Skip to main content
Erschienen in: European Journal of Applied Physiology 8/2017

19.05.2017 | Original Article

Effect of voluntary hypocapnic hyperventilation or moderate hypoxia on metabolic and heart rate responses during high-intensity intermittent exercise

verfasst von: Kohei Dobashi, Naoto Fujii, Kazuhito Watanabe, Bun Tsuji, Yosuke Sasaki, Tomomi Fujimoto, Satoru Tanigawa, Takeshi Nishiyasu

Erschienen in: European Journal of Applied Physiology | Ausgabe 8/2017

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To investigate the effect of voluntary hypocapnic hyperventilation or moderate hypoxia on metabolic and heart rate responses during high-intensity intermittent exercise.

Methods

Ten males performed three 30-s bouts of high-intensity cycling [Ex1 and Ex2: constant-workload at 80% of the power output in the Wingate anaerobic test (WAnT), Ex3: WAnT] interspaced with 4-min recovery periods under normoxic (Control), hypocapnic or hypoxic (2500 m) conditions. Hypocapnia was developed through voluntary hyperventilation for 20 min prior to Ex1 and during each recovery period.

Results

End-tidal CO2 pressure was lower before each exercise in the hypocapnia than control trials. Oxygen uptake (\(\dot{V}{\text{O}}_{ 2}\)) was lower in the hypocapnia than control trials (822 ± 235 vs. 1645 ± 245 mL min−1; mean ± SD) during Ex1, but not Ex2 or Ex3, without a between-trial difference in the power output during the exercises. Heart rates (HRs) during Ex1 (127 ± 8 vs. 142 ± 10 beats min−1) and subsequent post-exercise recovery periods were lower in the hypocapnia than control trials, without differences during or after Ex2, except at 4 min into the second recovery period. \(\dot{V}{\text{O}}_{ 2}\) did not differ between the control and hypoxia trials throughout.

