Skip to main content
Erschienen in: Cardiovascular Diabetology 1/2012

Open Access 01.12.2012 | Review

Effects of diabetes on myocardial infarct size and cardioprotection by preconditioning and postconditioning

verfasst von: Takayuki Miki, Takahito Itoh, Daisuke Sunaga, Tetsuji Miura

Erschienen in: Cardiovascular Diabetology | Ausgabe 1/2012

Abstract

In spite of the current optimal therapy, the mortality of patients with ischemic heart disease (IHD) remains high, particularly in cases with diabetes mellitus (DM) as a co-morbidity. Myocardial infarct size is a major determinant of prognosis in IHD patients, and development of a novel strategy to limit infarction is of great clinical importance. Ischemic preconditioning (PC), postconditioning (PostC) and their mimetic agents have been shown to reduce infarct size in experiments using healthy animals. However, a variety of pharmacological agents have failed to demonstrate infarct size limitation in clinical trials. One of the possible reasons for the discrepancy between the results of animal experiments and clinical trials is that co-morbidities, including DM, modified myocardial responses to ischemia/reperfusion and to cardioprotective agents. Here we summarize observations of the effects of DM on myocardial infarct size and ischemic PC and PostC and discuss perspectives for protection of DM hearts.
Hinweise

Competing interests

TaM has received research funding from Daiichi-Sankyo, Japan, Eisai, Japan, and Pfizer, Japan. TI and DS have no conflicts of interest or financial ties to disclose. TeM has received research funding from Takeda Pharmaceuticals, Japan, Novartis, Japan, Chugai Pharmaceutical, Japan, and Astellas Pharma, Japan.

Authors' contributions

TaM collected and arranged the data in sequence, drafted and correspond the manuscript. TI and DS contributed to collection and analysis of the data. TeM contributed to analysis and interpretation of data and revision. All authors have read and approved the final manuscript.
Abkürzungen
AMI
Acute myocardial infarction
CK
Creatine kinase
DADLE
[D-Ala2,D-Leu5]-enkephalin acetate
DM
Diabetes mellitus
DPP-4
Dipeptidyl peptidase-4
ERK
Extracellular signal-regulated kinase
GLP-1
Glucagon-like peptide-1
GSK-3β
Glycogen synthase kinase-3β
IHD
Ischemic heart disease
KATP channel
ATP-sensitive K+ channel
MPTP
Mitochondrial permeability transition pore
MRI
Magnetic resonance imaging
PC
Preconditioning
PCI
Percutaneous coronary interventions
PostC
Postconditioning
PI3K
Phosphoinositide-3 kinase
PKC
Protein kinase C
STZ
Streptozotocin.

Introduction

Cardiovascular diseases are the leading cause of death, accounting for approximately 30% of all deaths worldwide [1]. Among the various cardiovascular diseases, acute myocardial infarction (AMI) has a high rate of mortality, and infarct size is a primary determinant of prognosis in these patients. The only established and clinically approved method to limit infarct size is restoration of coronary blood flow by percutaneous coronary interventions (PCI), thrombolytic agents or coronary bypass surgery. However, our recent review of clinical infarct size data indicated that infarct size after current reperfusion therapy was larger than 75% of the area at risk and larger than 20% of the left ventricle in one fourth of AMI patients [2]. Lack of substantial myocardial salvage in those patients cannot be simply attributable to long symptom-to-reperfusion time, and involvement of reperfusion injury [3] is also possible. Nevertheless, significant percentages of AMI patients suffer from insufficient cardiac function and have a poor prognosis even after successful restoration of coronary flow [2]. Therefore, the establishment of a novel strategy to limit the extent of infarction during ischemia/reperfusion is of great clinical importance.
As a cardioprotective strategy, ischemic preconditioning (PC) has received much attention for its potent infarct size-limiting effect since its first report by Murry et al. in 1986 [4]. Zhao et al. found that “conditioning” with repetitive ischemia/reperfusion at the time of reperfusion also affords protection and named the phenomenon ischemic postconditioning (PostC) [5]. Laboratory investigations to date have clarified outlines of the intracellular mechanisms of PC and PostC [69]. In addition, several agents targeting signaling relevant to PC and PostC have been shown to act as PostC mimetics [68]. However, clinical benefits of PC, PostC and their mimetics were not always demonstrated in clinical trials [8, 10]. The discrepancy between results of animal studies and clinical trials may be explained by notable differences between animal models of AMI and AMI in humans [2, 10]. First, there are species differences in regulatory mechanisms of cardiomyocytes such as contribution of sarcolemmal Ca2+ ATPase to overall Ca2+ handling. Second, the timing of administration of the test agent was not exactly the same in the positive animal studies and negative clinical trials. Third, most of the patients with AMI were pretreated with pharmacological agents for their co-morbidities at the onset of AMI, whereas animals were untreated, except for anesthetic agents, before AMI in most of the previous studies. Pharmacological agents used for treatment of hypertension, dyslipidemia and/or diabetes mellitus (DM) potentially modify intracellular signaling relevant to cytoprotection and thus myocardial responses to PC, Post and PC mimetics. Fourth, AMI patients recruited to clinical studies were generally old and had concomitant diseases, whereas relatively young and healthy animals were used in most of the previous animal studies. Aging and co-morbidities have been shown to modify or even abrogate the infarct size-limiting effects of interventions in animal experiments [6, 11] and thus possibly underlie the negative results in clinical trials.
Of morbidities that potentially compromise the protective mechanisms of the heart, DM appears primarily important to study today. The number of patients with DM has been increasing worldwide in the past two decades, and these patients are predisposed to serious cardiovascular morbidity and mortality [12]. Despite recent progress in coronary intervention strategies, DM is associated with higher mortality after AMI due to more extensive atherosclerotic lesions and also hypertrophied and dysfunctional left ventricle [1315]. Interestingly, Lamblin et al. recently showed that rates of cardiovascular death and heart failure after the first AMI were higher in DM patients than in non-DM patients, though ventricular function and remodeling were comparable in the two groups [16]. The increased mortality after AMI in DM patients is unlikely to be prevented simply by improvement of glycemic control, since intensive glycemic controls failed to reduce cardiovascular events as well as mortality rate in DM patients in recent large-scale clinical trials [1719]. Hence, we need novel strategies for protecting DM patients with coronary artery diseases from excessive myocardial ischemia-reperfusion injury. To gain an insight into a novel strategy, we thoroughly review reported effects of DM on myocardial infarct size and on protective mechanisms against infarction and discuss future perspectives in this article. Our discussion on pathophysiology and clinical approach to diabetic cardiomyopathy was recently published elsewhere [20].

Changes in myocardial susceptibility to infarction by DM

Clinical studies showed that DM increased the susceptibility of the myocardium to ischemia/reperfusion injury [21, 22]. However, results of infarct size studies in diabetic animal models were contradictory (Tables 1 and 2), and the reason for the inconsistency remains unclear.
Table 1
Effect of diabetes mellitus on infarct size
Species
DM
 
Index ischemia
 
First author
Journal
 
type
duration
min
type
  
Infarct size enlargement
Dog
2
75 d
120
regional, vivo
Forrat
Cardiovasc Res 1993
Rat (SD)
1
8 d
25
regional, vivo
Marfella
Diabetologia 2002
Rat (SD)
1
8 d
25
regional, vivo
Di Filippo
Diabetes 2005
Rat (SD)
1
30 d
30
global, vitro
Thirunavukkarasu
Free Radic Biol Med 2007
Rat (Wistar)
1
2 w
30
regional, vivo
Xiao
J Pharmacol Exp Ther 2004
Rat (Zucker obese)
2
 
30
regional, vivo
Jordan
J Pharmacol Exp Ther 2003
Rat (Zucker obese)
2
(10-12 w old)
30
regional, vivo
Katakam
Am J Physiol 2007
Rat (Zucker diabetic fatty)
2
(10-12 w old)
30
regional, vivo
Yue
Diabetes 2005
Rat (Zucker diabetic fatty)
2
(12-16 w old)
30
regional, vivo
La Bonte
Am J Physiol 2008
Rat (OLETF)
2
(25-30 w old)
20
regional, vivo
Miki
Diabetes 2009
Rat (OLETF)
2
(25-30 w old)
20
regional, vivo
Hotta
Circ Res 2010
Mice
1
8 d
25
regional, vivo
Marfella
Diabetes 2004
Mice
1
4 w
60
regional, vivo
Liu
Diabetes 2005
Mice (ob/ob)
2
(8-10 w old)
30
regional, vivo
Bouhidel
Am J Physiol 2008
Mice (ob/ob)
2
(8-10 w old)
30
regional, vivo
Calvert
Diabetes 2008
Mice (ob/ob)
2
(10-12 w old)
30
regional, vivo
Zhu
J Cell Mol Med 2011
Mice (KK-Ay)
2
(6 w old)
40
regional, vivo
Honda
J Mol Cell Cardiol 2008
Infarct size reduction
Rabbit (NZ)
1
8 w
30
regional, vivo
Hadour
J Mol Cell Cardiol 1998
Rat (SD)
1
2 w
30
regional, vivo
Ma
N-S Arch Pharmacol 2006
Rat (Wistar)
2
11-12 m
30, 45
regional, vivo
Liu
Circulation 1993
Rat (Wistar)
1
1 w
30
regional, vivo
Ravingerová
Mol Cell Biochem 2003
Rat (Wistar)
1
4 w
30
regional, vivo
Xu
Exp Mol Pathol 2004
Rat (Wistar)
1
6 w
30
regional, vivo
Galagudza
Neurosci Behav Physiol 2007
Rat (Wistar)
2
10-12 w
30
global, vitro
Kravchuk
Exp Diabetes Res 2011
Rat (Wistar-Kyoto)
2
9 m
40
regional, vitro
Mozaffari
Hypertension 2003
Rat (Zucker diabetic fatty)
2
(16 w old)
50
regional, vitro
Kristiansen
Diabetologia 2004
Rat (Goto-Kakizaki)
2
(16 w old)
50
regional, vitro
Kristiansen
Diabetologia 2004
Rat (Goto-Kakizaki)
2
(16 w old)
45
regional, vitro
Kristiansen
Diabetologia 2011
No change in infarct size
Dog
1
3 w
60
regional, vivo
Kersten
Am J Physiol 2000
Dog
1
3 w
60
regional, vivo
Kersten
Am J Physiol 2001
Rabbit (NZ)
1
10-16 w
30
regional, vivo
Vogel
Circ Res 1988
Rabbit (NZ)
1
4-5 w
60
regional, vivo
Nieszner
Exp Clin Endocrinol Diabetes 2002
Rabbit (NZ white)
1
5-6 w
30
regional, vivo
Ebel
Pflügers Arch 2003
Rat (SD)
1
6 w
30
regional, vivo
Ma
N-S Arch Pharmacol 2006
Rat (SD)
1
2 w
30
regional, vivo
Gross
Diabetes 2007
Rat (SD)
1
4 w, 8 w
30
global, vitro
Shi-Ting
Biomed Pharmacother 2010
Rat (SD)
1
4-5 w
30
regional, vivo
Drenger
Anesthesiology 2011
Rat (SD)
1
4 w
30
global, vitro
Okazaki
J Mol Cell Cardiol 2011
Rat (Wistar)
1
8 w
30
regional, vitro
Joyeux
Cardiovasc Res 1999
Rat (Wistar)
1
8 w
30
regional, vivo
Ravingerová
Mol Cell Biochem 2003
Rat (Wistar)
1
20 w
30
regional, vivo
Xu
Exp Mol Pathol 2004
Rat (Wistar)
1
4 w
25
global, vitro
Ghaboura
Basic Res Cardiol 2011
Rat (Goto-Kakizaki)
2
 
35
regional, vitro
Tsang
Diabetes 2005
Rat (Goto-Kakizaki)
2
 
35
regional, vitro
Bhamra
Basic Res Cardiol 2008
Rat (Goto-Kakizaki)
2
(12 w old)
35
regional, vivo
Bulhak
Am J Physiol 2009
Rat (Goto-Kakizaki)
2
 
30
regional, vivo
Matsumoto
Cardiovasc Drug Ther 2009
Mice
1
2 w
30
global, vitro
Przyklenk
Antioxid Redox Signal 2011
Mice (ob/ob)
2
(12-14 w old)
30
global, vitro
Przyklenk
Antioxid Redox Signal 2011
SD, Sprague–Dawley; NZ, New Zealand; OLETF, Otsuka Long-Evans-Tokushima fatty; d, days; w, weeks.
Table 2
Effect of hyperglycemia on infarct size
Species
Duration of hyperglycemia
Blood sugar (mg/dl)
Index ischemia
 
