Skip to main content
Erschienen in: Journal of the Association for Research in Otolaryngology 6/2014

01.12.2014 | Research Article

Effects of Contralateral Acoustic Stimulation on Spontaneous Otoacoustic Emissions and Hearing Threshold Fine Structure

verfasst von: James B. Dewey, Jungmee Lee, Sumitrajit Dhar

Erschienen in: Journal of the Association for Research in Otolaryngology | Ausgabe 6/2014

Einloggen, um Zugang zu erhalten

Abstract

Medial olivocochlear (MOC) influence on cochlear mechanics can be noninvasively, albeit indirectly, explored via the effects of contralateral acoustic stimulation (CAS) on otoacoustic emissions. CAS-mediated effects are particularly pronounced for spontaneous otoacoustic emissions (SOAEs), which are typically reduced in amplitude and shifted upward in frequency by CAS. We investigated whether similar frequency shifts and magnitude reductions were observed behaviorally in the fine structure of pure-tone hearing thresholds, a phenomenon thought to share a common underlying mechanism with SOAEs. In normal-hearing listeners, fine-resolution thresholds were obtained over a narrow frequency range centered on the frequency of an SOAE, both in the absence and presence of 60-dB SPL broadband CAS. While CAS shifted threshold fine structure patterns and SOAEs upward in frequency by a comparable amount, little reduction in the presence or depth of fine structure was observed at frequencies near those of SOAEs. In fact, CAS typically improved thresholds, particularly at threshold minima, and increased fine structure depth when reductions in the amplitude of the associated SOAE were less than 10 dB. Additional measurements made at frequencies distant from SOAEs, or near SOAEs that were more dramatically reduced in amplitude by the CAS, revealed that CAS tended to elevate thresholds and reduce threshold fine structure depth. The results suggest that threshold fine structure is sensitive to MOC-mediated changes in cochlear gain, but that SOAEs complicate the interpretation of threshold measurements at nearby frequencies, perhaps due to masking or other interference effects. Both threshold fine structure and SOAEs may be significant sources of intersubject and intrasubject variability in psychoacoustic investigations of MOC function.
Literatur
Zurück zum Zitat Abdala C, Mishra SK, Williams TL (2009) Considering distortion product otoacoustic emission fine structure in measurements of the medial olivocochlear reflex. J Acoust Soc Am 125:1584–1594PubMedCentralPubMedCrossRef Abdala C, Mishra SK, Williams TL (2009) Considering distortion product otoacoustic emission fine structure in measurements of the medial olivocochlear reflex. J Acoust Soc Am 125:1584–1594PubMedCentralPubMedCrossRef
Zurück zum Zitat Aguilar E, Eustaquio-Martín A, Lopez-Poveda EA (2013) Contralateral efferent reflex effects on threshold and suprathreshold psychoacoustical tuning curves at low and high frequencies. J Assoc Res Otolaryngol 14:341–357PubMedCentralPubMedCrossRef Aguilar E, Eustaquio-Martín A, Lopez-Poveda EA (2013) Contralateral efferent reflex effects on threshold and suprathreshold psychoacoustical tuning curves at low and high frequencies. J Assoc Res Otolaryngol 14:341–357PubMedCentralPubMedCrossRef
Zurück zum Zitat Bergevin C, Fulcher A, Richmond S, Velenovsky D, Lee J (2012) Interrelationships between spontaneous and low-level stimulus-frequency otoacoustic emissions in humans. Hear Res 285:20–28PubMedCrossRef Bergevin C, Fulcher A, Richmond S, Velenovsky D, Lee J (2012) Interrelationships between spontaneous and low-level stimulus-frequency otoacoustic emissions in humans. Hear Res 285:20–28PubMedCrossRef
Zurück zum Zitat Cody AR, Johnstone BM (1982) Temporary threshold shift modified by binaural acoustic stimulation. Hear Res 6:199–205PubMedCrossRef Cody AR, Johnstone BM (1982) Temporary threshold shift modified by binaural acoustic stimulation. Hear Res 6:199–205PubMedCrossRef