Conclusions

These results suggest that during three 30-s bouts of high-intensity intermittent cycling, (1) hypocapnia reduces the aerobic metabolic rate with a compensatory increase in the anaerobic metabolic rate during the first but not subsequent exercises; (2) HRs during the exercise and post-exercise recovery periods are lowered by hypocapnia, but this effect is diminished with repeated exercise bouts, and (3) moderate hypoxia (2500 m) does not affect the metabolic response during exercise.
Literatur
Zurück zum Zitat Ainslie PN, Duffin J (2009) Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. Am J Physiol Regul Integr Comp Physiol 296:R1473–R1495CrossRefPubMed Ainslie PN, Duffin J (2009) Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and interpretation. Am J Physiol Regul Integr Comp Physiol 296:R1473–R1495CrossRefPubMed
Zurück zum Zitat Bärtsch P, Saltin B (2008) General introduction to altitude adaptation and mountain sickness. Scand J Med Sci Sports 18(Suppl 1):1–10CrossRefPubMed Bärtsch P, Saltin B (2008) General introduction to altitude adaptation and mountain sickness. Scand J Med Sci Sports 18(Suppl 1):1–10CrossRefPubMed
Zurück zum Zitat Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK (1996) Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol 80(3):876–884PubMed Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK (1996) Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol 80(3):876–884PubMed
Zurück zum Zitat Borg G (1975) Simple rating methods for estimation of perceived exertion. Physical work and effort. Pergamon, New York, p 39–46 Borg G (1975) Simple rating methods for estimation of perceived exertion. Physical work and effort. Pergamon, New York, p 39–46
Zurück zum Zitat Bruce EN, Cherniack NS (1987) Central chemoreceptors. J Appl Physiol 62:389–402PubMed Bruce EN, Cherniack NS (1987) Central chemoreceptors. J Appl Physiol 62:389–402PubMed
Zurück zum Zitat Calbet JA, De Paz JA, Garatachea N, Cabeza de Vaca S, Chavarren J (2003) Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists. J Appl Physiol 94(2):668–676CrossRefPubMed Calbet JA, De Paz JA, Garatachea N, Cabeza de Vaca S, Chavarren J (2003) Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists. J Appl Physiol 94(2):668–676CrossRefPubMed
Zurück zum Zitat Chin LM, Leigh RJ, Heigenhauser GJ, Rossiter HB, Paterson DH, Kowalchuk JM (2007) Hyperventilation-induced hypocapnic alkalosis slows the adaptation of pulmonary O2 uptake during the transition to moderate-intensity exercise. J Physiol 583(1):351–364CrossRefPubMedPubMedCentral Chin LM, Leigh RJ, Heigenhauser GJ, Rossiter HB, Paterson DH, Kowalchuk JM (2007) Hyperventilation-induced hypocapnic alkalosis slows the adaptation of pulmonary O2 uptake during the transition to moderate-intensity exercise. J Physiol 583(1):351–364CrossRefPubMedPubMedCentral
Zurück zum Zitat Chin LM, Heigenhauser GJ, Paterson DH, Kowalchuk JM (2010a) Effect of hyperventilation and prior heavy exercise on O2 uptake and muscle deoxygenation kinetics during transitions to moderate exercise. Eur J Appl Physiol 108(5):913–925CrossRefPubMed Chin LM, Heigenhauser GJ, Paterson DH, Kowalchuk JM (2010a) Effect of hyperventilation and prior heavy exercise on O2 uptake and muscle deoxygenation kinetics during transitions to moderate exercise. Eur J Appl Physiol 108(5):913–925CrossRefPubMed
Zurück zum Zitat Chin LM, Heigenhauser GJ, Paterson DH, Kowalchuk JM (2010b) Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis. J Appl Physiol 108(6):1641–1650CrossRefPubMedPubMedCentral Chin LM, Heigenhauser GJ, Paterson DH, Kowalchuk JM (2010b) Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis. J Appl Physiol 108(6):1641–1650CrossRefPubMedPubMedCentral
Zurück zum Zitat Chin LM, Heigenhauser GJ, Paterson DH, Kowalchuk JM (2013) Effect of voluntary hyperventilation with supplemental CO2 on pulmonary O2 uptake and leg blood flow kinetics during moderate-intensity exercise. Exp Physiol 98(12):1668–1682CrossRefPubMed Chin LM, Heigenhauser GJ, Paterson DH, Kowalchuk JM (2013) Effect of voluntary hyperventilation with supplemental CO2 on pulmonary O2 uptake and leg blood flow kinetics during moderate-intensity exercise. Exp Physiol 98(12):1668–1682CrossRefPubMed
Zurück zum Zitat Daly WJ, Bondurant S (1962) Effects of oxygen on the heart rate, blood pressure, and cardiac index of normal men resting, with reactive hyperemia, and after atropine. J Clin Invest 41:126–132CrossRefPubMedPubMedCentral Daly WJ, Bondurant S (1962) Effects of oxygen on the heart rate, blood pressure, and cardiac index of normal men resting, with reactive hyperemia, and after atropine. J Clin Invest 41:126–132CrossRefPubMedPubMedCentral