First author
Journal
   
min
type
  
Hyperglycemia
Infarct size enlargement
Dog
before I
585 vs. 71
60
regional, vivo
Kersten
Am J Physiol 1998
Rabbit (NZ white)
throughout
594 vs. 99
30
regional, vitro
Wong
J Diabetes Complications 2011
Rat (SD)
during I
324 vs 85
30
regional, vivo
Su
Am J Physiol 2007
No change in infarct size
Dog
before I
310 vs. 71
60
regional, vivo
Kersten
Am J Physiol 1998
Dog
before I
310 vs. 75
60
regional, vivo
Kersten
Am J Physiol 2001
Dog
before I
316, 579 vs. 78
60
regional, vivo
Kehl
Anesthesiology 2002
Dog
before I
307 vs 83
60
regional, vivo
Gu
Anesthesiology 2008
Rabbit (NZ white)
before and during I
660 vs. 185
30
regional, vivo
Ebel
Pflugers Arch 2003
Rabbit (NZ white)
before I
257 vs 124
30
regional, vivo
Amour
Anesthesiology 2010
Rabbit (NZ white)
before and during I
338 vs 142
40
regional, vivo
Raphael
J Cardiovasc Pharmacol 2010
Rat (SD)
before and during I
360 vs 112
30
regional, vivo
Ichinomiya
Cardiovasc Diabetol 2012
Rat (Wistar)
before and during I
>400 vs. 121
25
regional, vivo
Weber
Eur J Pharmacol 2008
Rat (Wistar)
before and during I
459 vs 128
25
regional, vivo
Huhn
Br J Anaesth 2008
Rat (Wistar)
before and during I
355 vs 89
30
regional, vivo
Matsumoto
Cardiovasc Diabetol 2012
Metabolic syndrome
Infarct size enlargement
Rat (Wistar)
Western diet for 16 w
95 vs 87
40
regional, vitro
du Toit
Am J Physiol 2008
No change in infarct size
Rat (SD)
high fat diet for 13 w
160 vs 144
45
regional, vivo
Thim
Clin Sci (Lond) 2006
Rat (WOKW)
(28 w old)
105 vs. ?
30
regional, vivo
Wagner
J Cardiovasc Pharmacol 2008
NZ New Zealand, SD Sprague–Dawley, WOKW Wistar-Ottawa-Karlsburg W, before I before ischemia, during I during ischemia, w weeks.
Multiple mechanisms are involved in cardiomyocyte necrosis induced by ischemia/reperfusion. Depletion of intracellular ATP, intracellular overloading with Na+ and Ca2+, and increased fragility of the cell membrane are major changes during ischemia relevant to cell necrosis. Accumulating evidence supports the notion that the mitochondrial permeability transition pore (mPTP) is primed during ischemia and is opened by Ca2+ overload and burst of reactive oxygen species at the time of reperfusion, leading to irreversible loss of mitochondrial functions and cell necrosis [23]. Theoretically, modification of ischemia-induced changes or reperfusion-induced opening of the mPTP should underlie the change in myocardial susceptibility to infarction in DM hearts. However, such modification has not been understood well.

Experimental studies

Infarct size in animal models of DM was larger or smaller than or similar to, depending on reports, that in non-diabetic controls (Table 1). As shown in Table 1, there were numerous differences in experimental preparations and protocols, and a single factor cannot entirely explain the discrepancy in the effects of DM on infarct size. Duration of the diabetic state and plasma level of insulin (i.e., type 1 DM vs. type 2 DM) appear to influence myocardial tolerance against infarction. In a study by Ravingerová et al. [24], infarct size after 30-min ischemia was smaller in diabetic rat hearts at 1 week after streptozotocin (STZ) injection than in controls, but this infarct size limitation was not detected 8 weeks later. Two other studies have also shown that resistance of diabetic hearts to ischemia/reperfusion injury was detectable at the early phase of DM and disappeared later [25, 26]. However, enlargement of infarct size was observed as early as 8 days after STZ injection [2729], indicating that duration of DM is not the only factor responsible for inconsistent effects of DM on infarct size.
Difference in metabolic profiles associated with DM (i.e., presence or absence of hyperinsulinemia and types of dyslipidemia) may also be responsible for different changes in infarct size in DM animals. With a few exceptions [30, 31], DM models with obesity and hyperinsulinemia showed increased myocardial susceptibility to ischemia/reperfusion-induced necrosis [3241]. In contrast, high glucose level induced simply by glucose or dextrose infusion did not affect infarct size in the majority of studies, including two recent studies [42, 43] (Table 2).

Clinical studies

Increased myocardial susceptibility to infarction in DM patients was indicated by two clinical studies: infarct size determined by SPECT imaging after reperfusion therapy was larger by 30 ~ 70% in DM patients than in non-DM patients [21, 22]. The change in myocardial tolerance to infarction is consistent with worse short- and long-term prognosis after AMI in DM patients [44, 45]. Of particular relevance, Haffner et al. [46] showed that cardiovascular event risk in DM patients without prior myocardial infarction was comparable to the risk in non-diabetic patients with prior myocardial infarction. However, the untoward effects of DM on prognosis after AMI cannot be explained solely by increased myocardial vulnerability to ischemia/reperfusion injury, since the risk of heart failure and death was significantly higher in DM patients than in non-DM patients with comparable infarct sizes and left ventricular ejection fractions [47]. Myopathic changes (“diabetic cardiomyopathy”), impaired collateral recruitment, microcirculatory abnormalities, and underuse of evidence-based therapies are possible explanations, in addition to increased susceptibility to infarction, for detrimental prognosis after AMI in DM patients.

Defects in intracellular protective signaling in DM hearts

DM is one of the co-morbidities that potentially modify myocardial response to protective interventions, including PC and PostC. A number of studies have been carried out to determine the efficacy of ischemic PC and PostC for protecting the myocardium in animal models of DM (Tables 3 and 4) and diabetic patients (Table 5). The majority of those studies showed that DM interferes with protective mechanisms of cardioprotective interventions. Myocardial protection by PC and PostC is achieved by activation of multiple protective signaling pathways that appear to converge to inhibit mPTP opening upon reperfusion via phosphorylation of glycogen synthase kinase-3β (GSK-3β) at Ser9 [6, 8, 9], and DM-induced defects in the protective signaling may be different depending on the model and/or phase of DM.
Table 3
Effect of diabetes mellitus on cardioprotection by pre- and post-conditioning
Species
DM
PC stimuli
First author
Journal
 
type
duration
   
Preserved protection
PC
Rat (SD)
1
4 w
3x 5I5R
Shi-Ting
Biomed Pharmacother 2010
Rat (Wistar)
2
11-12 m
3x 5I5R
Liu
Circulation 1993
Rat (Wistar)
1
6 w
LiCl 20 mM, IND 1 μM, SB 3 μM
Yadav
Mol Cell Biochem 2010
Rat (Zucker diabetic fatty)
2
(10-12 w old)
Rosiglitazone 3 mg/kg for 1 week
Yue
Diabetes 2005
Rat (OLETF)
2
(25-30 w old)
SB 1.2 mg/kg
Miki
Diabetes 2009
Rat (Goto-Kakizaki)
2
 
3x 5I10R
Tsang
Diabetes 2005
Rat (Goto-Kakizaki)
2
(12 w old)
WY 1 mg/kg
Bulhak
Am J Physiol 2009
Rat (Goto-Kakizaki)
2
 
olprinone 10 μg/kg
Matsumoto
Cardiovasc Drug Ther 2009
Mice (ob/ob)
2
(8-10 w old)
Metformin 125 μg/kg
Calvert
Diabetes 2008
Mice (KK-Ay)
2
(6 w old)
Pioglitazone 25 mg/kg for 2 week
Honda
J Mol Cell Cardiol 2008
PostC
     
Rat (SD)
1
2 w
SB 0.6 mg/kg
Gross
Diabetes 2007
Rat (Wistar)
1
4 w
SB 3 μM
Ghaboura
Basic Res Cardiol 2011
Rat (OLETF)
2
(25-30 w old)
BIO 0.08 mg/kg
Hotta
Circ Res 2010
Rat (Goto-Kakizaki)
2
 
Metformin 50 μM
Bhamra
Basic Res Cardiol 2008
Mice (ob/ob)
2
(8-10 w old)
Metformin 125 μg/kg
Calvert
Diabetes 2008
Impaired protection
PC
Dog
1
3 w
4x 5I5R
Kersten
Am J Physiol 2000
Dog
1
3 w
Diazoxide 2.5 mg/kg
Kersten
Am J Physiol 2001
Rabbit (NZ)
1
4-5 w
3x 2I2R
Nieszner
Exp Clin Endocrinol Diabetes 2002
Rat (SD)
1
8 w
3x 5I5R
Wang
Biomedicine Aging Pathol 2011
Rat (Wistar)
1
6 w
5I5R
Galagudza
Neurosci Behav Physiol 2007
Rat (Wistar)
1
6 w
4x 5I5R
Yadav
Mol Cell Biochem 2010
Rat (Wistar)
2
10-12 w
Metformin 200 mg/kg for 3 days
Kravchuk
Exp Diabetes Res 2011
Rat (Zucker obese)
2
(10-12 w old)
5I5R, Diazoxide 10 mg/kg
Katakam
Am J Physiol 2007
Rat (Zucker diabetic fatty)
2
(16 w old)
4x 2I3R
Kristiansen
Diabetologia 2004
Rat (OLETF)
2
(25-30 w old)
EPO 5000 U/kg
Miki
Diabetes 2009
Rat (OLETF)
2
(25-30 w old)
EPO 5000 U/kg, DADLE 1 mg/kg
Hotta
Circ Res 2010
Rat (Goto-Kakizaki)
2
(16 w old)
4x 2I3R
Kristiansen
Diabetologia 2004
Rat (Goto-Kakizaki)
2
 
5I10R, 2x 5I10R
Tsang
Diabetes 2005
Rat (Goto-Kakizaki)
2
(16-18 w old)
EPO 5000 U/kg
Miki
Diabetes 2009
Rat (Goto-Kakizaki)
2
 
isoflurane 1.0%
Matsumoto
Cardiovasc Drug Ther 2009
PostC
Rat (SD)
1
2 w
Morphine 0.3 mg/kg
Gross
Diabetes 2007
Rat (SD)
1
4-5 w
3x 20sR20sI, sevoflurane 1.0 MAC
Drenger
Anesthesiology 2011
Rat (Wistar)
1
4 w
Darbopoetin alpha 5 μg/kg
Ghaboura
Basic Res Cardiol 2011
Mice
1
2 w
3x 10sR10sI, 6x 10sR10sI
Przyklenk
Antioxid Redox Signal 2011
Mice (ob/ob)
2
(8-10 w old)
6x 10sR10sI
Bouhidel
Am J Physiol 2008
Mice (ob/ob)
2
(12-14 w old)
3x 10sR10sI, 6x 10sR10sI
Przyklenk
Antioxid Redox Signal 2011
Mice (ob/ob)
2
(10-12 w old)
6x 10sR10sI
Zhu
J Cell Mol Med 2011
Mice (KK-Ay)
2
(6 w old)
Pioglitazone 25 mg/kg
Honda
J Mol Cell Cardiol 2008
Late PC
Rabbit (NZ white)
1
5-6 w
5I24hR
Ebel
Pflugers Arch 2003
IND indirubin-3 monooxime (a GSK-3β inhibitor), SB SB216763 (a GSK-3β inhibitor), WY 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthioacetic acid (a PPAR-α agonist), BIO 6-bromo-indirubin-3'-oxime (a GSK3β inhibitor), EPO erythropoietin, DADLE [D-Ala2, D-Leu5]-enkephalin acetate (a δ-opioid receptor agonist), 5I5R 5-min ischemia/5-min reperfusion, 5I24hR 5-min ischemia/24-hour reperfusion, 10sR10sI 10-second reperfusion/10-second ischemia, MAC minimal alveolar concentration, w weeks, m months.
Table 4
Effect of hyperglycemia on cardioprotection by pre- and post-conditioning
Species
Duration of Blood sugar
PC stimuli
First author
Journal
 
hyperglycemia
(mg/dl)
   