Zurück zum Zitat Cohen MF (1982) Detection threshold microstructure and its effect on temporal integration data. J Acoust Soc Am 71:405–409PubMedCrossRef Cohen MF (1982) Detection threshold microstructure and its effect on temporal integration data. J Acoust Soc Am 71:405–409PubMedCrossRef
Zurück zum Zitat Cooper NP, Guinan JJ (2003) Separate mechanical processes underlie fast and slow effects of medial olivocochlear efferent activity. J Phsyiol 548:307–312CrossRef Cooper NP, Guinan JJ (2003) Separate mechanical processes underlie fast and slow effects of medial olivocochlear efferent activity. J Phsyiol 548:307–312CrossRef
Zurück zum Zitat Deeter R, Abel R, Calandruccio L, Dhar S (2009) Contralateral acoustic stimulation alters the magnitude and phase of distortion product otoacoustic emissions. J Acoust Soc Am 126:2413–2424PubMedCentralPubMedCrossRef Deeter R, Abel R, Calandruccio L, Dhar S (2009) Contralateral acoustic stimulation alters the magnitude and phase of distortion product otoacoustic emissions. J Acoust Soc Am 126:2413–2424PubMedCentralPubMedCrossRef
Zurück zum Zitat Delano PH, Elgueda D, Hamame CM, Robles L (2007) Selective attention to visual stimuli reduces cochlear sensitivity in chinchillas. J Neurosci 27:4146–4153PubMedCrossRef Delano PH, Elgueda D, Hamame CM, Robles L (2007) Selective attention to visual stimuli reduces cochlear sensitivity in chinchillas. J Neurosci 27:4146–4153PubMedCrossRef
Zurück zum Zitat Dieler R, Shehata-Dieler WE, Brownell WE (1991) Concomitant salicylate-induced alterations of outer hair cell subsurface cisternae and electromotility. J Neurocytol 20:637–653PubMedCrossRef Dieler R, Shehata-Dieler WE, Brownell WE (1991) Concomitant salicylate-induced alterations of outer hair cell subsurface cisternae and electromotility. J Neurocytol 20:637–653PubMedCrossRef
Zurück zum Zitat Dirks D, Malmquist C (1965) Shifts in air-conduction thresholds produced by pulsed and continuous contralateral masking. J Acoust Soc Am 37:631–637PubMedCrossRef Dirks D, Malmquist C (1965) Shifts in air-conduction thresholds produced by pulsed and continuous contralateral masking. J Acoust Soc Am 37:631–637PubMedCrossRef
Zurück zum Zitat Dolan DF, Guo MH, Nuttall AL (1997) Frequency-dependent enhancement of basilar membrane velocity during olivocochlear bundle stimulation. J Acoust Soc Am 102:3587–3596PubMedCrossRef Dolan DF, Guo MH, Nuttall AL (1997) Frequency-dependent enhancement of basilar membrane velocity during olivocochlear bundle stimulation. J Acoust Soc Am 102:3587–3596PubMedCrossRef
Zurück zum Zitat Epp B, Verhey JL, Mauermann M (2010) Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics. J Acoust Soc Am 128:1870–1883PubMedCrossRef Epp B, Verhey JL, Mauermann M (2010) Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics. J Acoust Soc Am 128:1870–1883PubMedCrossRef
Zurück zum Zitat Francis NA, Guinan JJ (2010) Acoustic stimulation of human medial olivocochlear efferents reduces stimulus-frequency and click-evoked otoacoustic emission delays: implications for cochlear filter bandwidths. Hear Res 267:36–45PubMedCentralPubMedCrossRef Francis NA, Guinan JJ (2010) Acoustic stimulation of human medial olivocochlear efferents reduces stimulus-frequency and click-evoked otoacoustic emission delays: implications for cochlear filter bandwidths. Hear Res 267:36–45PubMedCentralPubMedCrossRef
Zurück zum Zitat Furst M, Reshef I, Attias J (1992) Manifestations of intense noise stimulation on spontaneous otoacoustic emission and threshold microstructure: experiment and model. J Acoust Soc Am 91:1003–1014PubMedCrossRef Furst M, Reshef I, Attias J (1992) Manifestations of intense noise stimulation on spontaneous otoacoustic emission and threshold microstructure: experiment and model. J Acoust Soc Am 91:1003–1014PubMedCrossRef
Zurück zum Zitat Galambos R (1956) Suppression of auditory nerve activity by stimulation of efferent fibers to cochlea. J Neurophysiol 19:424–437PubMed Galambos R (1956) Suppression of auditory nerve activity by stimulation of efferent fibers to cochlea. J Neurophysiol 19:424–437PubMed
