Skip to main content
Erschienen in: Cardiovascular Toxicology 4/2016

30.11.2015

Effects of 2-Hydroxypropyl-Beta-Cyclodextrin on Cardiovascular Signs of Amitriptyline Poisoning in a Rat Model

verfasst von: Burc Aydin, Nil Hocaoglu, Serap Cilaker Micili, Bekir Ugur Ergur, Sule Kalkan

Erschienen in: Cardiovascular Toxicology | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

The aim of this study was to investigate the efficacy of 2-hydroxypropyl-beta-cyclodextrin (HPBCD) as an antidotal treatment for the in vivo cardiovascular effects of amitriptyline poisoning. Experiments were carried out on 33 Wistar rats. To evaluate cardiovascular effects of HPBCD, rats were infused with dextrose or HPBCD. In the poisoning model, amitriptyline (0.94 mg/kg/min) was infused until the mean arterial blood pressure (MAP) dropped to 50 % of the baseline. Following amitriptyline infusion, dextrose, low-dose HPBCD (4.19 mg/kg/min), or high-dose HPBCD (16.76 mg/kg/min) was infused, and MAP, heart rate (HR), and electrocardiogram were recorded for 60 min. Hearts were examined for tissue damage and apoptosis. HPBCD infusion alone did not yield significant difference for MAP, HR, QRS duration, QT interval, and cardiac tissue damage when compared to dextrose (p > 0.05). In the poisoning model, MAP and HR decreased, while QRS duration and QT interval prolonged significantly following amitriptyline infusion (p < 0.0167). Dextrose, low-dose HPBCD, and high-dose HPBCD infusion similarly corrected MAP, HR, QRS duration, and QT interval values at the end-experiment time point (p > 0.05). Histological scores for tissue damage and apoptosis showed no significant difference between the groups (p > 0.05). Based on our results, HPBCD did not show cardiovascular toxicity, while it was not more effective than dextrose for the treatment of amitriptyline poisoning. Further antidotal studies of cyclodextrins with higher doses and/or binding affinities are needed for poisonings.
Literatur
1.
Zurück zum Zitat Unverir, P., Atilla, R., Karcioglu, O., Topacoglu, H., Demiral, Y., & Tuncok, Y. (2006). A retrospective analysis of antidepressant poisonings in the emergency department: 11-Year experience. Human and Experimental Toxicology, 25, 605–612.CrossRefPubMed Unverir, P., Atilla, R., Karcioglu, O., Topacoglu, H., Demiral, Y., & Tuncok, Y. (2006). A retrospective analysis of antidepressant poisonings in the emergency department: 11-Year experience. Human and Experimental Toxicology, 25, 605–612.CrossRefPubMed
2.
Zurück zum Zitat Mowry, J. B., Spyker, D. A., Cantilena, L. R, Jr, McMillan, N., & Ford, M. (2014). 2013 Annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 31st Annual report. Clinical Toxicology (Philadelphia), 52, 1032–1283.CrossRef Mowry, J. B., Spyker, D. A., Cantilena, L. R, Jr, McMillan, N., & Ford, M. (2014). 2013 Annual report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 31st Annual report. Clinical Toxicology (Philadelphia), 52, 1032–1283.CrossRef
3.
4.
Zurück zum Zitat Thanacoody, H. K., & Thomas, S. H. (2005). Tricyclic antidepressant poisoning: Cardiovascular toxicity. Toxicological Reviews, 24, 205–214.CrossRefPubMed Thanacoody, H. K., & Thomas, S. H. (2005). Tricyclic antidepressant poisoning: Cardiovascular toxicity. Toxicological Reviews, 24, 205–214.CrossRefPubMed
5.
Zurück zum Zitat Bateman, D. N. (2005). Tricyclic antidepressant poisoning: Central nervous system effects and management. Toxicological Reviews, 24, 181–186.CrossRefPubMed Bateman, D. N. (2005). Tricyclic antidepressant poisoning: Central nervous system effects and management. Toxicological Reviews, 24, 181–186.CrossRefPubMed
6.