Hyperglycemia
Preserved protection
PC
Dog
before I
397
Diazoxide 5.0 mg/kg
Kersten
Am J Physiol 2001
Dog
before I
291
Isoflurane 1.0 MAC
Kehl
Anesthesiology 2002
Rat (SD)
before and during I
360
Fasudil 0.5 mg/kg
Ichinomiya
Cardiovasc Diabetol 2012
Rat (Wistar)
before and during I
446
Sevoflurane 1.0 MAC + CysA 5 mg/kg
Huhn
Br J Anaesth 2008
Rat (Wistar)
before and during I
343, 447
MIL 30 μg/kg, LEVO 100 μg/kg
Matsumoto
Cardiovasc Diabetol 2012
Impaired protection
PC
     
Dog
before I
296
4x 5I5R
Kersten
Am J Physiol 1998
Dog
before I
329
Diazoxide 2.5 mg/kg
Kersten
Am J Physiol 2001
Dog
before I
581, 558
Isoflurane 0.5, 1.0 MAC
Kehl
Anesthesiology 2002
Dog
before I
293
4x 5I5R
Gu
Anesthesiology 2008
Rabbit (NZ white)
before I
281
Isoflurane 1.0 MAC
Amour
Anesthesiology 2010
Rat (Wistar)
before I or during I
>400
Desflurane 1.0 MAC
Weber
Eur J Pharmacol 2008
PostC
     
Rabbit (NZ white)
before and during I
353
Isoflurane 1.0 MAC
Raphael
J Cardiovasc Pharmacol 2010
Rat (SD)
before and during I
360
Diazoxide 10 mg/kg, Fasudil 0.15 mg/kg
Ichinomiya
Cardiovasc Diabetol 2012
Rat (Wistar)
before and during I
445, 441
Sevoflurane 1.0 MAC, CysA 5 mg/kg
Huhn
Br J Anaesth 2008
Metabolic syndrome
Impaired protection
PostC
Rat (WOKW)
(28 w old)
105
3x 30sI30sR
Wagner
J Cardiovasc Pharmacol 2008
NZ New Zealand, SD Sprague–Dawley, WOKW Wistar-Ottawa-Karlsburg W, before I before ischemia, during I during ischemia, MAC minimal alveolar concentration, CysA cyclosporine A, MIL milrinone, LEVO levosimendan, 5I5R 5-min ischemia/5-min reperfusion, 30sR30sI 30-second reperfusion/30-second ischemia.
Table 5
Effect of ischemic postconditioning in patients with acute myocardial infarction
First author
% of DM
Age
Protocol
Results
    
ST resolution
LV function
Enzyme release
Infarct size
Ischemic PostC
Staat
20 vs. 13
58 vs. 56
4x 60sR/I
Improved
N/A
Reduced (peak, AUC)
N/A
Laskey
N/A
58 vs. 58
2x 90sR/I
Improved
N/A
Nochange (peak)
N/A
Ma
38 vs. 45
64 vs. 64
3x 30sR/I
N/A
Improved WMSI
Reduced (peak)
N/A
Yang
26 vs. 28
59 vs. 63
3x 30sR/I
No change
No change
Reduced (AUC)
Reduced (SPECT, 1w)
Thibault
12 vs. 10
56 vs. 56
4x 60sR/I
N/A
Improved EF, WMSI
Reduced (AUC)
Reduced (SPECT, 6m)
Laskey
38 vs. 42
60 vs. 58
2x 90sR/I
Improved
No change
Reduced (peak)
N/A
Xue
21 vs. 29
54 vs. 62
4x 60sR/I
Improved
Improved EF, WMSI
Reduced (peak, AUC)
Reduced (SPECT, 1w)
Lønborg
7 vs. 7
61 vs. 62
4x 30sR/I
No change
No change
N/A
Reduced (CMR, 3m)
Sörensson
25 vs. 17
63 vs. 62
4x 60sR/I
N/A
No change *1
No change (AUC)
No change (CMR, 1w) *1
Freixa
23 vs. 17
59 vs. 60
4x 60sR/I
N/A
No change
No change (peak)
No change (CMR, 1w & 6m)
Tarantini
18 vs. 3
60 vs. 60
4x 60sR/I
No change
No change
No change (AUC)
No change (CMR, 1m)
DM diabetes mellitus, MBG myocardial blush grade, CF coronary flow, WMSI wall motion score index, EF ejection fraction, AUC area under the curve, MACE major adverse cardiac events, SPECT single photon emission computed tomography, CMR cardiovascular magnetic resonance, w week, m month;
*1 Improved by postconditioning with large area at risk.

Experimental studies

With a few exceptions, previous studies demonstrated that cardioprotection achieved by ischemic PC or PostC is impaired in DM: the infarct size-limiting effect was lost or required extra cycles of ischemia/reperfusion in experimental diabetes (Table 3). Tsang et al. [48] reported that one, two and three cycles of ischemic PC significantly reduced infarct size in normal rats; however, three cycles of ischemic PC were required to limit infarct size in diabetic Goto-Kakizaki rats. Their findings suggested that the threshold for PC protection is increased in the diabetic myocardium. Liu et al. [49] were the first to examine the effects of DM on PC and they reported preservation of PC protection in STZ-induced DM. However, since they used a PC protocol with multiple cycles of ischemia/reperfusion only, the change in the threshold for inducing PC protection might have been missed in their study. In fact, impairment of PC by DM has been observed in multiple species (rats, rabbits and dogs) and different models of DM (STZ-induced type 1 DM and genetic models of type 2 DM) [30, 37, 5054]. Mimetics of ischemic PC and PostC (diazoxide, erythropoietin, [D-Ala2, D-Leu5-enkephalin acetate [DADLE] and isoflurane) were also ineffective for limitation of infarct size in DM hearts [33, 34, 37, 5559], confirming that DM impairs intracellular signaling mechanisms relevant to myocardial protection.
Several steps in cytoprotective signaling have been found to be disrupted by DM in the heart. Blocked or attenuated signaling via phosphoinsitide-3 kinase (PI3K)-Akt, extracellular signal-regulated kinase (ERK) and/or signal transducer and activator of transcription-3 (STAT3) pathways was detected in association with loss or reduced efficiency of PC in protection against infarction [31, 33, 34, 36, 48, 5759]. Our recent studies have shown that phosphorylation of Jak2, being upstream of PI3K-Akt signaling, is inhibited by enhanced calcineurin activity and that phosphorylation of GSK-3β by ERK is lost by an endoplasmic reticulum stress-dependent mechanism in OLETF, a rat model of obese type 2 DM [33, 34]. Furthermore, protein level of active GSK-3β, a pro-necrotic and pro-apoptotic kinase, was increased in mitochondria, leading to reduction in the threshold for mPTP opening in response to Ca2+ overload [34]. On the other hand, a protective mechanism downstream of GSK-3β phosphorylation appears to be intact in diabetic hearts, since direct pharmacological inhibitors of GSK-3β limited infarct size in diabetic hearts as in non-diabetic animals [33, 34, 54, 57, 58].
An important and clinically relevant issue is whether hyperglycemia per se is responsible for disruption of protective signaling in PC and PostC. Acute hyperglycemia induced by dextrose infusion attenuated infarct size limitation by ischemic PC, a mitochondrial ATP-sensitive K+ channel (KATP channel) opener and anesthetic agents (Table 4). These results indicate a primary role of hyperglycemia in impairment of protective signaling. Interestingly, Przyklenk et al. [31] reported that the cardioprotective effect of ischemic PostC was re-established in STZ-induced diabetic mice by pancreas islet cell transplantation. Transplantation of islet cells in diabetic mice normalized both blood glucose level and free fatty acid level and cellular signaling, such as ERK phosphorylation, activated by ischemic PostC. Since dyslipidemia was also shown to attenuate the infarct size-limiting effect of ischemic PC [60, 61], restoration of myocardial response to PostC in the diabetic heart by islet cell transplantation might be achieved by normalization of both plasma glucose level and lipid profile. Nevertheless, circumstantial evidence in animal experiments supports the notion that normalization of the metabolic profile restores protective signaling mechanisms in the DM heart.

Clinical studies on PC

PC protection in human hearts has been demonstrated by results of in vitro experiments using human ventricular myocytes [62] and atrial trabeculae [63] and by detailed analyses of myocardial responses in patients with naturally occurring ischemic syndromes [64, 65]. Since ischemic PC and PC-like phenomena in human hearts have been recently reviewed elsewhere [7, 65], we briefly summarize the results that are relevant to the effects of DM on ischemic PC. As for PC-like effects of preinfarct angina, different groups reported that pre-infarct angina was associated with smaller infarct size determined by creatine kinase (CK) release, improved left ventricular function and reduced mortality [64, 66]. Furthermore, in overall analysis of AMI patients, angina before AMI was associated with better long-term prognosis [67, 68]. However, in patients with DM, beneficial effects of pre-infarct angina were not detected [69]. Ishihara et al. [69] showed that CK release and recovery of cardiac function and in-hospital mortality after AMI were similar in DM patients with and without pre-infarct angina. DM-induced impairment of ischemic PC protection in human hearts has also been indicated by studies in which myocardial injury was assessed during angioplasty [70] and during a treadmill exercise test [71] by use of electrocardiography.
Direct evidence for diabetes-induced loss of ischemic PC protection in the human myocardium was provided by an in vitro experiment using atrial trabeculae obtained at open heart surgery. CK release and contractile dysfunction after hypoxia/reoxygenation in vitro was significantly suppressed by PC in trabeculae from non-diabetic patients but not in trabeculae from diabetic patients [63, 72].

Clinical studies on PostC

In contrast to PC, PostC or administration of its mimetic at the time of reperfusion is clinically feasible. In 2005, Staat et al. [73] translated for the first time the concept of ischemic PostC into the clinical setting. PostC with four cycles of 1-min inflation and 1-min deflation before full reperfusion successfully reduced CK release in a small and selected cohort of patients with AMI. Efficacy of ischemic PostC in patients with AMI was subsequently confirmed in a number of small-scale studies, using as endpoints cardiac biomarkers, ECG ST-segment resolution, and anatomic infarct size (Table 5). However, three recent studies failed to show protection by ischemic PostC in terms of CK and troponin release, LV function or infarct size that was determined by delayed enhancement magnetic resonance imaging (MRI) [7476]. The reasons for the discrepant results remain uncertain, but there are some possibilities: differences in the protocols of ischemic PostC, presence of co-morbidities and use of different pharmacological agents for the co-morbidities.
In the PostC protocol, duration from reperfusion to the first re-occlusion and number of re-occlusions have been shown to influence the infarct size-limiting effects of PostC in animal models of AMI [7779]. Retrospective analyses by Darling et al. [80] and Wang et al. [81] suggest that larger numbers of balloon inflations–deflations were associated with greater protection in patients with AMI. However, an appropriate algorithm of PostC stimulus to maximally protect the human myocardium has not been established. In addition, protection by PostC in animal models of AMI is attenuated with aging and presence of co-morbidities, such as DM, hypertension and hypercholesterolemia [6, 11]. Although characteristics of patients, such as age and prevalence of DM, seem to be similar in the human studies (Table 5), difference in durations of the co-morbidities might have been involved in the different outcomes. Nevertheless, the effect of DM on protection afforded by PostC has not been specifically examined in clinical studies.
The effects of pharmacological PostC (i.e., administration of pharmacological agents at reperfusion) on myocardial injury have been examined in a number of clinical trials. Results of the trials are a mixture of positive and negative results, and the reason for the discrepancy remains unknown [8292]. Adenosine infusion limited infarct size, but neither the death rate during 6-month follow-up nor the rate of re-hospitalization for heart failure were reduced by the adenosine treatment [82, 84]. A post hoc analysis suggested that only patients with early reperfusion therapy received clinical benefits of adenosine, such as a reduction in death or heart failure [85]. In the J-WIND trial [86], the effects of nicorandil and ANP on infarct size in different study arms were examined. Administration of nicorandil failed to significantly limit infarct size, though recombinant ANP infusion was shown to induce a small but significant reduction in infarct size. The results of studies on the effect of erythropoietin administered at reperfusion were discrepant [8792]. Taken together, there are a few promising agent for infarct size limitation in AMI patients, but none of their effects has been unequivocally demonstrated to be sufficient for improving prognosis.