Zurück zum Zitat Gjaevenes K, Vigran E (1967) Contralateral masking: an attempt to determine the role of the aural reflex. J Acoust Soc Am 42:580–585PubMedCrossRef Gjaevenes K, Vigran E (1967) Contralateral masking: an attempt to determine the role of the aural reflex. J Acoust Soc Am 42:580–585PubMedCrossRef
Zurück zum Zitat Guinan JJ (1986) Effect of efferent neural activity on cochlear mechanics. Scand Audiol Suppl 25:53–62PubMed Guinan JJ (1986) Effect of efferent neural activity on cochlear mechanics. Scand Audiol Suppl 25:53–62PubMed
Zurück zum Zitat Guinan JJ (2006) Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear 27:589–607PubMedCrossRef Guinan JJ (2006) Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear 27:589–607PubMedCrossRef
Zurück zum Zitat Guinan JJ (2010) Cochlear efferent innervation and function. Curr Opin Otolaryngol Head Neck Surg 18:447–453PubMedCrossRef Guinan JJ (2010) Cochlear efferent innervation and function. Curr Opin Otolaryngol Head Neck Surg 18:447–453PubMedCrossRef
Zurück zum Zitat Harrison WA, Burns EM (1993) Effects of contralateral acoustic stimulation on spontaneous otoacoustic emissions. J Acoust Soc Am 94:2649–2658PubMedCrossRef Harrison WA, Burns EM (1993) Effects of contralateral acoustic stimulation on spontaneous otoacoustic emissions. J Acoust Soc Am 94:2649–2658PubMedCrossRef
Zurück zum Zitat Heise SJ, Mauermann M, Verhey JL (2009a) Threshold fine structure affects amplitude modulation perception. J Acoust Soc Am 125:EL33–EL38PubMedCrossRef Heise SJ, Mauermann M, Verhey JL (2009a) Threshold fine structure affects amplitude modulation perception. J Acoust Soc Am 125:EL33–EL38PubMedCrossRef
Zurück zum Zitat Heise SJ, Mauermann M, Verhey JL (2009b) Investigating possible mechanisms behind the effect of threshold fine structure on amplitude modulation perception. J Acoust Soc Am 126:2490–2500PubMedCrossRef Heise SJ, Mauermann M, Verhey JL (2009b) Investigating possible mechanisms behind the effect of threshold fine structure on amplitude modulation perception. J Acoust Soc Am 126:2490–2500PubMedCrossRef
Zurück zum Zitat Ingham JG (1957) The effect upon monaural sensitivity of continuous stimulation of the opposite ear. Q J Exp Psychol 9:52–60CrossRef Ingham JG (1957) The effect upon monaural sensitivity of continuous stimulation of the opposite ear. Q J Exp Psychol 9:52–60CrossRef
Zurück zum Zitat Jennings SG, Strickland EA (2012) Evaluating the effects of olivocochlear feedback on psychophysical measures of frequency selectivity. J Acoust Soc Am 132:2483–2496PubMedCentralPubMedCrossRef Jennings SG, Strickland EA (2012) Evaluating the effects of olivocochlear feedback on psychophysical measures of frequency selectivity. J Acoust Soc Am 132:2483–2496PubMedCentralPubMedCrossRef
Zurück zum Zitat Kapadia S, Lutman ME (1999) Reduced ‘audiogram ripple’ in normally-hearing subjects with weak otoacoustic emissions. Audiology 38:257–261PubMedCrossRef Kapadia S, Lutman ME (1999) Reduced ‘audiogram ripple’ in normally-hearing subjects with weak otoacoustic emissions. Audiology 38:257–261PubMedCrossRef
Zurück zum Zitat Kawase T, Liberman MC (1993) Antimasking effects of the olivocochlear reflex. I. Enhancement of compound action potentials to masked tones. J Neurophysiol 70:2519–2532PubMed Kawase T, Liberman MC (1993) Antimasking effects of the olivocochlear reflex. I. Enhancement of compound action potentials to masked tones. J Neurophysiol 70:2519–2532PubMed
Zurück zum Zitat Kawase T, Delgutte B, Liberman MC (1993) Antimasking effects of the olivocochlear reflex. II. Enhancement of auditory-nerve response to masked tones. J Neurophysiol 70:2533–2549PubMed Kawase T, Delgutte B, Liberman MC (1993) Antimasking effects of the olivocochlear reflex. II. Enhancement of auditory-nerve response to masked tones. J Neurophysiol 70:2533–2549PubMed
Zurück zum Zitat Kawase T, Ogura M, Hidaka H, Sasaki N, Suzuki Y, Takasaka T (2000) Effects of contralateral noise on measurement of the psychophysical tuning curve. Hear Res 142:63–70PubMedCrossRef Kawase T, Ogura M, Hidaka H, Sasaki N, Suzuki Y, Takasaka T (2000) Effects of contralateral noise on measurement of the psychophysical tuning curve. Hear Res 142:63–70PubMedCrossRef
