Lancet Neurol 7:728CrossRefPubMed Maas AI, Stocchetti N, Bullock R (2008) Moderate and severe traumatic brain injury in adults. Lancet Neurol 7:728CrossRefPubMed
8.
Zurück zum Zitat Marks PW, Witten CM, Califf RM (2017) Clarifying stem-cell therapy's benefits and risks. N Engl J Med 376:1007CrossRefPubMed Marks PW, Witten CM, Califf RM (2017) Clarifying stem-cell therapy's benefits and risks. N Engl J Med 376:1007CrossRefPubMed
9.
Zurück zum Zitat Cui YB, Ma SS, Zhang CY (2017) Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer’s disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis. Behav Brain Res 320:291–301CrossRefPubMed Cui YB, Ma SS, Zhang CY (2017) Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer’s disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis. Behav Brain Res 320:291–301CrossRefPubMed
10.
Zurück zum Zitat Marsh SE, Blurtonjones M (2017) Neural stem cell therapy for neurodegenerative disorders: the role of neurotrophic support. Neurochem Int 106:94–100CrossRefPubMedPubMedCentral Marsh SE, Blurtonjones M (2017) Neural stem cell therapy for neurodegenerative disorders: the role of neurotrophic support. Neurochem Int 106:94–100CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Zhang JJ, Zhu JJ, Hu YB (2017) Transplantation of bFGF-expressing neural stem cells promotes cell migration and functional recovery in rat brain after transient ischemic stroke. Oncotarget 8:102067–102077PubMedPubMedCentral Zhang JJ, Zhu JJ, Hu YB (2017) Transplantation of bFGF-expressing neural stem cells promotes cell migration and functional recovery in rat brain after transient ischemic stroke. Oncotarget 8:102067–102077PubMedPubMedCentral
12.
Zurück zum Zitat Li C, Che LH, Shi L (2017) Suppression of basic fibroblast growth factor expression by antisense oligonucleotides inhibits neural stem cell proliferation and differentiation in rat models with focal cerebral infarction. J Cell Biochem 118:3875–3882CrossRefPubMed Li C, Che LH, Shi L (2017) Suppression of basic fibroblast growth factor expression by antisense oligonucleotides inhibits neural stem cell proliferation and differentiation in rat models with focal cerebral infarction. J Cell Biochem 118:3875–3882CrossRefPubMed
13.
Zurück zum Zitat Zhou Y, Wang Y, Olson J (2017) Heparin-binding EGF-like growth factor promotes neuronal nitric oxide synthase expression and protects the enteric nervous system after necrotizing enterocolitis. Pediatr Res 82:490CrossRefPubMed Zhou Y, Wang Y, Olson J (2017) Heparin-binding EGF-like growth factor promotes neuronal nitric oxide synthase expression and protects the enteric nervous system after necrotizing enterocolitis. Pediatr Res 82:490CrossRefPubMed
14.
Zurück zum Zitat Robinson J, Lu P (2017) Optimization of trophic support for neural stem cell grafts in sites of spinal cord injury. Exp Neurol 291:87–97CrossRefPubMed Robinson J, Lu P (2017) Optimization of trophic support for neural stem cell grafts in sites of spinal cord injury. Exp Neurol 291:87–97CrossRefPubMed
15.
Zurück zum Zitat Zhu G, Zhou X, Zhou J (2003) BM-MSC culture and induction into neurons. Acta Acad Med Nanjing 23:100–102 Zhu G, Zhou X, Zhou J (2003) BM-MSC culture and induction into neurons. Acta Acad Med Nanjing 23:100–102
16.
Zurück zum Zitat Pandya H, Shen MJ, Ichikawa DM (2017) Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nat Neurosci 20:753–759CrossRefPubMedPubMedCentral Pandya H, Shen MJ, Ichikawa DM (2017) Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nat Neurosci 20:753–759CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Rochette-Egly C (2015) Retinoic acid signaling and mouse embryonic stem cell differentiation: cross talk between genomic and non-genomic effects of RA. Biochim Biophys Acta Mol Cell Biol Lipids 1851:66–75CrossRef Rochette-Egly C (2015) Retinoic acid signaling and mouse embryonic stem cell differentiation: cross talk between genomic and non-genomic effects of RA. Biochim Biophys Acta Mol Cell Biol Lipids 1851:66–75CrossRef
18.
Zurück zum Zitat Zecha JA, Raberdurlacher JE, Nair RG (2016) Low-level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 2: proposed applications and treatment protocols. Support Care Cancer 24:2793–2805CrossRefPubMedPubMedCentral Zecha JA, Raberdurlacher JE, Nair RG (2016) Low-level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 2: proposed applications and treatment protocols. Support Care Cancer 24:2793–2805CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Hentschke VS, Jaenisch RB, Schmeing LA (2013) Low-level laser therapy improves the inflammatory profile of rats with heart failure. Lasers Med Sci 28:1007–1016CrossRefPubMed Hentschke VS, Jaenisch RB, Schmeing LA (2013) Low-level laser therapy improves the inflammatory profile of rats with heart failure. Lasers Med Sci 28:1007–1016CrossRefPubMed
20.