Effects of anti-diabetic medications on AMI in diabetic patients

Possible adverse effects of sulfonylureas on cardiac events in DM patients have been debated for decades, and recent studies have indicated that cardiovascular risk was significantly higher in DM patients treated with sulfonylureas than in those who received metformin monotherapy [93, 94]. Sulphonylureas have been shown to inhibit protection of PC and PostC by blocking the ATP-sensitive K+ channel (KATP channel) in cardiomyocytes, raising concern that such actions of sulphonylureas may be detrimental at the time of AMI in DM patients. However, the effects on PC and PostC are actually not uniform across sulfonylureas. Glibenclamide, a non-specific blocker of the KATP channel, abrogated the infarct size-limiting effect of PC and PostC in non-diabetic animals [6, 7, 95]. In contrast, glimepiride, a second-generation sulfonylurea, did not block the protective effect of PC in the animal myocardium or human myocardium [96, 97], presumably because this agent has few cardiac actions [98]. In addition, glimepiride was shown to have a PostC-mimetic action by activation of PI3K/Akt in the rabbit myocardium [99]. However, the effects of sulfonylureas on PC in diabetes have been tested in only a few studies [51, 96], since PC and PostC failed to limit infarction in most of the DM models. Interestingly, Nieszner et al. [51] reported that infarct-sparing effect of PC in alloxan-treated diabetic rabbits was restored by pretreatment with a low dose, but not a high dose, of glibenclamide. The mechanism by which glibenclamide restored myocardial response to PC in the DM rabbit is unclear. However, beneficial effects of glycemic control, possibly on PI3K/Akt signaling, might have overwhelmed the effect of partial inhibition of cardiac KATP channels when an appropriate dose of glibenclamide was selected.
Metformin is an insulin-sensitizing agent that reduces hepatic glucose output and increases the uptake of glucose in peripheral tissues, including the skeletal muscle. In non-diabetic animals, metformin reduced infarct size by activation of AMP-activated protein kinase and/or Akt [95]. However, whether metformin is additive to ischemic PC or PostC has not been examined. Infarct size-limiting effect of metformin in diabetic animals was controversial: there are two positive reports [40, 100] and one negative report [101].
Thiazolidinediones (pioglitazone, rosiglitazone) administered before ischemia reduced infarct size in both normal and diabetic animals [39, 41, 95]. However, the impact of the cardioprotective effect of thiazolidinediones on clinical outcome is unclear, since the effects of pioglitazone and rosiglitazone on risk of cardiovascular events appear discrepant [102].
In the past few years, growing evidence has demonstrated cardiovascular effects of incretin-based therapy using glucagon-like peptide-1 (GLP-1) receptor agonists and inhibitors of dipeptidyl peptidase-4 (DPP-4) [95, 103105]. However, the effects of GLP-1 receptor agonists or DPP-4 inhibitors on ischemia/reperfusion injury have not been examined in diabetic animals except for a study by Huisamen et al. [106] They reported that enlargement of infarct size in obese pre-diabetic rats was reduced by treatment with a DPP-4 inhibitor for 4 weeks [106]. Further investigation is necessary for clarifying the effects of GLP-1 analogues and DPP-4 inhibitors on intracellular protective signaling and its modification by DM, though there are a number of on-going large-scale clinical trials to test the effects of incretin-based therapy on cardiovascular outcomes [107].

Conclusions and perspectives

DM potentially increases myocardial susceptibility to ischemia/reperfusion injury, though it cannot be explained by chronic hyperglycemia alone. DM also modifies myocardial responses to ischemic and pharmacological PC and PostC by disruption of intracellular signaling responsible for enhancement of resistance to cell death. These alterations in the diabetic heart appear to underlie the poor prognosis of DM patients after AMI. In addition, a defect of the protective mechanisms caused by aging, DM and possibly other co-morbidities is one of possible reasons why infarct size-limiting effects of agents in animal studies could not have been translated into AMI patients.
Analyses of modifications of cytoprotective signaling by DM, heart failure, dyslipidemia and hypertension generally showed that defects in the signaling by the pathological factors are upstream of a step of GSK-3β phosphorylation and mPTP regulation [6, 9]. Hence, a reasonable approach to protect the heart in DM patients is manipulation of protective mechanisms at the level of GSK-3β or mPTP. Blockade of mPTP opening by cyclosporine A at the time of reperfusion is one such approach, and its effect was first examined in 58 AMI patients [108]. Infarct size determined by MRI at 5 days after AMI was significantly limited by cyclosporine A and the beneficial effects persisted until 6 month after AMI [109]. The results are very promising and support the feasibility of a strategy for cardioprotection targeting the mPTP. However, how DM modifies the mPTP regulation and how we can suppress opening of the mPTP at the time of reperfusion need to be further investigated for devising a novel therapy for cardioprotection in DM patients.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

TaM has received research funding from Daiichi-Sankyo, Japan, Eisai, Japan, and Pfizer, Japan. TI and DS have no conflicts of interest or financial ties to disclose. TeM has received research funding from Takeda Pharmaceuticals, Japan, Novartis, Japan, Chugai Pharmaceutical, Japan, and Astellas Pharma, Japan.