Zurück zum Zitat Bradberry, S. M., Thanacoody, H. K., Watt, B. E., Thomas, S. H., & Vale, J. A. (2005). Management of the cardiovascular complications of tricyclic antidepressant poisoning: Role of sodium bicarbonate. Toxicological Reviews, 24, 195–204.CrossRefPubMed Bradberry, S. M., Thanacoody, H. K., Watt, B. E., Thomas, S. H., & Vale, J. A. (2005). Management of the cardiovascular complications of tricyclic antidepressant poisoning: Role of sodium bicarbonate. Toxicological Reviews, 24, 195–204.CrossRefPubMed
7.
Zurück zum Zitat Heard, K., Dart, R. C., Bogdan, G., O’Malley, G. F., Burkhart, K. K., Donovan, J. W., & Ward, S. B. (2006). A preliminary study of tricyclic antidepressant (TCA) ovine FAB for TCA toxicity. Clinical Toxicology (Philadelphia), 44, 275–281.CrossRef Heard, K., Dart, R. C., Bogdan, G., O’Malley, G. F., Burkhart, K. K., Donovan, J. W., & Ward, S. B. (2006). A preliminary study of tricyclic antidepressant (TCA) ovine FAB for TCA toxicity. Clinical Toxicology (Philadelphia), 44, 275–281.CrossRef
8.
Zurück zum Zitat Litonius, E., Niiya, T., Neuvonen, P. J., & Rosenberg, P. H. (2012). No antidotal effect of intravenous lipid emulsion in experimental amitriptyline intoxication despite significant entrapment of amitriptyline. Basic & Clinical Pharmacology & Toxicology, 110, 378–383.CrossRef Litonius, E., Niiya, T., Neuvonen, P. J., & Rosenberg, P. H. (2012). No antidotal effect of intravenous lipid emulsion in experimental amitriptyline intoxication despite significant entrapment of amitriptyline. Basic & Clinical Pharmacology & Toxicology, 110, 378–383.CrossRef
9.
Zurück zum Zitat Heinonen, J. A., Litonius, E., Backman, J. T., Neuvonen, P. J., & Rosenberg, P. H. (2013). Intravenous lipid emulsion entraps amitriptyline into plasma and can lower its brain concentration—An experimental intoxication study in pigs. Basic & Clinical Pharmacology & Toxicology, 113, 193–200.CrossRef Heinonen, J. A., Litonius, E., Backman, J. T., Neuvonen, P. J., & Rosenberg, P. H. (2013). Intravenous lipid emulsion entraps amitriptyline into plasma and can lower its brain concentration—An experimental intoxication study in pigs. Basic & Clinical Pharmacology & Toxicology, 113, 193–200.CrossRef
10.
Zurück zum Zitat Welliver, M., McDonough, J., Kalynych, N., & Redfern, R. (2009). Discovery, development, and clinical application of sugammadex sodium, a selective relaxant binding agent. Journal of Drug Design, Development and Therapy, 2, 49–59.PubMed Welliver, M., McDonough, J., Kalynych, N., & Redfern, R. (2009). Discovery, development, and clinical application of sugammadex sodium, a selective relaxant binding agent. Journal of Drug Design, Development and Therapy, 2, 49–59.PubMed
11.
Zurück zum Zitat Abrishami, A., Ho, J., Wong, J., Yin, L., & Chung, F. (2009). Sugammadex, a selective reversal medication for preventing postoperative residual neuromuscular blockade. Cochrane Database of Systematic Reviews, Oct 7, CD007362. Abrishami, A., Ho, J., Wong, J., Yin, L., & Chung, F. (2009). Sugammadex, a selective reversal medication for preventing postoperative residual neuromuscular blockade. Cochrane Database of Systematic Reviews, Oct 7, CD007362.
12.
Zurück zum Zitat Georgiou, M. E., Georgiou, C. A., & Koupparis, M. A. (1999). Rapid automated spectrophotometric competitive complexation studies of drugs with cyclodextrins using the flow injection gradient technique: Tricyclic antidepressant drugs with alpha-cyclodextrin. Analyst, 124, 391–396.CrossRef Georgiou, M. E., Georgiou, C. A., & Koupparis, M. A. (1999). Rapid automated spectrophotometric competitive complexation studies of drugs with cyclodextrins using the flow injection gradient technique: Tricyclic antidepressant drugs with alpha-cyclodextrin. Analyst, 124, 391–396.CrossRef
13.