Zurück zum Zitat Kawase T, Ogura M, Sato T, Kobayashi T, Suzuki Y (2003) Effects of contralateral noise on the measurement of auditory threshold. Tohoku J Exp Med 200:129–135PubMedCrossRef Kawase T, Ogura M, Sato T, Kobayashi T, Suzuki Y (2003) Effects of contralateral noise on the measurement of auditory threshold. Tohoku J Exp Med 200:129–135PubMedCrossRef
Zurück zum Zitat Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391PubMedCrossRef Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391PubMedCrossRef
Zurück zum Zitat Kemp DT (1979a) The evoked cochlear mechanical response and the auditory microstructure—evidence for a new element in cochlear mechanics. Scand Audiol Suppl:35–47 Kemp DT (1979a) The evoked cochlear mechanical response and the auditory microstructure—evidence for a new element in cochlear mechanics. Scand Audiol Suppl:35–47
Zurück zum Zitat Kemp DT (1979b) Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea. Arch Otorhinolaryngol 224:37–45PubMedCrossRef Kemp DT (1979b) Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea. Arch Otorhinolaryngol 224:37–45PubMedCrossRef
Zurück zum Zitat Kemp DT (1981) Physiologically active cochlear micromechanics-one source of tinnitus. In: Evered D, Lawrenson G (eds) Tinnitus - Ciba Foundation Symposium 85. Pitman, London, pp 54–81 Kemp DT (1981) Physiologically active cochlear micromechanics-one source of tinnitus. In: Evered D, Lawrenson G (eds) Tinnitus - Ciba Foundation Symposium 85. Pitman, London, pp 54–81
Zurück zum Zitat Kujawa SG, Liberman MC (1997) Conditioning-related protection from acoustic injury: effects of chronic deefferentation and sham surgery. J Neurophysiol 78:3095–3106PubMed Kujawa SG, Liberman MC (1997) Conditioning-related protection from acoustic injury: effects of chronic deefferentation and sham surgery. J Neurophysiol 78:3095–3106PubMed
Zurück zum Zitat Kulawiec JT, Orlando MS (1995) The contribution of spontaneous otoacoustic emissions to the click evoked otoacoustic emissions. Ear Hear 16:515–520PubMedCrossRef Kulawiec JT, Orlando MS (1995) The contribution of spontaneous otoacoustic emissions to the click evoked otoacoustic emissions. Ear Hear 16:515–520PubMedCrossRef
Zurück zum Zitat Lee J, Long G (2012) Stimulus characteristics which lessen the impact of threshold fine structure on estimates of hearing status. Hear Res 283:24–32PubMedCrossRef Lee J, Long G (2012) Stimulus characteristics which lessen the impact of threshold fine structure on estimates of hearing status. Hear Res 283:24–32PubMedCrossRef
Zurück zum Zitat Lee J, Dhar S, Abel R, Banakis R, Grolley E, Lee J, Zecker S, Siegel J (2012) Behavioral hearing thresholds between 0.125 and 20 kHz using depth-compensated ear simulator calibration. Ear Hear 33:315–329PubMedCentralPubMedCrossRef Lee J, Dhar S, Abel R, Banakis R, Grolley E, Lee J, Zecker S, Siegel J (2012) Behavioral hearing thresholds between 0.125 and 20 kHz using depth-compensated ear simulator calibration. Ear Hear 33:315–329PubMedCentralPubMedCrossRef
Zurück zum Zitat Long G (1998) Perceptual consequences of the interactions between spontaneous otoacoustic emissions and external tones. I. Monaural diplacusis and aftertones. Hear Res 119:49–60PubMedCrossRef Long G (1998) Perceptual consequences of the interactions between spontaneous otoacoustic emissions and external tones. I. Monaural diplacusis and aftertones. Hear Res 119:49–60PubMedCrossRef
Zurück zum Zitat Long GR, Talmadge CL (1997) Spontaneous otoacoustic emission frequency is modulated by heartbeat. J Acoust Soc Am 102:2831–2848PubMedCrossRef Long GR, Talmadge CL (1997) Spontaneous otoacoustic emission frequency is modulated by heartbeat. J Acoust Soc Am 102:2831–2848PubMedCrossRef
Zurück zum Zitat Long G, Tubis A (1988a) Investigations into the nature of the association between threshold microstructure and otoacoustic emissions. Hear Res 36:125–138PubMedCrossRef Long G, Tubis A (1988a) Investigations into the nature of the association between threshold microstructure and otoacoustic emissions. Hear Res 36:125–138PubMedCrossRef