Authors' contributions

TaM collected and arranged the data in sequence, drafted and correspond the manuscript. TI and DS contributed to collection and analysis of the data. TeM contributed to analysis and interpretation of data and revision. All authors have read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, et al: Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation. 2012, 125 (1): e2-e220.PubMedCentralPubMedCrossRef Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, et al: Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation. 2012, 125 (1): e2-e220.PubMedCentralPubMedCrossRef
2.
Zurück zum Zitat Miura T, Miki T: Limitation of myocardial infarct size in the clinical setting: current status and challenges in translating animal experiments into clinical therapy. Basic Res Cardiol. 2008, 103 (6): 501-513. 10.1007/s00395-008-0743-y.PubMedCrossRef Miura T, Miki T: Limitation of myocardial infarct size in the clinical setting: current status and challenges in translating animal experiments into clinical therapy. Basic Res Cardiol. 2008, 103 (6): 501-513. 10.1007/s00395-008-0743-y.PubMedCrossRef
3.
Zurück zum Zitat Yellon DM, Hausenloy DJ: Myocardial reperfusion injury. N Eng J Med. 2007, 357 (11): 1121-1135. 10.1056/NEJMra071667.CrossRef Yellon DM, Hausenloy DJ: Myocardial reperfusion injury. N Eng J Med. 2007, 357 (11): 1121-1135. 10.1056/NEJMra071667.CrossRef
4.
Zurück zum Zitat Murry CE, Jennings RB, Reimer KA: Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986, 74 (5): 1124-1136. 10.1161/01.CIR.74.5.1124.PubMedCrossRef Murry CE, Jennings RB, Reimer KA: Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986, 74 (5): 1124-1136. 10.1161/01.CIR.74.5.1124.PubMedCrossRef
5.
Zurück zum Zitat Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J: Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003, 285 (2): H579-H588.PubMedCrossRef Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J: Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003, 285 (2): H579-H588.PubMedCrossRef
6.
Zurück zum Zitat Ferdinandy P, Schulz R, Baxter GF: Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev. 2007, 59 (4): 418-458. 10.1124/pr.107.06002.PubMedCrossRef Ferdinandy P, Schulz R, Baxter GF: Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev. 2007, 59 (4): 418-458. 10.1124/pr.107.06002.PubMedCrossRef
7.
Zurück zum Zitat Yellon DM, Downey JM: Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev. 2003, 83 (4): 1113-1151.PubMedCrossRef Yellon DM, Downey JM: Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev. 2003, 83 (4): 1113-1151.PubMedCrossRef
8.
Zurück zum Zitat Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, Hausenloy DJ, Heusch G, Vinten-Johansen J, Yellon DM, Schulz R: Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 2010, 87 (3): 406-423. 10.1093/cvr/cvq129.PubMedCrossRef Ovize M, Baxter GF, Di Lisa F, Ferdinandy P, Garcia-Dorado D, Hausenloy DJ, Heusch G, Vinten-Johansen J, Yellon DM, Schulz R: Postconditioning and protection from reperfusion injury: where do we stand? Position paper from the Working Group of Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc Res. 2010, 87 (3): 406-423. 10.1093/cvr/cvq129.PubMedCrossRef
9.
Zurück zum Zitat Sanada S, Komuro I, Kitakaze M: Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol. 2011, 301 (5): H1723-H1741. 10.1152/ajpheart.00553.2011.PubMedCrossRef Sanada S, Komuro I, Kitakaze M: Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol. 2011, 301 (5): H1723-H1741. 10.1152/ajpheart.00553.2011.PubMedCrossRef
10.
Zurück zum Zitat Bolli R, Becker L, Gross G, Mentzer R, Balshaw D, Lathrop DA: Myocardial protection at a crossroads: the need for translation into clinical therapy. Circ Res. 2004, 95 (2): 125-134. 10.1161/01.RES.0000137171.97172.d7.PubMedCrossRef Bolli R, Becker L, Gross G, Mentzer R, Balshaw D, Lathrop DA: Myocardial protection at a crossroads: the need for translation into clinical therapy. Circ Res. 2004, 95 (2): 125-134. 10.1161/01.RES.0000137171.97172.d7.PubMedCrossRef
11.
Zurück zum Zitat Przyklenk K: Efficacy of cardioprotective 'conditioning' strategies in aging and diabetic cohorts: the co-morbidity conundrum. Drugs Aging. 2011, 28 (5): 331-343. 10.2165/11587190-000000000-00000.PubMedCrossRef Przyklenk K: Efficacy of cardioprotective 'conditioning' strategies in aging and diabetic cohorts: the co-morbidity conundrum. Drugs Aging. 2011, 28 (5): 331-343. 10.2165/11587190-000000000-00000.PubMedCrossRef
12.
Zurück zum Zitat Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, Farzadfar JK, Farzadfar F, Khang YH, Stevens GA, et al: National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet. 2011, 378 (9785): 31-40. 10.1016/S0140-6736(11)60679-X.PubMedCrossRef Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, Farzadfar JK, Farzadfar F, Khang YH, Stevens GA, et al: National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet. 2011, 378 (9785): 31-40. 10.1016/S0140-6736(11)60679-X.PubMedCrossRef
13.
Zurück zum Zitat Kirtane AJ, Ellis SG, Dawkins KD, Colombo A, Grube E, Popma JJ, Fahy M, Leon MB, Moses JW, Mehran R, et al: Paclitaxel-eluting coronary stents in patients with diabetes mellitus: pooled analysis from 5 randomized trials. J Am Coll Cardiol. 2008, 51 (7): 708-715. 10.1016/j.jacc.2007.10.035.PubMedCrossRef Kirtane AJ, Ellis SG, Dawkins KD, Colombo A, Grube E, Popma JJ, Fahy M, Leon MB, Moses JW, Mehran R, et al: Paclitaxel-eluting coronary stents in patients with diabetes mellitus: pooled analysis from 5 randomized trials. J Am Coll Cardiol. 2008, 51 (7): 708-715. 10.1016/j.jacc.2007.10.035.PubMedCrossRef
14.
Zurück zum Zitat Cubbon RM, Wheatcroft SB, Grant PJ, Gale CP, Barth JH, Sapsford RJ, Ajjan R, Kearney MT, Hall AS: Temporal trends in mortality of patients with diabetes mellitus suffering acute myocardial infarction: a comparison of over 3000 patients between 1995 and 2003. Eur Heart J. 2007, 28 (5): 540-545.PubMedCrossRef Cubbon RM, Wheatcroft SB, Grant PJ, Gale CP, Barth JH, Sapsford RJ, Ajjan R, Kearney MT, Hall AS: Temporal trends in mortality of patients with diabetes mellitus suffering acute myocardial infarction: a comparison of over 3000 patients between 1995 and 2003. Eur Heart J. 2007, 28 (5): 540-545.PubMedCrossRef
15.
Zurück zum Zitat Norhammar A, Lindback J, Ryden L, Wallentin L, Stenestrand U: Improved but still high short- and long-term mortality rates after myocardial infarction in patients with diabetes mellitus: a time-trend report from the Swedish Register of Information and Knowledge about Swedish Heart Intensive Care Admission. Heart (British Cardiac Society). 2007, 93 (12): 1577-1583.CrossRef Norhammar A, Lindback J, Ryden L, Wallentin L, Stenestrand U: Improved but still high short- and long-term mortality rates after myocardial infarction in patients with diabetes mellitus: a time-trend report from the Swedish Register of Information and Knowledge about Swedish Heart Intensive Care Admission. Heart (British Cardiac Society). 2007, 93 (12): 1577-1583.CrossRef
16.
Zurück zum Zitat Lamblin N, Fertin M, de Groote P, Bauters C: Cardiac remodeling and heart failure after a first anterior myocardial infarction in patients with diabetes mellitus. J Cardiovasc Med (Hagerstown). 2012, 13 (6): 353-359. 10.2459/JCM.0b013e328353694b.CrossRef Lamblin N, Fertin M, de Groote P, Bauters C: Cardiac remodeling and heart failure after a first anterior myocardial infarction in patients with diabetes mellitus. J Cardiovasc Med (Hagerstown). 2012, 13 (6): 353-359. 10.2459/JCM.0b013e328353694b.CrossRef
17.
Zurück zum Zitat Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, Marre M, Cooper M, Glasziou P, Grobbee D, et al: Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Eng J Med. 2008, 358 (24): 2560-2572.CrossRef Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, Marre M, Cooper M, Glasziou P, Grobbee D, et al: Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Eng J Med. 2008, 358 (24): 2560-2572.CrossRef
18.
Zurück zum Zitat Gerstein HC, Miller ME, Byington RP, Goff DC, Bigger JT, Buse JB, Cushman WC, Genuth S, Ismail-Beigi F, Grimm RH, et al: Effects of intensive glucose lowering in type 2 diabetes. N Eng J Med. 2008, 358 (24): 2545-2559.CrossRef Gerstein HC, Miller ME, Byington RP, Goff DC, Bigger JT, Buse JB, Cushman WC, Genuth S, Ismail-Beigi F, Grimm RH, et al: Effects of intensive glucose lowering in type 2 diabetes. N Eng J Med. 2008, 358 (24): 2545-2559.CrossRef
19.
Zurück zum Zitat Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, Zieve FJ, Marks J, Davis SN, Hayward R, et al: Glucose control and vascular complications in veterans with type 2 diabetes. N Eng J Med. 2009, 360 (2): 129-139. 10.1056/NEJMoa0808431.CrossRef Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, Zieve FJ, Marks J, Davis SN, Hayward R, et al: Glucose control and vascular complications in veterans with type 2 diabetes. N Eng J Med. 2009, 360 (2): 129-139. 10.1056/NEJMoa0808431.CrossRef
20.
Zurück zum Zitat Miki T, Yuda S, Kouzu H, Miura T: Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev. Epub ahead of print Miki T, Yuda S, Kouzu H, Miura T: Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev. Epub ahead of print
21.
Zurück zum Zitat Marso SP, Miller T, Rutherford BD, Gibbons RJ, Qureshi M, Kalynych A, Turco M, Schultheiss HP, Mehran R, Krucoff MW, et al: Comparison of myocardial reperfusion in patients undergoing percutaneous coronary intervention in ST-segment elevation acute myocardial infarction with versus without diabetes mellitus (from the EMERALD Trial). Am J Cardiol. 2007, 100 (2): 206-210. 10.1016/j.amjcard.2007.02.080.PubMedCrossRef Marso SP, Miller T, Rutherford BD, Gibbons RJ, Qureshi M, Kalynych A, Turco M, Schultheiss HP, Mehran R, Krucoff MW, et al: Comparison of myocardial reperfusion in patients undergoing percutaneous coronary intervention in ST-segment elevation acute myocardial infarction with versus without diabetes mellitus (from the EMERALD Trial). Am J Cardiol. 2007, 100 (2): 206-210. 10.1016/j.amjcard.2007.02.080.PubMedCrossRef
22.
Zurück zum Zitat Alegria JR, Miller TD, Gibbons RJ, Yi QL, Yusuf S: Infarct size, ejection fraction, and mortality in diabetic patients with acute myocardial infarction treated with thrombolytic therapy. Am Heart J. 2007, 154 (4): 743-750. 10.1016/j.ahj.2007.06.020.PubMedCrossRef Alegria JR, Miller TD, Gibbons RJ, Yi QL, Yusuf S: Infarct size, ejection fraction, and mortality in diabetic patients with acute myocardial infarction treated with thrombolytic therapy. Am Heart J. 2007, 154 (4): 743-750. 10.1016/j.ahj.2007.06.020.PubMedCrossRef
23.
Zurück zum Zitat Halestrap AP: A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans. 2010, 38 (4): 841-860. 10.1042/BST0380841.PubMedCrossRef Halestrap AP: A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans. 2010, 38 (4): 841-860. 10.1042/BST0380841.PubMedCrossRef
24.
Zurück zum Zitat Ravingerova T, Neckar J, Kolar F: Ischemic tolerance of rat hearts in acute and chronic phases of experimental diabetes. Mol Cell Biochem. 2003, 249 (1–2): 167-174.PubMedCrossRef Ravingerova T, Neckar J, Kolar F: Ischemic tolerance of rat hearts in acute and chronic phases of experimental diabetes. Mol Cell Biochem. 2003, 249 (1–2): 167-174.PubMedCrossRef
25.
Zurück zum Zitat Xu G, Takashi E, Kudo M, Ishiwata T, Naito Z: Contradictory effects of short- and long-term hyperglycemias on ischemic injury of myocardium via intracellular signaling pathway. Exp Mol Pathol. 2004, 76 (1): 57-65. 10.1016/j.yexmp.2003.08.003.PubMedCrossRef Xu G, Takashi E, Kudo M, Ishiwata T, Naito Z: Contradictory effects of short- and long-term hyperglycemias on ischemic injury of myocardium via intracellular signaling pathway. Exp Mol Pathol. 2004, 76 (1): 57-65. 10.1016/j.yexmp.2003.08.003.PubMedCrossRef
26.