Zurück zum Zitat do Nascimento PC, de Lucas RD, de Souza KM, de Aguiar RA, Denadai BS, Guglielmo LG (2015) The effect of prior exercise intensity on oxygen uptake kinetics during high-intensity running exercise in trained subjects. Eur J Appl Physiol 115(1):147–156CrossRefPubMed do Nascimento PC, de Lucas RD, de Souza KM, de Aguiar RA, Denadai BS, Guglielmo LG (2015) The effect of prior exercise intensity on oxygen uptake kinetics during high-intensity running exercise in trained subjects. Eur J Appl Physiol 115(1):147–156CrossRefPubMed
Zurück zum Zitat Duffin J, Mohan RM, Vasiliou P, Stephenson R, Mahamed S (2000) A model of the chemoreflex control of breathing in humans: model parameters measurement. Respir Physiol 120(1):13–26CrossRefPubMed Duffin J, Mohan RM, Vasiliou P, Stephenson R, Mahamed S (2000) A model of the chemoreflex control of breathing in humans: model parameters measurement. Respir Physiol 120(1):13–26CrossRefPubMed
Zurück zum Zitat Faisal A, Beavers KR, Robertson AD, Hughson RL (2009) Prior moderate and heavy exercise accelerate oxygen uptake and cardiac output kinetics in endurance athletes. J Appl Physiol 106(5):1553–1563CrossRefPubMed Faisal A, Beavers KR, Robertson AD, Hughson RL (2009) Prior moderate and heavy exercise accelerate oxygen uptake and cardiac output kinetics in endurance athletes. J Appl Physiol 106(5):1553–1563CrossRefPubMed
Zurück zum Zitat Forbes SC, Kowalchuk JM, Thompson RT, Marsh GD (2007) Effects of hyperventilation on phosphocreatine kinetics and muscle deoxygenation during moderate-intensity plantar flexion exercise. J Appl Physiol 102(4):1565–1573CrossRefPubMed Forbes SC, Kowalchuk JM, Thompson RT, Marsh GD (2007) Effects of hyperventilation on phosphocreatine kinetics and muscle deoxygenation during moderate-intensity plantar flexion exercise. J Appl Physiol 102(4):1565–1573CrossRefPubMed
Zurück zum Zitat Fujii N, Tsuchiya S, Tsuji B, Watanabe K, Sasaki Y, Nishiyasu T (2015) Effect of voluntary hypocapnic hyperventilation on the metabolic response during Wingate anaerobic test. Eur J Appl Physiol 115(9):1967–1974CrossRefPubMed Fujii N, Tsuchiya S, Tsuji B, Watanabe K, Sasaki Y, Nishiyasu T (2015) Effect of voluntary hypocapnic hyperventilation on the metabolic response during Wingate anaerobic test. Eur J Appl Physiol 115(9):1967–1974CrossRefPubMed
Zurück zum Zitat Gaitanos GC, Williams C, Boobis LH, Brooks S (1993) Human muscle metabolism during intermittent maximal exercise. J Appl Physiol 75(2):712–719PubMed Gaitanos GC, Williams C, Boobis LH, Brooks S (1993) Human muscle metabolism during intermittent maximal exercise. J Appl Physiol 75(2):712–719PubMed
Zurück zum Zitat Hayashi N, Ishihara M, Tanaka A, Yoshida T (1999) Impeding O(2) unloading in muscle delays oxygen uptake response to exercise onset in humans. Am J Physiol 277(5):1274–1281 Hayashi N, Ishihara M, Tanaka A, Yoshida T (1999) Impeding O(2) unloading in muscle delays oxygen uptake response to exercise onset in humans. Am J Physiol 277(5):1274–1281
Zurück zum Zitat Honda Y, Myojo S, Hasegawa S, Hasegawa T, Severinghaus JW (1979) Decreased exercise hyperpnea in patients with bilateral carotid chemoreceptor resection. J Appl Physiol Respir Environ Exerc Physiol 46(5):908–912PubMed Honda Y, Myojo S, Hasegawa S, Hasegawa T, Severinghaus JW (1979) Decreased exercise hyperpnea in patients with bilateral carotid chemoreceptor resection. J Appl Physiol Respir Environ Exerc Physiol 46(5):908–912PubMed
Zurück zum Zitat Juel C (1997) Lactate-proton cotransport in skeletal muscle. Physiol Rev 77(2):321–358PubMed Juel C (1997) Lactate-proton cotransport in skeletal muscle. Physiol Rev 77(2):321–358PubMed
Zurück zum Zitat LeBlanc PJ, Parolin ML, Jones NL, Heigenhauser GJ (2002) Effects of respiratory alkalosis on human skeletal muscle metabolism at the onset of submaximal exercise. J Physiol 544(1):303–313CrossRefPubMedPubMedCentral LeBlanc PJ, Parolin ML, Jones NL, Heigenhauser GJ (2002) Effects of respiratory alkalosis on human skeletal muscle metabolism at the onset of submaximal exercise. J Physiol 544(1):303–313CrossRefPubMedPubMedCentral
Zurück zum Zitat Maciel BC, Gallo L Jr, Marin-Neto JA, Lima Filho EC, Martins LEB (1986) Autonomic nervous control of the heart rate during dynamic exercise in normal man. Clin Sci 71(4):457–460CrossRefPubMed Maciel BC, Gallo L Jr, Marin-Neto JA, Lima Filho EC, Martins LEB (1986) Autonomic nervous control of the heart rate during dynamic exercise in normal man. Clin Sci 71(4):457–460CrossRefPubMed