Zurück zum Zitat Long G, Tubis A (1988b) Modification of spontaneous and evoked otoacoustic emissions and associated psychoacoustic microstructure by aspirin consumption. J Acoust Soc Am 84:1343–1353PubMedCrossRef Long G, Tubis A (1988b) Modification of spontaneous and evoked otoacoustic emissions and associated psychoacoustic microstructure by aspirin consumption. J Acoust Soc Am 84:1343–1353PubMedCrossRef
Zurück zum Zitat Long GR, Tubis A, Jones KL (1991) Modeling synchronization and suppression of spontaneous otoacoustic emissions using Van der Pol oscillators: effects of aspirin administration. J Acoust Soc Am 89:1201–1212PubMedCrossRef Long GR, Tubis A, Jones KL (1991) Modeling synchronization and suppression of spontaneous otoacoustic emissions using Van der Pol oscillators: effects of aspirin administration. J Acoust Soc Am 89:1201–1212PubMedCrossRef
Zurück zum Zitat Maison SF, Usubuchi H, Liberman MC (2013) Efferent feedback minimizes cochlear neuropathy from moderate noise exposure. J Neurosci 33:5542–5552PubMedCentralPubMedCrossRef Maison SF, Usubuchi H, Liberman MC (2013) Efferent feedback minimizes cochlear neuropathy from moderate noise exposure. J Neurosci 33:5542–5552PubMedCentralPubMedCrossRef
Zurück zum Zitat Mauermann M, Long GR, Kollmeier B (2004) Fine structure of hearing threshold and loudness perception. J Acoust Soc Am 116:1066–1080PubMedCrossRef Mauermann M, Long GR, Kollmeier B (2004) Fine structure of hearing threshold and loudness perception. J Acoust Soc Am 116:1066–1080PubMedCrossRef
Zurück zum Zitat McFadden D, Mishra R (1993) On the relation between hearing sensitivity and otoacoustic emissions. Hear Res 71:208–213PubMedCrossRef McFadden D, Mishra R (1993) On the relation between hearing sensitivity and otoacoustic emissions. Hear Res 71:208–213PubMedCrossRef
Zurück zum Zitat Micheyl C, Carbonnel O, Collet L (1995a) Medial olivocochlear system and loudness adaptation: differences between musicians and non-musicians. Brain Cogn 29:127–136PubMedCrossRef Micheyl C, Carbonnel O, Collet L (1995a) Medial olivocochlear system and loudness adaptation: differences between musicians and non-musicians. Brain Cogn 29:127–136PubMedCrossRef
Zurück zum Zitat Micheyl C, Morlet T, Giraud AL, Collet L, Morgon A (1995b) Contralateral suppression of evoked otoacoustic emissions and detection of a multi-tone complex in noise. Acta Otolaryngol 115:178–182PubMedCrossRef Micheyl C, Morlet T, Giraud AL, Collet L, Morgon A (1995b) Contralateral suppression of evoked otoacoustic emissions and detection of a multi-tone complex in noise. Acta Otolaryngol 115:178–182PubMedCrossRef
Zurück zum Zitat Micheyl C, Perrot X, Collet L (1997) Relationship between auditory intensity discrimination in noise and olivocochlear efferent system activity in humans. Behav Neurosci 111:801–807PubMedCrossRef Micheyl C, Perrot X, Collet L (1997) Relationship between auditory intensity discrimination in noise and olivocochlear efferent system activity in humans. Behav Neurosci 111:801–807PubMedCrossRef
Zurück zum Zitat Morand-Villeneuve N, Garnier S, Grimault N, Veuillet E, Collet L, Micheyl C (2002) Medial olivocochlear bundle activation and perceived auditory intensity in humans. Physiol Behav 77:311–320PubMedCrossRef Morand-Villeneuve N, Garnier S, Grimault N, Veuillet E, Collet L, Micheyl C (2002) Medial olivocochlear bundle activation and perceived auditory intensity in humans. Physiol Behav 77:311–320PubMedCrossRef
Zurück zum Zitat Mott JB, Norton SJ, Neely ST, Warr WB (1989) Changes in spontaneous otoacoustic emissions produced by acoustic stimulation of the contralateral ear. Hear Res 38:229–242PubMedCrossRef Mott JB, Norton SJ, Neely ST, Warr WB (1989) Changes in spontaneous otoacoustic emissions produced by acoustic stimulation of the contralateral ear. Hear Res 38:229–242PubMedCrossRef