Zurück zum Zitat Ma G, Al-Shabrawey M, Johnson JA, Datar R, Tawfik HE, Guo D, Caldwell RB, Caldwell RW: Protection against myocardial ischemia/reperfusion injury by short-term diabetes: enhancement of VEGF formation, capillary density, and activation of cell survival signaling. Naunyn Schmiedebergs Arch Pharmacol. 2006, 373 (6): 415-427. 10.1007/s00210-006-0102-1.PubMedCrossRef Ma G, Al-Shabrawey M, Johnson JA, Datar R, Tawfik HE, Guo D, Caldwell RB, Caldwell RW: Protection against myocardial ischemia/reperfusion injury by short-term diabetes: enhancement of VEGF formation, capillary density, and activation of cell survival signaling. Naunyn Schmiedebergs Arch Pharmacol. 2006, 373 (6): 415-427. 10.1007/s00210-006-0102-1.PubMedCrossRef
27.
Zurück zum Zitat Marfella R, D'Amico M, Di Filippo C, Piegari E, Nappo F, Esposito K, Berrino L, Rossi F, Giugliano D: Myocardial infarction in diabetic rats: role of hyperglycaemia on infarct size and early expression of hypoxia-inducible factor 1. Diabetologia. 2002, 45 (8): 1172-1181. 10.1007/s00125-002-0882-x.PubMedCrossRef Marfella R, D'Amico M, Di Filippo C, Piegari E, Nappo F, Esposito K, Berrino L, Rossi F, Giugliano D: Myocardial infarction in diabetic rats: role of hyperglycaemia on infarct size and early expression of hypoxia-inducible factor 1. Diabetologia. 2002, 45 (8): 1172-1181. 10.1007/s00125-002-0882-x.PubMedCrossRef
28.
Zurück zum Zitat Marfella R, Di Filippo C, Esposito K, Nappo F, Piegari E, Cuzzocrea S, Berrino L, Rossi F, Giugliano D, D'Amico M: Absence of inducible nitric oxide synthase reduces myocardial damage during ischemia reperfusion in streptozotocin-induced hyperglycemic mice. Diabetes. 2004, 53 (2): 454-462. 10.2337/diabetes.53.2.454.PubMedCrossRef Marfella R, Di Filippo C, Esposito K, Nappo F, Piegari E, Cuzzocrea S, Berrino L, Rossi F, Giugliano D, D'Amico M: Absence of inducible nitric oxide synthase reduces myocardial damage during ischemia reperfusion in streptozotocin-induced hyperglycemic mice. Diabetes. 2004, 53 (2): 454-462. 10.2337/diabetes.53.2.454.PubMedCrossRef
29.
Zurück zum Zitat Di Filippo C, Marfella R, Cuzzocrea S, Piegari E, Petronella P, Giugliano D, Rossi F, D'Amico M: Hyperglycemia in streptozotocin-induced diabetic rat increases infarct size associated with low levels of myocardial HO-1 during ischemia/reperfusion. Diabetes. 2005, 54 (3): 803-810. 10.2337/diabetes.54.3.803.PubMedCrossRef Di Filippo C, Marfella R, Cuzzocrea S, Piegari E, Petronella P, Giugliano D, Rossi F, D'Amico M: Hyperglycemia in streptozotocin-induced diabetic rat increases infarct size associated with low levels of myocardial HO-1 during ischemia/reperfusion. Diabetes. 2005, 54 (3): 803-810. 10.2337/diabetes.54.3.803.PubMedCrossRef
30.
Zurück zum Zitat Kristiansen SB, Lofgren B, Nielsen JM, Stottrup NB, Buhl ES, Nielsen-Kudsk JE, Nielsen TT, Rungby J, Flyvbjerg A, Botker HE: Comparison of two sulfonylureas with high and low myocardial K(ATP) channel affinity on myocardial infarct size and metabolism in a rat model of type 2 diabetes. Diabetologia. 2011, 54 (2): 451-458. 10.1007/s00125-010-1970-y.PubMedCrossRef Kristiansen SB, Lofgren B, Nielsen JM, Stottrup NB, Buhl ES, Nielsen-Kudsk JE, Nielsen TT, Rungby J, Flyvbjerg A, Botker HE: Comparison of two sulfonylureas with high and low myocardial K(ATP) channel affinity on myocardial infarct size and metabolism in a rat model of type 2 diabetes. Diabetologia. 2011, 54 (2): 451-458. 10.1007/s00125-010-1970-y.PubMedCrossRef
31.
Zurück zum Zitat Przyklenk K, Maynard M, Greiner DL, Whittaker P: Cardioprotection with postconditioning: loss of efficacy in murine models of type-2 and type-1 diabetes. Antioxid Redox Signal. 2011, 14 (5): 781-790. 10.1089/ars.2010.3343.PubMedCentralPubMedCrossRef Przyklenk K, Maynard M, Greiner DL, Whittaker P: Cardioprotection with postconditioning: loss of efficacy in murine models of type-2 and type-1 diabetes. Antioxid Redox Signal. 2011, 14 (5): 781-790. 10.1089/ars.2010.3343.PubMedCentralPubMedCrossRef
32.
Zurück zum Zitat Jordan JE, Simandle SA, Tulbert CD, Busija DW, Miller AW: Fructose-fed rats are protected against ischemia/reperfusion injury. J Pharmacol Exp Ther. 2003, 307 (3): 1007-1011. 10.1124/jpet.103.055970.PubMedCrossRef Jordan JE, Simandle SA, Tulbert CD, Busija DW, Miller AW: Fructose-fed rats are protected against ischemia/reperfusion injury. J Pharmacol Exp Ther. 2003, 307 (3): 1007-1011. 10.1124/jpet.103.055970.PubMedCrossRef
33.
Zurück zum Zitat Hotta H, Miura T, Miki T, Togashi N, Maeda T, Kim SJ, Tanno M, Yano T, Kuno A, Itoh T, et al: Angiotensin II type 1 receptor-mediated upregulation of calcineurin activity underlies impairment of cardioprotective signaling in diabetic hearts. Circ Res. 2010, 106 (1): 129-132. 10.1161/CIRCRESAHA.109.205385.PubMedCrossRef Hotta H, Miura T, Miki T, Togashi N, Maeda T, Kim SJ, Tanno M, Yano T, Kuno A, Itoh T, et al: Angiotensin II type 1 receptor-mediated upregulation of calcineurin activity underlies impairment of cardioprotective signaling in diabetic hearts. Circ Res. 2010, 106 (1): 129-132. 10.1161/CIRCRESAHA.109.205385.PubMedCrossRef
34.
Zurück zum Zitat Miki T, Miura T, Hotta H, Tanno M, Yano T, Sato T, Terashima Y, Takada A, Ishikawa S, Shimamoto K: Endoplasmic reticulum stress in diabetic hearts abolishes erythropoietin-induced myocardial protection by impairment of phospho-glycogen synthase kinase-3beta-mediated suppression of mitochondrial permeability transition. Diabetes. 2009, 58 (12): 2863-2872. 10.2337/db09-0158.PubMedCentralPubMedCrossRef Miki T, Miura T, Hotta H, Tanno M, Yano T, Sato T, Terashima Y, Takada A, Ishikawa S, Shimamoto K: Endoplasmic reticulum stress in diabetic hearts abolishes erythropoietin-induced myocardial protection by impairment of phospho-glycogen synthase kinase-3beta-mediated suppression of mitochondrial permeability transition. Diabetes. 2009, 58 (12): 2863-2872. 10.2337/db09-0158.PubMedCentralPubMedCrossRef
35.
Zurück zum Zitat La Bonte LR, Davis-Gorman G, Stahl GL, McDonagh PF: Complement inhibition reduces injury in the type 2 diabetic heart following ischemia and reperfusion. Am J Physiol Heart Circ Physiol. 2008, 294 (3): H1282-H1290.PubMedCrossRef La Bonte LR, Davis-Gorman G, Stahl GL, McDonagh PF: Complement inhibition reduces injury in the type 2 diabetic heart following ischemia and reperfusion. Am J Physiol Heart Circ Physiol. 2008, 294 (3): H1282-H1290.PubMedCrossRef
36.
Zurück zum Zitat Bouhidel O, Pons S, Souktani R, Zini R, Berdeaux A, Ghaleh B: Myocardial ischemic postconditioning against ischemia-reperfusion is impaired in ob/ob mice. Am J Physiol Heart Circ Physiol. 2008, 295 (4): H1580-H1586. 10.1152/ajpheart.00379.2008.PubMedCentralPubMedCrossRef Bouhidel O, Pons S, Souktani R, Zini R, Berdeaux A, Ghaleh B: Myocardial ischemic postconditioning against ischemia-reperfusion is impaired in ob/ob mice. Am J Physiol Heart Circ Physiol. 2008, 295 (4): H1580-H1586. 10.1152/ajpheart.00379.2008.PubMedCentralPubMedCrossRef
37.
Zurück zum Zitat Katakam PV, Jordan JE, Snipes JA, Tulbert CD, Miller AW, Busija DW: Myocardial preconditioning against ischemia-reperfusion injury is abolished in Zucker obese rats with insulin resistance. Am J Physiol Regul Integr Comp Physiol. 2007, 292 (2): R920-R926.PubMedCrossRef Katakam PV, Jordan JE, Snipes JA, Tulbert CD, Miller AW, Busija DW: Myocardial preconditioning against ischemia-reperfusion injury is abolished in Zucker obese rats with insulin resistance. Am J Physiol Regul Integr Comp Physiol. 2007, 292 (2): R920-R926.PubMedCrossRef
38.
Zurück zum Zitat Zhu SG, Xi L, Kukreja RC: Type 2 diabetic Obese db/db mice are refractory to myocardial ischemic postconditioning In Vivo: potential role for Hsp20, F(1) -ATPase delta, and Echs1. J Cell Mol Med. 2012, 16 (4): 950-958. 10.1111/j.1582-4934.2011.01376.x.PubMedCentralPubMedCrossRef Zhu SG, Xi L, Kukreja RC: Type 2 diabetic Obese db/db mice are refractory to myocardial ischemic postconditioning In Vivo: potential role for Hsp20, F(1) -ATPase delta, and Echs1. J Cell Mol Med. 2012, 16 (4): 950-958. 10.1111/j.1582-4934.2011.01376.x.PubMedCentralPubMedCrossRef
39.
Zurück zum Zitat Yue TL, Bao W, Gu JL, Cui J, Tao L, Ma XL, Ohlstein EH, Jucker BM: Rosiglitazone treatment in Zucker diabetic Fatty rats is associated with ameliorated cardiac insulin resistance and protection from ischemia/reperfusion-induced myocardial injury. Diabetes. 2005, 54 (2): 554-562.PubMedCrossRef Yue TL, Bao W, Gu JL, Cui J, Tao L, Ma XL, Ohlstein EH, Jucker BM: Rosiglitazone treatment in Zucker diabetic Fatty rats is associated with ameliorated cardiac insulin resistance and protection from ischemia/reperfusion-induced myocardial injury. Diabetes. 2005, 54 (2): 554-562.PubMedCrossRef
40.
Zurück zum Zitat Calvert JW, Gundewar S, Jha S, Greer JJ, Bestermann WH, Tian R, Lefer DJ: Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes. 2008, 57 (3): 696-705. 10.2337/db07-1098.PubMedCrossRef Calvert JW, Gundewar S, Jha S, Greer JJ, Bestermann WH, Tian R, Lefer DJ: Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes. 2008, 57 (3): 696-705. 10.2337/db07-1098.PubMedCrossRef
41.
Zurück zum Zitat Honda T, Kaikita K, Tsujita K, Hayasaki T, Matsukawa M, Fuchigami S, Sugiyama S, Sakashita N, Ogawa H, Takeya M: Pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist, attenuates myocardial ischemia-reperfusion injury in mice with metabolic disorders. J Mol Cell Cardiol. 2008, 44 (5): 915-926. 10.1016/j.yjmcc.2008.03.004.PubMedCrossRef Honda T, Kaikita K, Tsujita K, Hayasaki T, Matsukawa M, Fuchigami S, Sugiyama S, Sakashita N, Ogawa H, Takeya M: Pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist, attenuates myocardial ischemia-reperfusion injury in mice with metabolic disorders. J Mol Cell Cardiol. 2008, 44 (5): 915-926. 10.1016/j.yjmcc.2008.03.004.PubMedCrossRef
42.
Zurück zum Zitat Ichinomiya T, Cho S, Higashijima U, Matsumoto S, Maekawa T, Sumikawa K: High-dose fasudil preserves postconditioning against myocardial infarction under hyperglycemia in rats: role of mitochondrial KATP channels. Cardiovasc Diabetol. 2012, 11: 28-10.1186/1475-2840-11-28.PubMedCentralPubMedCrossRef Ichinomiya T, Cho S, Higashijima U, Matsumoto S, Maekawa T, Sumikawa K: High-dose fasudil preserves postconditioning against myocardial infarction under hyperglycemia in rats: role of mitochondrial KATP channels. Cardiovasc Diabetol. 2012, 11: 28-10.1186/1475-2840-11-28.PubMedCentralPubMedCrossRef
43.
Zurück zum Zitat Matsumoto S, Cho S, Tosaka S, Higashijima U, Maekawa T, Hara T, Sumikawa K: Hyperglycemia raises the threshold of levosimendan- but not milrinone-induced postconditioning in rat hearts. Cardiovasc Diabetol. 2012, 11: 4-10.1186/1475-2840-11-4.PubMedCentralPubMedCrossRef Matsumoto S, Cho S, Tosaka S, Higashijima U, Maekawa T, Hara T, Sumikawa K: Hyperglycemia raises the threshold of levosimendan- but not milrinone-induced postconditioning in rat hearts. Cardiovasc Diabetol. 2012, 11: 4-10.1186/1475-2840-11-4.PubMedCentralPubMedCrossRef
44.
Zurück zum Zitat Zuanetti G, Latini R, Maggioni AP, Santoro L, Franzosi MG: Influence of diabetes on mortality in acute myocardial infarction: data from the GISSI-2 study. J Am Coll Cardiol. 1993, 22 (7): 1788-1794. 10.1016/0735-1097(93)90758-S.PubMedCrossRef Zuanetti G, Latini R, Maggioni AP, Santoro L, Franzosi MG: Influence of diabetes on mortality in acute myocardial infarction: data from the GISSI-2 study. J Am Coll Cardiol. 1993, 22 (7): 1788-1794. 10.1016/0735-1097(93)90758-S.PubMedCrossRef
45.
Zurück zum Zitat Chyun D, Obata J, Kling J, Tocchi C: In-hospital mortality after acute myocardial infarction in patients with diabetes mellitus. Am J Crit Care. 2000, 9 (3): 168-179.PubMed Chyun D, Obata J, Kling J, Tocchi C: In-hospital mortality after acute myocardial infarction in patients with diabetes mellitus. Am J Crit Care. 2000, 9 (3): 168-179.PubMed
46.