Zurück zum Zitat Junquera, E., Romero, J. C., & Aicart, E. (2001). Behavior of tricyclic antidepressants in aqueous solution: Self-aggregation and association with beta-cyclodextrin. Langmuir, 17, 1826–1832.CrossRef Junquera, E., Romero, J. C., & Aicart, E. (2001). Behavior of tricyclic antidepressants in aqueous solution: Self-aggregation and association with beta-cyclodextrin. Langmuir, 17, 1826–1832.CrossRef
14.
Zurück zum Zitat Cano, J., Rodriguez, A., Aicart, E., & Junquera, E. (2007). Temperature effect on the complex formation between tricyclic antidepressant drugs (amitriptyline or imipramine) and hydroxypropyl-beta-cyclodextrin in water. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 59, 279–285.CrossRef Cano, J., Rodriguez, A., Aicart, E., & Junquera, E. (2007). Temperature effect on the complex formation between tricyclic antidepressant drugs (amitriptyline or imipramine) and hydroxypropyl-beta-cyclodextrin in water. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 59, 279–285.CrossRef
15.
16.
Zurück zum Zitat Gould, S., & Scott, R. C. (2005). 2-Hydroxypropyl-beta-cyclodextrin (HP-beta-CD): A toxicology review. Food and Chemical Toxicology, 43, 1451–1459.CrossRefPubMed Gould, S., & Scott, R. C. (2005). 2-Hydroxypropyl-beta-cyclodextrin (HP-beta-CD): A toxicology review. Food and Chemical Toxicology, 43, 1451–1459.CrossRefPubMed
17.
Zurück zum Zitat Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., & Altman, D. G. (2010). Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biology, 8, e1000412.CrossRefPubMedPubMedCentral Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., & Altman, D. G. (2010). Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biology, 8, e1000412.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Kalkan, S., Aygoren, O., Akgun, A., Gidener, S., Guven, H., & Tuncok, Y. (2004). Do adenosine receptors play a role in amitriptyline-induced cardiovascular toxicity in rats? Journal of Toxicology - Clinical Toxicology, 42, 945–954.CrossRefPubMed Kalkan, S., Aygoren, O., Akgun, A., Gidener, S., Guven, H., & Tuncok, Y. (2004). Do adenosine receptors play a role in amitriptyline-induced cardiovascular toxicity in rats? Journal of Toxicology - Clinical Toxicology, 42, 945–954.CrossRefPubMed
19.
Zurück zum Zitat Cecen, E., Dost, T., Culhaci, N., Karul, A., Ergur, B., & Birincioglu, M. (2011). Protective effects of silymarin against doxorubicin-induced toxicity. Asian Pacific Journal of Cancer Prevention, 12, 2697–2704.PubMed Cecen, E., Dost, T., Culhaci, N., Karul, A., Ergur, B., & Birincioglu, M. (2011). Protective effects of silymarin against doxorubicin-induced toxicity. Asian Pacific Journal of Cancer Prevention, 12, 2697–2704.PubMed
20.
Zurück zum Zitat Tuzun, F., Gencpinar, P., Ozbal, S., Dilek, M., Ergur, B. U., Duman, N., et al. (2012). Neuroprotective effect of neotrofin in a neonatal rat model of periventricular leukomalacia. Neuroscience Letters, 520, 6–10.CrossRefPubMed Tuzun, F., Gencpinar, P., Ozbal, S., Dilek, M., Ergur, B. U., Duman, N., et al. (2012). Neuroprotective effect of neotrofin in a neonatal rat model of periventricular leukomalacia. Neuroscience Letters, 520, 6–10.CrossRefPubMed
21.
Zurück zum Zitat Brewster, M. E., Estes, K. S., & Bodor, N. (1990). An intravenous toxicity study of 2-hydroxypropyl-beta-cyclodextrin, a useful drug solubilizer, in rats and monkeys. International Journal of Pharmaceutics, 59, 231–243.CrossRef Brewster, M. E., Estes, K. S., & Bodor, N. (1990). An intravenous toxicity study of 2-hydroxypropyl-beta-cyclodextrin, a useful drug solubilizer, in rats and monkeys. International Journal of Pharmaceutics, 59, 231–243.CrossRef
22.