Zurück zum Zitat Moulin A, Collet L, Veuillet E, Morgon A (1993) Interrelations between transiently evoked otoacoustic emissions, spontaneous otoacoustic emissions and acoustic distortion products in normally hearing subjects. Hear Res 65:216–233PubMedCrossRef Moulin A, Collet L, Veuillet E, Morgon A (1993) Interrelations between transiently evoked otoacoustic emissions, spontaneous otoacoustic emissions and acoustic distortion products in normally hearing subjects. Hear Res 65:216–233PubMedCrossRef
Zurück zum Zitat Mountain DC (1980) Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics. Science 210:71–72PubMedCrossRef Mountain DC (1980) Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics. Science 210:71–72PubMedCrossRef
Zurück zum Zitat Murugasu E, Russell IJ (1996) The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. J Neurosci 16:325–332PubMed Murugasu E, Russell IJ (1996) The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. J Neurosci 16:325–332PubMed
Zurück zum Zitat Nieder P, Nieder I (1970a) Stimulation of efferent olivocochlear bundle causes release from low level masking. Nature 227:184–185PubMedCrossRef Nieder P, Nieder I (1970a) Stimulation of efferent olivocochlear bundle causes release from low level masking. Nature 227:184–185PubMedCrossRef
Zurück zum Zitat Nieder P, Nieder I (1970b) Antimasking effect of crossed olivocochlear bundle stimulation with loud clicks in guinea pig. Exp Neurol 28:179–188PubMedCrossRef Nieder P, Nieder I (1970b) Antimasking effect of crossed olivocochlear bundle stimulation with loud clicks in guinea pig. Exp Neurol 28:179–188PubMedCrossRef
Zurück zum Zitat Norton SJ, Mott JB, Champlin CA (1989) Behavior of spontaneous otoacoustic emissions following intense ipsilateral acoustic stimulation. Hear Res 38:243–258PubMedCrossRef Norton SJ, Mott JB, Champlin CA (1989) Behavior of spontaneous otoacoustic emissions following intense ipsilateral acoustic stimulation. Hear Res 38:243–258PubMedCrossRef
Zurück zum Zitat Nuttall AL, Grosh K, Zheng J, Boer E, Zou Y, Ren T (2004) Spontaneous basilar membrane oscillation and otoacoustic emission at 15 kHz in a guinea pig. J Assoc Res Otolaryngol 5:337–348PubMedCentralPubMedCrossRef Nuttall AL, Grosh K, Zheng J, Boer E, Zou Y, Ren T (2004) Spontaneous basilar membrane oscillation and otoacoustic emission at 15 kHz in a guinea pig. J Assoc Res Otolaryngol 5:337–348PubMedCentralPubMedCrossRef
Zurück zum Zitat Powers NL, Salvi RJ, Wang J, Spongr V, Qiu CX (1995) Elevation of auditory thresholds by spontaneous cochlear oscillations. Nature 375:585–587PubMedCrossRef Powers NL, Salvi RJ, Wang J, Spongr V, Qiu CX (1995) Elevation of auditory thresholds by spontaneous cochlear oscillations. Nature 375:585–587PubMedCrossRef
Zurück zum Zitat Quaranta N, Scaringi A, Nahum S, Quaranta A (2005) Effects of efferent acoustic reflex activation on psychoacoustical tuning curves in humans. Acta Otolaryngol 125:520–523PubMedCrossRef Quaranta N, Scaringi A, Nahum S, Quaranta A (2005) Effects of efferent acoustic reflex activation on psychoacoustical tuning curves in humans. Acta Otolaryngol 125:520–523PubMedCrossRef
Zurück zum Zitat Rajan R, Johnstone BM (1988) Electrical stimulation of cochlear efferents at the round window reduces auditory desensitization in guinea pigs. I. Dependence on electrical stimulation parameters. Hear Res 36:53–73PubMedCrossRef Rajan R, Johnstone BM (1988) Electrical stimulation of cochlear efferents at the round window reduces auditory desensitization in guinea pigs. I. Dependence on electrical stimulation parameters. Hear Res 36:53–73PubMedCrossRef
Zurück zum Zitat Robles L, Delano PH (2008) Efferent system. In: Dallos P, Oertel D (eds) The senses: a comprehensive reference. Academic Press, London, pp 413–445 Robles L, Delano PH (2008) Efferent system. In: Dallos P, Oertel D (eds) The senses: a comprehensive reference. Academic Press, London, pp 413–445
Zurück zum Zitat Scharf B, Magnan J, Chays A (1997) On the role of the olivocochlear bundle in hearing: 16 case studies. Hear Res 103:101–122PubMedCrossRef Scharf B, Magnan J, Chays A (1997) On the role of the olivocochlear bundle in hearing: 16 case studies. Hear Res 103:101–122PubMedCrossRef