Zurück zum Zitat Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M: Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Eng J Med. 1998, 339 (4): 229-234. 10.1056/NEJM199807233390404.CrossRef Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M: Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Eng J Med. 1998, 339 (4): 229-234. 10.1056/NEJM199807233390404.CrossRef
47.
Zurück zum Zitat Shah AM, Uno H, Kober L, Velazquez EJ, Maggioni AP, MacDonald MR, Petrie MC, McMurray JJ, Califf RM, Pfeffer MA, et al: The inter-relationship of diabetes and left ventricular systolic function on outcome after high-risk myocardial infarction. Eur J Heart Fail. 2010, 12 (11): 1229-1237. 10.1093/eurjhf/hfq179.PubMedCrossRef Shah AM, Uno H, Kober L, Velazquez EJ, Maggioni AP, MacDonald MR, Petrie MC, McMurray JJ, Califf RM, Pfeffer MA, et al: The inter-relationship of diabetes and left ventricular systolic function on outcome after high-risk myocardial infarction. Eur J Heart Fail. 2010, 12 (11): 1229-1237. 10.1093/eurjhf/hfq179.PubMedCrossRef
48.
Zurück zum Zitat Tsang A, Hausenloy DJ, Mocanu MM, Carr RD, Yellon DM: Preconditioning the diabetic heart: the importance of Akt phosphorylation. Diabetes. 2005, 54 (8): 2360-2364. 10.2337/diabetes.54.8.2360.PubMedCrossRef Tsang A, Hausenloy DJ, Mocanu MM, Carr RD, Yellon DM: Preconditioning the diabetic heart: the importance of Akt phosphorylation. Diabetes. 2005, 54 (8): 2360-2364. 10.2337/diabetes.54.8.2360.PubMedCrossRef
49.
Zurück zum Zitat Liu Y, Thornton JD, Cohen MV, Downey JM, Schaffer SW: Streptozotocin-induced non-insulin-dependent diabetes protects the heart from infarction. Circulation. 1993, 88 (3): 1273-1278. 10.1161/01.CIR.88.3.1273.PubMedCrossRef Liu Y, Thornton JD, Cohen MV, Downey JM, Schaffer SW: Streptozotocin-induced non-insulin-dependent diabetes protects the heart from infarction. Circulation. 1993, 88 (3): 1273-1278. 10.1161/01.CIR.88.3.1273.PubMedCrossRef
50.
Zurück zum Zitat Kersten JR, Toller WG, Gross ER, Pagel PS, Warltier DC: Diabetes abolishes ischemic preconditioning: role of glucose, insulin, and osmolality. Am J Physiol Heart Circ Physiol. 2000, 278 (4): H1218-H1224.PubMed Kersten JR, Toller WG, Gross ER, Pagel PS, Warltier DC: Diabetes abolishes ischemic preconditioning: role of glucose, insulin, and osmolality. Am J Physiol Heart Circ Physiol. 2000, 278 (4): H1218-H1224.PubMed
51.
Zurück zum Zitat Nieszner E, Posa I, Kocsis E, Pogatsa G, Preda I, Koltai MZ: Influence of diabetic state and that of different sulfonylureas on the size of myocardial infarction with and without ischemic preconditioning in rabbits. Exp Clin Endocrinol Diabetes. 2002, 110 (5): 212-218. 10.1055/s-2002-33069.PubMedCrossRef Nieszner E, Posa I, Kocsis E, Pogatsa G, Preda I, Koltai MZ: Influence of diabetic state and that of different sulfonylureas on the size of myocardial infarction with and without ischemic preconditioning in rabbits. Exp Clin Endocrinol Diabetes. 2002, 110 (5): 212-218. 10.1055/s-2002-33069.PubMedCrossRef
52.
Zurück zum Zitat Kristiansen SB, Lofgren B, Stottrup NB, Khatir D, Nielsen-Kudsk JE, Nielsen TT, Botker HE, Flyvbjerg A: Ischaemic preconditioning does not protect the heart in obese and lean animal models of type 2 diabetes. Diabetologia. 2004, 47 (10): 1716-1721. 10.1007/s00125-004-1514-4.PubMedCrossRef Kristiansen SB, Lofgren B, Stottrup NB, Khatir D, Nielsen-Kudsk JE, Nielsen TT, Botker HE, Flyvbjerg A: Ischaemic preconditioning does not protect the heart in obese and lean animal models of type 2 diabetes. Diabetologia. 2004, 47 (10): 1716-1721. 10.1007/s00125-004-1514-4.PubMedCrossRef
53.
Zurück zum Zitat Galagudza MM, Nekrasova MK, Syrenskii AV, Nifontov EM: Resistance of the myocardium to ischemia and the efficacy of ischemic preconditioning in experimental diabetes mellitus. Neurosci Behav Physiol. 2007, 37 (5): 489-493. 10.1007/s11055-007-0040-5.PubMedCrossRef Galagudza MM, Nekrasova MK, Syrenskii AV, Nifontov EM: Resistance of the myocardium to ischemia and the efficacy of ischemic preconditioning in experimental diabetes mellitus. Neurosci Behav Physiol. 2007, 37 (5): 489-493. 10.1007/s11055-007-0040-5.PubMedCrossRef
54.
Zurück zum Zitat Yadav HN, Singh M, Sharma PL: Involvement of GSK-3beta in attenuation of the cardioprotective effect of ischemic preconditioning in diabetic rat heart. Mol Cell Biochem. 2010, 343 (1–2): 75-81.PubMedCrossRef Yadav HN, Singh M, Sharma PL: Involvement of GSK-3beta in attenuation of the cardioprotective effect of ischemic preconditioning in diabetic rat heart. Mol Cell Biochem. 2010, 343 (1–2): 75-81.PubMedCrossRef
55.
Zurück zum Zitat Kersten JR, Montgomery MW, Ghassemi T, Gross ER, Toller WG, Pagel PS, Warltier DC: Diabetes and hyperglycemia impair activation of mitochondrial K(ATP) channels. Am J Physiol Heart Circ Physiol. 2001, 280 (4): H1744-H1750.PubMed Kersten JR, Montgomery MW, Ghassemi T, Gross ER, Toller WG, Pagel PS, Warltier DC: Diabetes and hyperglycemia impair activation of mitochondrial K(ATP) channels. Am J Physiol Heart Circ Physiol. 2001, 280 (4): H1744-H1750.PubMed
56.
Zurück zum Zitat Matsumoto S, Cho S, Tosaka S, Ureshino H, Maekawa T, Hara T, Sumikawa K: Pharmacological preconditioning in type 2 diabetic rat hearts: the roles of mitochondrial ATP-sensitive potassium channels and the phosphatidylinositol 3-kinase-Akt pathway. Cardiovasc Drugs Ther. 2009, 23 (4): 263-270. 10.1007/s10557-009-6184-5.PubMedCrossRef Matsumoto S, Cho S, Tosaka S, Ureshino H, Maekawa T, Hara T, Sumikawa K: Pharmacological preconditioning in type 2 diabetic rat hearts: the roles of mitochondrial ATP-sensitive potassium channels and the phosphatidylinositol 3-kinase-Akt pathway. Cardiovasc Drugs Ther. 2009, 23 (4): 263-270. 10.1007/s10557-009-6184-5.PubMedCrossRef
57.
Zurück zum Zitat Gross ER, Hsu AK, Gross GJ: Diabetes abolishes morphine-induced cardioprotection via multiple pathways upstream of glycogen synthase kinase-3beta. Diabetes. 2007, 56 (1): 127-136. 10.2337/db06-0907.PubMedCrossRef Gross ER, Hsu AK, Gross GJ: Diabetes abolishes morphine-induced cardioprotection via multiple pathways upstream of glycogen synthase kinase-3beta. Diabetes. 2007, 56 (1): 127-136. 10.2337/db06-0907.PubMedCrossRef
58.
Zurück zum Zitat Ghaboura N, Tamareille S, Ducluzeau PH, Grimaud L, Loufrani L, Croue A, Tourmen Y, Henrion D, Furber A, Prunier F: Diabetes mellitus abrogates erythropoietin-induced cardioprotection against ischemic-reperfusion injury by alteration of the RISK/GSK-3beta signaling. Basic Res Cardiol. 2011, 106 (1): 147-162. 10.1007/s00395-010-0130-3.PubMedCrossRef Ghaboura N, Tamareille S, Ducluzeau PH, Grimaud L, Loufrani L, Croue A, Tourmen Y, Henrion D, Furber A, Prunier F: Diabetes mellitus abrogates erythropoietin-induced cardioprotection against ischemic-reperfusion injury by alteration of the RISK/GSK-3beta signaling. Basic Res Cardiol. 2011, 106 (1): 147-162. 10.1007/s00395-010-0130-3.PubMedCrossRef
59.
Zurück zum Zitat Drenger B, Ostrovsky IA, Barak M, Nechemia-Arbely Y, Ziv E, Axelrod JH: Diabetes blockade of sevoflurane postconditioning is not restored by insulin in the rat heart: phosphorylated signal transducer and activator of transcription 3- and phosphatidylinositol 3-kinase-mediated inhibition. Anesthesiology. 2011, 114 (6): 1364-1372. 10.1097/ALN.0b013e31820efafd.PubMedCrossRef Drenger B, Ostrovsky IA, Barak M, Nechemia-Arbely Y, Ziv E, Axelrod JH: Diabetes blockade of sevoflurane postconditioning is not restored by insulin in the rat heart: phosphorylated signal transducer and activator of transcription 3- and phosphatidylinositol 3-kinase-mediated inhibition. Anesthesiology. 2011, 114 (6): 1364-1372. 10.1097/ALN.0b013e31820efafd.PubMedCrossRef
60.
Zurück zum Zitat Ueda Y, Kitakaze M, Komamura K, Minamino T, Asanuma H, Sato H, Kuzuya T, Takeda H, Hori M: Pravastatin restored the infarct size-limiting effect of ischemic preconditioning blunted by hypercholesterolemia in the rabbit model of myocardial infarction. J Am Coll Cardiol. 1999, 34 (7): 2120-2125. 10.1016/S0735-1097(99)00440-4.PubMedCrossRef Ueda Y, Kitakaze M, Komamura K, Minamino T, Asanuma H, Sato H, Kuzuya T, Takeda H, Hori M: Pravastatin restored the infarct size-limiting effect of ischemic preconditioning blunted by hypercholesterolemia in the rabbit model of myocardial infarction. J Am Coll Cardiol. 1999, 34 (7): 2120-2125. 10.1016/S0735-1097(99)00440-4.PubMedCrossRef
61.
Zurück zum Zitat Ungi I, Ungi T, Ruzsa Z, Nagy E, Zimmermann Z, Csont T, Ferdinandy P: Hypercholesterolemia attenuates the anti-ischemic effect of preconditioning during coronary angioplasty. Chest. 2005, 128 (3): 1623-1628. 10.1378/chest.128.3.1623.PubMedCrossRef Ungi I, Ungi T, Ruzsa Z, Nagy E, Zimmermann Z, Csont T, Ferdinandy P: Hypercholesterolemia attenuates the anti-ischemic effect of preconditioning during coronary angioplasty. Chest. 2005, 128 (3): 1623-1628. 10.1378/chest.128.3.1623.PubMedCrossRef
62.
Zurück zum Zitat Ikonomidis JS, Tumiati LC, Weisel RD, Mickle DA, Li RK: Preconditioning human ventricular cardiomyocytes with brief periods of simulated ischaemia. Cardiovasc Res. 1994, 28 (8): 1285-1291. 10.1093/cvr/28.8.1285.PubMedCrossRef Ikonomidis JS, Tumiati LC, Weisel RD, Mickle DA, Li RK: Preconditioning human ventricular cardiomyocytes with brief periods of simulated ischaemia. Cardiovasc Res. 1994, 28 (8): 1285-1291. 10.1093/cvr/28.8.1285.PubMedCrossRef
63.
Zurück zum Zitat Hassouna A, Loubani M, Matata BM, Fowler A, Standen NB, Galinanes M: Mitochondrial dysfunction as the cause of the failure to precondition the diabetic human myocardium. Cardiovasc Res. 2006, 69 (2): 450-458. 10.1016/j.cardiores.2005.11.004.PubMedCrossRef Hassouna A, Loubani M, Matata BM, Fowler A, Standen NB, Galinanes M: Mitochondrial dysfunction as the cause of the failure to precondition the diabetic human myocardium. Cardiovasc Res. 2006, 69 (2): 450-458. 10.1016/j.cardiores.2005.11.004.PubMedCrossRef
64.
Zurück zum Zitat Kloner RA, Shook T, Przyklenk K, Davis VG, Junio L, Matthews RV, Burstein S, Gibson M, Poole WK, Cannon CP, et al: Previous angina alters in-hospital outcome in TIMI 4. A clinical correlate to preconditioning?. Circulation. 1995, 91 (1): 37-45. 10.1161/01.CIR.91.1.37.PubMedCrossRef Kloner RA, Shook T, Przyklenk K, Davis VG, Junio L, Matthews RV, Burstein S, Gibson M, Poole WK, Cannon CP, et al: Previous angina alters in-hospital outcome in TIMI 4. A clinical correlate to preconditioning?. Circulation. 1995, 91 (1): 37-45. 10.1161/01.CIR.91.1.37.PubMedCrossRef
65.
Zurück zum Zitat Rezkalla SH, Kloner RA: Preconditioning and the human heart. Panminerva Med. 2005, 47 (2): 69-73.PubMed Rezkalla SH, Kloner RA: Preconditioning and the human heart. Panminerva Med. 2005, 47 (2): 69-73.PubMed
66.
Zurück zum Zitat Anzai T, Yoshikawa T, Asakura Y, Abe S, Akaishi M, Mitamura H, Handa S, Ogawa S: Preinfarction angina as a major predictor of left ventricular function and long-term prognosis after a first Q wave myocardial infarction. J Am Coll Cardiol. 1995, 26 (2): 319-327. 10.1016/0735-1097(95)80002-X.PubMedCrossRef Anzai T, Yoshikawa T, Asakura Y, Abe S, Akaishi M, Mitamura H, Handa S, Ogawa S: Preinfarction angina as a major predictor of left ventricular function and long-term prognosis after a first Q wave myocardial infarction. J Am Coll Cardiol. 1995, 26 (2): 319-327. 10.1016/0735-1097(95)80002-X.PubMedCrossRef
67.
Zurück zum Zitat Ishihara M, Sato H, Tateishi H, Kawagoe T, Shimatani Y, Kurisu S, Sakai K, Ueda K: Implications of prodromal angina pectoris in anterior wall acute myocardial infarction: acute angiographic findings and long-term prognosis. J Am Coll Cardiol. 1997, 30 (4): 970-975. 10.1016/S0735-1097(97)00238-6.PubMedCrossRef Ishihara M, Sato H, Tateishi H, Kawagoe T, Shimatani Y, Kurisu S, Sakai K, Ueda K: Implications of prodromal angina pectoris in anterior wall acute myocardial infarction: acute angiographic findings and long-term prognosis. J Am Coll Cardiol. 1997, 30 (4): 970-975. 10.1016/S0735-1097(97)00238-6.PubMedCrossRef
68.