Zurück zum Zitat McLellan TM, Kavanagh MF, Jacobs I (1990) The effect of hypoxia on performance during 30 s or 45 s of supramaximal exercise. Eur J Appl Physiol Occup Physiol 60(2):155–161CrossRefPubMed McLellan TM, Kavanagh MF, Jacobs I (1990) The effect of hypoxia on performance during 30 s or 45 s of supramaximal exercise. Eur J Appl Physiol Occup Physiol 60(2):155–161CrossRefPubMed
Zurück zum Zitat Ogawa T, Hayashi K, Ichinose M, Wada H, Nishiyasu T (2007) Metabolic response during intermittent graded sprint running in moderate hypobaric hypoxia in competitive middle-distance runners. Eur J Appl Physiol 99(1):39–46CrossRefPubMed Ogawa T, Hayashi K, Ichinose M, Wada H, Nishiyasu T (2007) Metabolic response during intermittent graded sprint running in moderate hypobaric hypoxia in competitive middle-distance runners. Eur J Appl Physiol 99(1):39–46CrossRefPubMed
Zurück zum Zitat Plet J, Pedersen PK, Jensen FB, Hansen JK (1992) Increased working capacity with hyperoxia in humans. Eur J Appl Physiol 65:171–177CrossRef Plet J, Pedersen PK, Jensen FB, Hansen JK (1992) Increased working capacity with hyperoxia in humans. Eur J Appl Physiol 65:171–177CrossRef
Zurück zum Zitat Roth DA, Brooks GA (1990) Lactate and pyruvate transport is dominated by a pH gradient-sensitive carrier in rat skeletal muscle sarcolemmal vesicles. Arch Biochem Biophys 279:386–394CrossRefPubMed Roth DA, Brooks GA (1990) Lactate and pyruvate transport is dominated by a pH gradient-sensitive carrier in rat skeletal muscle sarcolemmal vesicles. Arch Biochem Biophys 279:386–394CrossRefPubMed
Zurück zum Zitat Rousseau A, Bak Z, Janerot-Sjöberg B, Sjöberg F (2005) Acute hyperoxaemia-induced effects on regional blood flow, oxygen consumption and central circulation in man. Acta Physiol Scand 183(3):231–240CrossRefPubMed Rousseau A, Bak Z, Janerot-Sjöberg B, Sjöberg F (2005) Acute hyperoxaemia-induced effects on regional blood flow, oxygen consumption and central circulation in man. Acta Physiol Scand 183(3):231–240CrossRefPubMed
Zurück zum Zitat Rowell LB, O’Leary DS (1990) Reflex control of the circulation during exercise: chemoreflexes and mechanoreflexes. J Appl Physiol 69:407–418PubMed Rowell LB, O’Leary DS (1990) Reflex control of the circulation during exercise: chemoreflexes and mechanoreflexes. J Appl Physiol 69:407–418PubMed
Zurück zum Zitat Spriet LL, Lindinger MI, Heigenhauser GJ, Jones NL (1986) Effects of alkalosis on skeletal muscle metabolism and performance during exercise. Am J Physiol Regul Integr Comp Physiol 251:R833–R839 Spriet LL, Lindinger MI, Heigenhauser GJ, Jones NL (1986) Effects of alkalosis on skeletal muscle metabolism and performance during exercise. Am J Physiol Regul Integr Comp Physiol 251:R833–R839
Zurück zum Zitat Tabata I, Nishimura K, Kouzaki M, Hirai Y, Ogita F, Miyachi M, Yamamoto K (1996) Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med Sci Sports Exerc 28(10):1327–1330CrossRefPubMed Tabata I, Nishimura K, Kouzaki M, Hirai Y, Ogita F, Miyachi M, Yamamoto K (1996) Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med Sci Sports Exerc 28(10):1327–1330CrossRefPubMed
Zurück zum Zitat Ward SA, Whipp BJ, Koyal S, Wasserman K (1983) Influence of body CO2 stores on ventilatory dynamics during exercise. J Appl Physiol 55(3):742–749PubMed Ward SA, Whipp BJ, Koyal S, Wasserman K (1983) Influence of body CO2 stores on ventilatory dynamics during exercise. J Appl Physiol 55(3):742–749PubMed
Zurück zum Zitat Weyand PG, Lee CS, Martinez-Ruiz R, Bundle MW, Bellizzi MJ, Wright S (1999) High-speed running performance is largely unaffected by hypoxic reductions in aerobic power. J Appl Physiol 86(6):2059–2064PubMed Weyand PG, Lee CS, Martinez-Ruiz R, Bundle MW, Bellizzi MJ, Wright S (1999) High-speed running performance is largely unaffected by hypoxic reductions in aerobic power. J Appl Physiol 86(6):2059–2064PubMed
Metadaten
Titel
Effect of voluntary hypocapnic hyperventilation or moderate hypoxia on metabolic and heart rate responses during high-intensity intermittent exercise
verfasst von
Kohei Dobashi
Naoto Fujii
Kazuhito Watanabe
Bun Tsuji
Yosuke Sasaki
Tomomi Fujimoto
Satoru Tanigawa
Takeshi Nishiyasu
Publikationsdatum
19.05.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Applied Physiology / Ausgabe 8/2017
Print ISSN: 1439-6319
Elektronische ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-017-3646-5

Weitere Artikel der Ausgabe 8/2017

European Journal of Applied Physiology 8/2017 Zur Ausgabe