Zurück zum Zitat Schloth E (1983) Relation between spectral composition of spontaneous otoacoustic emissions and fine-structure of threshold in quiet. Acustica 53:250–256 Schloth E (1983) Relation between spectral composition of spontaneous otoacoustic emissions and fine-structure of threshold in quiet. Acustica 53:250–256
Zurück zum Zitat Schloth E, Zwicker E (1983) Mechanical and acoustical influences on spontaneous oto-acoustic emissions. Hear Res 11:285–293PubMedCrossRef Schloth E, Zwicker E (1983) Mechanical and acoustical influences on spontaneous oto-acoustic emissions. Hear Res 11:285–293PubMedCrossRef
Zurück zum Zitat Shehata WE, Brownell WE, Dieler R (1991) Effects of salicylate on shape, electromotility and membrane characteristics of isolated outer hair cells from guinea pig cochlea. Acta Otolaryngol 111:707–718PubMedCrossRef Shehata WE, Brownell WE, Dieler R (1991) Effects of salicylate on shape, electromotility and membrane characteristics of isolated outer hair cells from guinea pig cochlea. Acta Otolaryngol 111:707–718PubMedCrossRef
Zurück zum Zitat Shera CA (2003) Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves. J Acoust Soc Am 114:244–262PubMedCrossRef Shera CA (2003) Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves. J Acoust Soc Am 114:244–262PubMedCrossRef
Zurück zum Zitat Siegel JH, Kim DO (1982) Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity. Hear Res 6:171–182PubMedCrossRef Siegel JH, Kim DO (1982) Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity. Hear Res 6:171–182PubMedCrossRef
Zurück zum Zitat Smith DW, Turner DA, Henson MM (2000) Psychophysical correlates of contralateral efferent suppression. I. The role of the medial olivocochlear system in “central masking” in nonhuman primates. J Acoust Soc Am 107:933–941PubMedCrossRef Smith DW, Turner DA, Henson MM (2000) Psychophysical correlates of contralateral efferent suppression. I. The role of the medial olivocochlear system in “central masking” in nonhuman primates. J Acoust Soc Am 107:933–941PubMedCrossRef
Zurück zum Zitat Smurzynski J, Probst R (1998) The influence of disappearing and reappearing spontaneous otoacoustic emissions on one subject’s threshold microstructure. Hear Res 115:197–205PubMedCrossRef Smurzynski J, Probst R (1998) The influence of disappearing and reappearing spontaneous otoacoustic emissions on one subject’s threshold microstructure. Hear Res 115:197–205PubMedCrossRef
Zurück zum Zitat Sun XM (2008) Distortion product otoacoustic emission fine structure is responsible for variability of distortion product otoacoustic emission contralateral suppression. J Acoust Soc Am 123:4310–4320PubMedCrossRef Sun XM (2008) Distortion product otoacoustic emission fine structure is responsible for variability of distortion product otoacoustic emission contralateral suppression. J Acoust Soc Am 123:4310–4320PubMedCrossRef
Zurück zum Zitat Talmadge CL, Tubis A, Long GR, Piskorski P (1998) Modeling otoacoustic emission and hearing threshold fine structures. J Acoust Soc Am 104:1517–1543PubMedCrossRef Talmadge CL, Tubis A, Long GR, Piskorski P (1998) Modeling otoacoustic emission and hearing threshold fine structures. J Acoust Soc Am 104:1517–1543PubMedCrossRef
Zurück zum Zitat Vinay MBCJ (2008) Effects of activation of the efferent system on psychophysical tuning curves as a function of signal frequency. Hear Res 240:93–101PubMedCrossRef Vinay MBCJ (2008) Effects of activation of the efferent system on psychophysical tuning curves as a function of signal frequency. Hear Res 240:93–101PubMedCrossRef
Zurück zum Zitat Ward WD (1961) Studies on the aural reflex. I. Contralateral remote masking as an indicator of reflex activity. J Acoust Soc Am 33:1034–1045CrossRef Ward WD (1961) Studies on the aural reflex. I. Contralateral remote masking as an indicator of reflex activity. J Acoust Soc Am 33:1034–1045CrossRef
Zurück zum Zitat Wegel RL, Lane CE (1924) The auditory masking of one pure tone by another and its probable relation to the dynamics of the inner ear. Phys Rev 23:266–285CrossRef Wegel RL, Lane CE (1924) The auditory masking of one pure tone by another and its probable relation to the dynamics of the inner ear. Phys Rev 23:266–285CrossRef