21.
Zurück zum Zitat Pillai SK, Pond SL, Liu Y (2017) Genetic attributes of cerebrospinal fluid-derived HIV-1 env. Brain 129:1872–1883CrossRef Pillai SK, Pond SL, Liu Y (2017) Genetic attributes of cerebrospinal fluid-derived HIV-1 env. Brain 129:1872–1883CrossRef
22.
Zurück zum Zitat Mikami R, Mizutani K, Aoki A (2017) Low-level ultrahigh-frequency and ultrashort-pulse blue laser irradiation enhances osteoblast extracellular calcification by upregulating proliferation and differentiation via transient receptor potential vanilloid 1. Lasers Surg Med 50:340–352CrossRefPubMed Mikami R, Mizutani K, Aoki A (2017) Low-level ultrahigh-frequency and ultrashort-pulse blue laser irradiation enhances osteoblast extracellular calcification by upregulating proliferation and differentiation via transient receptor potential vanilloid 1. Lasers Surg Med 50:340–352CrossRefPubMed
23.
Zurück zum Zitat Shingyochi Y, Kanazawa S, Tajima S (2017) A low-level carbon dioxide laser promotes fibroblast proliferation and migration through activation of Akt, ERK, and JNK. PLoS One 12:e0168937CrossRefPubMedPubMedCentral Shingyochi Y, Kanazawa S, Tajima S (2017) A low-level carbon dioxide laser promotes fibroblast proliferation and migration through activation of Akt, ERK, and JNK. PLoS One 12:e0168937CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Fekrazad R, Asefi S, Allahdadi M (2016) Effect of Photobiomodulation on mesenchymal stem cells. Photomed Laser Surg 34:533–542CrossRefPubMed Fekrazad R, Asefi S, Allahdadi M (2016) Effect of Photobiomodulation on mesenchymal stem cells. Photomed Laser Surg 34:533–542CrossRefPubMed
25.
Zurück zum Zitat Soleimani M, Abbasnia E, Fathi M (2012) The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts--an in vitro study. Lasers Med Sci 27:423–430CrossRefPubMed Soleimani M, Abbasnia E, Fathi M (2012) The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts--an in vitro study. Lasers Med Sci 27:423–430CrossRefPubMed
26.
Zurück zum Zitat Peng F, Wu H, Zheng Y (2012) The effect of noncoherent red light irradiation on proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Lasers Med Sci 27:645–653CrossRefPubMed Peng F, Wu H, Zheng Y (2012) The effect of noncoherent red light irradiation on proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells. Lasers Med Sci 27:645–653CrossRefPubMed
27.
Zurück zum Zitat Wang J, Ding F, Gu Y (2009) Bone marrow mesenchymal stem cells promote cell proliferation and neurotrophic function of Schwann cells in vitro and in vivo. Brain Res 1262:7–15CrossRefPubMed Wang J, Ding F, Gu Y (2009) Bone marrow mesenchymal stem cells promote cell proliferation and neurotrophic function of Schwann cells in vitro and in vivo. Brain Res 1262:7–15CrossRefPubMed
28.
Zurück zum Zitat Zhou ZG, Li ZZ, Lin YX (2015) Differentiation of mesenchymal stem cells derived from human umbilical cord. Chinese J Pathophysiol 2:229–233 Zhou ZG, Li ZZ, Lin YX (2015) Differentiation of mesenchymal stem cells derived from human umbilical cord. Chinese J Pathophysiol 2:229–233
29.
Zurück zum Zitat Mahay D, Terenghi G, Shawcross S (2008) Growth factors in mesenchymal stem cells following glial-cell differentiation. Biotechnol Appl Biochem 51:167–176CrossRefPubMed Mahay D, Terenghi G, Shawcross S (2008) Growth factors in mesenchymal stem cells following glial-cell differentiation. Biotechnol Appl Biochem 51:167–176CrossRefPubMed
30.
Zurück zum Zitat Haratizadeh S, Nazm MB, Darabi S (2017) Condition medium of cerebrospinal fluid and retinoic acid induces the transdifferentiation of human dental pulp stem cells into neuroglia and neural like cells. Anat Cell Biol 50:107CrossRefPubMedPubMedCentral Haratizadeh S, Nazm MB, Darabi S (2017) Condition medium of cerebrospinal fluid and retinoic acid induces the transdifferentiation of human dental pulp stem cells into neuroglia and neural like cells. Anat Cell Biol 50:107CrossRefPubMedPubMedCentral
Metadaten
Titel
Effect of photobiomodulation on neural differentiation of human umbilical cord mesenchymal stem cells
verfasst von
Hongli Chen
Hongjun Wu
Huijuan Yin
Jinhai Wang
Huajiang Dong
Qianqian Chen
Yingxin Li
Publikationsdatum
19.09.2018
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 4/2019
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-018-2638-y

Weitere Artikel der Ausgabe 4/2019

Lasers in Medical Science 4/2019 Zur Ausgabe