Zurück zum Zitat May, C., & Stewart, P. L. (1998). Development of a toxin-binding agent as a treatment for tunicaminyluracil toxicity: protection against tunicamycin poisoning of sheep. Australian Veterinary Journal, 76, 752–756.CrossRefPubMed May, C., & Stewart, P. L. (1998). Development of a toxin-binding agent as a treatment for tunicaminyluracil toxicity: protection against tunicamycin poisoning of sheep. Australian Veterinary Journal, 76, 752–756.CrossRefPubMed
23.
Zurück zum Zitat Verster, R. S., & Botha, C. J. (2004). Evaluation of hydroxypropyl-beta-cyclodextrin in the treatment of aldicarb poisoning in rats. Journal of the South African Veterinary Association, 75, 182–185.PubMed Verster, R. S., & Botha, C. J. (2004). Evaluation of hydroxypropyl-beta-cyclodextrin in the treatment of aldicarb poisoning in rats. Journal of the South African Veterinary Association, 75, 182–185.PubMed
24.
Zurück zum Zitat Mottram, A. R., Bryant, S. M., & Aks, S. E. (2011). Effect of cyclodextrin infusion in a rat model of verapamil toxicity. American Journal of Therapeutics, 18, 371–374.CrossRefPubMed Mottram, A. R., Bryant, S. M., & Aks, S. E. (2011). Effect of cyclodextrin infusion in a rat model of verapamil toxicity. American Journal of Therapeutics, 18, 371–374.CrossRefPubMed
25.
Zurück zum Zitat Ozbilgin, S., Ozbilgin, M., Kucukoztas, B., Kamaci, G., Unek, T., Yurtlu, B. S., et al. (2013). Evaluation of the effectiveness of sugammadex for verapamil intoxication. Basic & Clinical Pharmacology & Toxicology, 113, 280–285.CrossRef Ozbilgin, S., Ozbilgin, M., Kucukoztas, B., Kamaci, G., Unek, T., Yurtlu, B. S., et al. (2013). Evaluation of the effectiveness of sugammadex for verapamil intoxication. Basic & Clinical Pharmacology & Toxicology, 113, 280–285.CrossRef
26.
Zurück zum Zitat de Boer, H. D., van Egmond, J., van de Pol, F., Bom, A., & Booij, L. H. D. J. (2006). Reversal of profound rocuronium neuromuscular blockade by sugammadex in anesthetized rhesus monkeys. Anesthesiology, 104, 718–723.CrossRefPubMed de Boer, H. D., van Egmond, J., van de Pol, F., Bom, A., & Booij, L. H. D. J. (2006). Reversal of profound rocuronium neuromuscular blockade by sugammadex in anesthetized rhesus monkeys. Anesthesiology, 104, 718–723.CrossRefPubMed
27.
Zurück zum Zitat Epemolu, O., Bom, A., Hope, F., & Mason, R. (2003). Reversal of neuromuscular blockade and simultaneous increase in plasma rocuronium concentration after the intravenous infusion of the novel reversal agent Org 25969. Anesthesiology, 99, 632–637.CrossRefPubMed Epemolu, O., Bom, A., Hope, F., & Mason, R. (2003). Reversal of neuromuscular blockade and simultaneous increase in plasma rocuronium concentration after the intravenous infusion of the novel reversal agent Org 25969. Anesthesiology, 99, 632–637.CrossRefPubMed
28.
Zurück zum Zitat Zwiers, A., van den Heuvel, M., Smeets, J., & Rutherford, S. (2011). Assessment of the potential for displacement interactions with sugammadex: A pharmacokinetic-pharmacodynamic modelling approach. Clinical Drug Investigation, 31, 101–111.CrossRefPubMed Zwiers, A., van den Heuvel, M., Smeets, J., & Rutherford, S. (2011). Assessment of the potential for displacement interactions with sugammadex: A pharmacokinetic-pharmacodynamic modelling approach. Clinical Drug Investigation, 31, 101–111.CrossRefPubMed
Metadaten
Titel
Effects of 2-Hydroxypropyl-Beta-Cyclodextrin on Cardiovascular Signs of Amitriptyline Poisoning in a Rat Model
verfasst von
Burc Aydin
Nil Hocaoglu
Serap Cilaker Micili
Bekir Ugur Ergur
Sule Kalkan
Publikationsdatum
30.11.2015
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 4/2016
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-015-9349-4

Weitere Artikel der Ausgabe 4/2016

Cardiovascular Toxicology 4/2016 Zur Ausgabe