Zurück zum Zitat Wiederhold ML, Kiang NY (1970) Effects of electric stimulation of the crossed olivocochlear bundle on single auditory-nerve fibers in the cat. J Acoust Soc Am 48:950–965PubMedCrossRef Wiederhold ML, Kiang NY (1970) Effects of electric stimulation of the crossed olivocochlear bundle on single auditory-nerve fibers in the cat. J Acoust Soc Am 48:950–965PubMedCrossRef
Zurück zum Zitat Wilson JP (1980) Evidence for a cochlear origin for acoustic re-emissions, threshold fine-structure and tonal tinnitus. Hear Res 2:233–252PubMedCrossRef Wilson JP (1980) Evidence for a cochlear origin for acoustic re-emissions, threshold fine-structure and tonal tinnitus. Hear Res 2:233–252PubMedCrossRef
Zurück zum Zitat Wilson JP, Sutton GJ (1981) Acoustic correlates of tonal tinnitus. In: Evered D, Lawrenson G (eds) Tinnitus - Ciba Foundation Symposium 85. Pitman, London, pp 82–107 Wilson JP, Sutton GJ (1981) Acoustic correlates of tonal tinnitus. In: Evered D, Lawrenson G (eds) Tinnitus - Ciba Foundation Symposium 85. Pitman, London, pp 82–107
Zurück zum Zitat Winslow RL, Sachs MB (1987) Effect of electrical stimulation of the crossed olivocochlear bundle on auditory nerve response to tones in noise. J Neurophysiol 57:1002–1021PubMed Winslow RL, Sachs MB (1987) Effect of electrical stimulation of the crossed olivocochlear bundle on auditory nerve response to tones in noise. J Neurophysiol 57:1002–1021PubMed
Zurück zum Zitat Youngblood J, Martin FN (1981) On the relationship of stapedial contraction to central masking. J Aud Res 21:45–49PubMed Youngblood J, Martin FN (1981) On the relationship of stapedial contraction to central masking. J Aud Res 21:45–49PubMed
Zurück zum Zitat Zurek PM (1981) Spontaneous narrowband acoustic signals emitted by human ears. J Acoust Soc Am 69:514–523PubMedCrossRef Zurek PM (1981) Spontaneous narrowband acoustic signals emitted by human ears. J Acoust Soc Am 69:514–523PubMedCrossRef
Zurück zum Zitat Zwicker E (1986) Spontaneous oto-acoustic emissions, threshold in quiet, and just noticeable amplitude modulation at low levels. In: Moore BCJ, Patterson RD (eds) Auditory frequency selectivity. Plenum, New York, pp 49–59CrossRef Zwicker E (1986) Spontaneous oto-acoustic emissions, threshold in quiet, and just noticeable amplitude modulation at low levels. In: Moore BCJ, Patterson RD (eds) Auditory frequency selectivity. Plenum, New York, pp 49–59CrossRef
Zurück zum Zitat Zwicker E, Schloth E (1984) Interrelation of different oto-acoustic emissions. J Acoust Soc Am 75:1148–1154PubMedCrossRef Zwicker E, Schloth E (1984) Interrelation of different oto-acoustic emissions. J Acoust Soc Am 75:1148–1154PubMedCrossRef
Zurück zum Zitat Zwislocki J (1953) Acoustic attenuation between the ears. J Acoust Soc Am 25:752–759CrossRef Zwislocki J (1953) Acoustic attenuation between the ears. J Acoust Soc Am 25:752–759CrossRef
Zurück zum Zitat Zwislocki JJ (1972) A theory of central auditory masking and its partial validation. J Acoust Soc Am 52:644–659CrossRef Zwislocki JJ (1972) A theory of central auditory masking and its partial validation. J Acoust Soc Am 52:644–659CrossRef
Zurück zum Zitat Zwislocki JJ, Damianopoulos EN, Buining E, Glantz J (1967) Central masking: some steady-state and transient effects. Percept Psychophys 2:59–64CrossRef Zwislocki JJ, Damianopoulos EN, Buining E, Glantz J (1967) Central masking: some steady-state and transient effects. Percept Psychophys 2:59–64CrossRef
Metadaten
Titel
Effects of Contralateral Acoustic Stimulation on Spontaneous Otoacoustic Emissions and Hearing Threshold Fine Structure
verfasst von
James B. Dewey
Jungmee Lee
Sumitrajit Dhar
Publikationsdatum
01.12.2014
Verlag
Springer US
Erschienen in
Journal of the Association for Research in Otolaryngology / Ausgabe 6/2014
Print ISSN: 1525-3961
Elektronische ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-014-0485-5

Weitere Artikel der Ausgabe 6/2014

Journal of the Association for Research in Otolaryngology 6/2014 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.