Zurück zum Zitat Kloner RA, Shook T, Antman EM, Cannon CP, Przyklenk K, Yoo K, McCabe CH, Braunwald E: Prospective temporal analysis of the onset of preinfarction angina versus outcome: an ancillary study in TIMI-9B. Circulation. 1998, 97 (11): 1042-1045. 10.1161/01.CIR.97.11.1042.PubMedCrossRef Kloner RA, Shook T, Antman EM, Cannon CP, Przyklenk K, Yoo K, McCabe CH, Braunwald E: Prospective temporal analysis of the onset of preinfarction angina versus outcome: an ancillary study in TIMI-9B. Circulation. 1998, 97 (11): 1042-1045. 10.1161/01.CIR.97.11.1042.PubMedCrossRef
69.
Zurück zum Zitat Ishihara M, Inoue I, Kawagoe T, Shimatani Y, Kurisu S, Nishioka K, Kouno Y, Umemura T, Nakamura S, Sato H: Diabetes mellitus prevents ischemic preconditioning in patients with a first acute anterior wall myocardial infarction. J Am Coll Cardiol. 2001, 38 (4): 1007-1011. 10.1016/S0735-1097(01)01477-2.PubMedCrossRef Ishihara M, Inoue I, Kawagoe T, Shimatani Y, Kurisu S, Nishioka K, Kouno Y, Umemura T, Nakamura S, Sato H: Diabetes mellitus prevents ischemic preconditioning in patients with a first acute anterior wall myocardial infarction. J Am Coll Cardiol. 2001, 38 (4): 1007-1011. 10.1016/S0735-1097(01)01477-2.PubMedCrossRef
70.
Zurück zum Zitat Lee TM, Chou TF: Impairment of myocardial protection in type 2 diabetic patients. J Clin Endocrinol Metab. 2003, 88 (2): 531-537. 10.1210/jc.2002-020904.PubMedCrossRef Lee TM, Chou TF: Impairment of myocardial protection in type 2 diabetic patients. J Clin Endocrinol Metab. 2003, 88 (2): 531-537. 10.1210/jc.2002-020904.PubMedCrossRef
71.
Zurück zum Zitat Ovunc K: Effects of glibenclamide, a K(ATP) channel blocker, on warm-up phenomenon in type II diabetic patients with chronic stable angina pectoris. Clin Cardiol. 2000, 23 (7): 535-539. 10.1002/clc.4960230713.PubMedCrossRef Ovunc K: Effects of glibenclamide, a K(ATP) channel blocker, on warm-up phenomenon in type II diabetic patients with chronic stable angina pectoris. Clin Cardiol. 2000, 23 (7): 535-539. 10.1002/clc.4960230713.PubMedCrossRef
72.
73.
Zurück zum Zitat Staat P, Rioufol G, Piot C, Cottin Y, Cung TT, L'Huillier I, Aupetit JF, Bonnefoy E, Finet G, Andre-Fouet X, et al: Postconditioning the human heart. Circulation. 2005, 112 (14): 2143-2148. 10.1161/CIRCULATIONAHA.105.558122.PubMedCrossRef Staat P, Rioufol G, Piot C, Cottin Y, Cung TT, L'Huillier I, Aupetit JF, Bonnefoy E, Finet G, Andre-Fouet X, et al: Postconditioning the human heart. Circulation. 2005, 112 (14): 2143-2148. 10.1161/CIRCULATIONAHA.105.558122.PubMedCrossRef
74.
Zurück zum Zitat Freixa X, Bellera N, Ortiz-Perez JT, Jimenez M, Pare C, Bosch X, De Caralt TM, Betriu A, Masotti M: Ischaemic postconditioning revisited: lack of effects on infarct size following primary percutaneous coronary intervention. Eur Heart J. 2012, 33 (1): 103-112. 10.1093/eurheartj/ehr297.PubMedCrossRef Freixa X, Bellera N, Ortiz-Perez JT, Jimenez M, Pare C, Bosch X, De Caralt TM, Betriu A, Masotti M: Ischaemic postconditioning revisited: lack of effects on infarct size following primary percutaneous coronary intervention. Eur Heart J. 2012, 33 (1): 103-112. 10.1093/eurheartj/ehr297.PubMedCrossRef
75.
Zurück zum Zitat Sorensson P, Saleh N, Bouvier F, Bohm F, Settergren M, Caidahl K, Tornvall P, Arheden H, Ryden L, Pernow J: Effect of postconditioning on infarct size in patients with ST elevation myocardial infarction. Heart (British Cardiac Society). 2010, 96 (21): 1710-1715. 10.1136/hrt.2010.199430.CrossRef Sorensson P, Saleh N, Bouvier F, Bohm F, Settergren M, Caidahl K, Tornvall P, Arheden H, Ryden L, Pernow J: Effect of postconditioning on infarct size in patients with ST elevation myocardial infarction. Heart (British Cardiac Society). 2010, 96 (21): 1710-1715. 10.1136/hrt.2010.199430.CrossRef
76.
Zurück zum Zitat Tarantini G, Favaretto E, Marra MP, Frigo AC, Napodano M, Cacciavillani L, Giovagnoni A, Renda P, De Biasio V, Plebani M, et al: Postconditioning during coronary angioplasty in acute myocardial infarction: the POST-AMI trial. Int J Cardiol. 2012, Epub ahead of print Tarantini G, Favaretto E, Marra MP, Frigo AC, Napodano M, Cacciavillani L, Giovagnoni A, Renda P, De Biasio V, Plebani M, et al: Postconditioning during coronary angioplasty in acute myocardial infarction: the POST-AMI trial. Int J Cardiol. 2012, Epub ahead of print
77.
Zurück zum Zitat Iliodromitis EK, Georgiadis M, Cohen MV, Downey JM, Bofilis E, Kremastinos DT: Protection from post-conditioning depends on the number of short ischemic insults in anesthetized pigs. Basic Res Cardiol. 2006, 101 (6): 502-507. 10.1007/s00395-006-0606-3.PubMedCrossRef Iliodromitis EK, Georgiadis M, Cohen MV, Downey JM, Bofilis E, Kremastinos DT: Protection from post-conditioning depends on the number of short ischemic insults in anesthetized pigs. Basic Res Cardiol. 2006, 101 (6): 502-507. 10.1007/s00395-006-0606-3.PubMedCrossRef
78.
Zurück zum Zitat Chiari PC, Bienengraeber MW, Pagel PS, Krolikowski JG, Kersten JR, Warltier DC: Isoflurane protects against myocardial infarction during early reperfusion by activation of phosphatidylinositol-3-kinase signal transduction: evidence for anesthetic-induced postconditioning in rabbits. Anesthesiology. 2005, 102 (1): 102-109. 10.1097/00000542-200501000-00018.PubMedCrossRef Chiari PC, Bienengraeber MW, Pagel PS, Krolikowski JG, Kersten JR, Warltier DC: Isoflurane protects against myocardial infarction during early reperfusion by activation of phosphatidylinositol-3-kinase signal transduction: evidence for anesthetic-induced postconditioning in rabbits. Anesthesiology. 2005, 102 (1): 102-109. 10.1097/00000542-200501000-00018.PubMedCrossRef
79.
Zurück zum Zitat Yang XM, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV: Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol. 2004, 44 (5): 1103-1110. 10.1016/j.jacc.2004.05.060.PubMedCrossRef Yang XM, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV: Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol. 2004, 44 (5): 1103-1110. 10.1016/j.jacc.2004.05.060.PubMedCrossRef
80.
Zurück zum Zitat Darling CE, Solari PB, Smith CS, Furman MI, Przyklenk K: 'Postconditioning' the human heart: multiple balloon inflations during primary angioplasty may confer cardioprotection. Basic Res Cardiol. 2007, 102 (3): 274-278. 10.1007/s00395-007-0643-6.PubMedCrossRef Darling CE, Solari PB, Smith CS, Furman MI, Przyklenk K: 'Postconditioning' the human heart: multiple balloon inflations during primary angioplasty may confer cardioprotection. Basic Res Cardiol. 2007, 102 (3): 274-278. 10.1007/s00395-007-0643-6.PubMedCrossRef
81.
Zurück zum Zitat Wang G, Zhang S, Joggerst SJ, McPherson J, Zhao DX: Effects of the number and interval of balloon inflations during primary PCI on the extent of myocardial injury in patients with STEMI: does postconditioning exist in real-world practice?. J Invasive Cardiol. 2009, 21 (9): 451-455.PubMed Wang G, Zhang S, Joggerst SJ, McPherson J, Zhao DX: Effects of the number and interval of balloon inflations during primary PCI on the extent of myocardial injury in patients with STEMI: does postconditioning exist in real-world practice?. J Invasive Cardiol. 2009, 21 (9): 451-455.PubMed
82.
Zurück zum Zitat Mahaffey KW, Puma JA, Barbagelata NA, DiCarli MF, Leesar MA, Browne KF, Eisenberg PR, Bolli R, Casas AC, Molina-Viamonte V, et al: Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction: results of a multicenter, randomized, placebo-controlled trial: the Acute Myocardial Infarction STudy of ADenosine (AMISTAD) trial. J Am Coll Cardiol. 1999, 34 (6): 1711-1720. 10.1016/S0735-1097(99)00418-0.PubMedCrossRef Mahaffey KW, Puma JA, Barbagelata NA, DiCarli MF, Leesar MA, Browne KF, Eisenberg PR, Bolli R, Casas AC, Molina-Viamonte V, et al: Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction: results of a multicenter, randomized, placebo-controlled trial: the Acute Myocardial Infarction STudy of ADenosine (AMISTAD) trial. J Am Coll Cardiol. 1999, 34 (6): 1711-1720. 10.1016/S0735-1097(99)00418-0.PubMedCrossRef
83.
Zurück zum Zitat Kopecky SL, Aviles RJ, Bell MR, Lobl JK, Tipping D, Frommell G, Ramsey K, Holland AE, Midei M, Jain A, et al: A randomized, double-blinded, placebo-controlled, dose-ranging study measuring the effect of an adenosine agonist on infarct size reduction in patients undergoing primary percutaneous transluminal coronary angioplasty: the ADMIRE (AmP579 Delivery for Myocardial Infarction REduction) study. Am Heart J. 2003, 146 (1): 146-152. 10.1016/S0002-8703(03)00172-8.PubMedCrossRef Kopecky SL, Aviles RJ, Bell MR, Lobl JK, Tipping D, Frommell G, Ramsey K, Holland AE, Midei M, Jain A, et al: A randomized, double-blinded, placebo-controlled, dose-ranging study measuring the effect of an adenosine agonist on infarct size reduction in patients undergoing primary percutaneous transluminal coronary angioplasty: the ADMIRE (AmP579 Delivery for Myocardial Infarction REduction) study. Am Heart J. 2003, 146 (1): 146-152. 10.1016/S0002-8703(03)00172-8.PubMedCrossRef
84.
Zurück zum Zitat Ross AM, Gibbons RJ, Stone GW, Kloner RA, Alexander RW: A randomized, double-blinded, placebo-controlled multicenter trial of adenosine as an adjunct to reperfusion in the treatment of acute myocardial infarction (AMISTAD-II). J Am Coll Cardiol. 2005, 45 (11): 1775-1780. 10.1016/j.jacc.2005.02.061.PubMedCrossRef Ross AM, Gibbons RJ, Stone GW, Kloner RA, Alexander RW: A randomized, double-blinded, placebo-controlled multicenter trial of adenosine as an adjunct to reperfusion in the treatment of acute myocardial infarction (AMISTAD-II). J Am Coll Cardiol. 2005, 45 (11): 1775-1780. 10.1016/j.jacc.2005.02.061.PubMedCrossRef
85.
Zurück zum Zitat Kloner RA, Forman MB, Gibbons RJ, Ross AM, Alexander RW, Stone GW: Impact of time to therapy and reperfusion modality on the efficacy of adenosine in acute myocardial infarction: the AMISTAD-2 trial. Eur Heart J. 2006, 27 (20): 2400-2405. 10.1093/eurheartj/ehl094.PubMedCrossRef Kloner RA, Forman MB, Gibbons RJ, Ross AM, Alexander RW, Stone GW: Impact of time to therapy and reperfusion modality on the efficacy of adenosine in acute myocardial infarction: the AMISTAD-2 trial. Eur Heart J. 2006, 27 (20): 2400-2405. 10.1093/eurheartj/ehl094.PubMedCrossRef
86.
Zurück zum Zitat Kitakaze M, Asakura M, Kim J, Shintani Y, Asanuma H, Hamasaki T, Seguchi O, Myoishi M, Minamino T, Ohara T, et al: Human atrial natriuretic peptide and nicorandil as adjuncts to reperfusion treatment for acute myocardial infarction (J-WIND): two randomised trials. Lancet. 2007, 370 (9597): 1483-1493. 10.1016/S0140-6736(07)61634-1.PubMedCrossRef Kitakaze M, Asakura M, Kim J, Shintani Y, Asanuma H, Hamasaki T, Seguchi O, Myoishi M, Minamino T, Ohara T, et al: Human atrial natriuretic peptide and nicorandil as adjuncts to reperfusion treatment for acute myocardial infarction (J-WIND): two randomised trials. Lancet. 2007, 370 (9597): 1483-1493. 10.1016/S0140-6736(07)61634-1.PubMedCrossRef
87.
Zurück zum Zitat Ozawa T, Toba K, Suzuki H, Kato K, Iso Y, Akutsu Y, Kobayashi Y, Takeyama Y, Kobayashi N, Yoshimura N, et al: Single-dose intravenous administration of recombinant human erythropoietin is a promising treatment for patients with acute myocardial infarction - randomized controlled pilot trial of EPO/AMI-1 study. Circ J. 2010, 74 (7): 1415-1423. 10.1253/circj.CJ-10-0109.PubMedCrossRef Ozawa T, Toba K, Suzuki H, Kato K, Iso Y, Akutsu Y, Kobayashi Y, Takeyama Y, Kobayashi N, Yoshimura N, et al: Single-dose intravenous administration of recombinant human erythropoietin is a promising treatment for patients with acute myocardial infarction - randomized controlled pilot trial of EPO/AMI-1 study. Circ J. 2010, 74 (7): 1415-1423. 10.1253/circj.CJ-10-0109.PubMedCrossRef
88.
Zurück zum Zitat Voors AA, Belonje AM, Zijlstra F, Hillege HL, Anker SD, Slart RH, Tio RA, van 't Hof A, Jukema JW, Peels HO, et al: A single dose of erythropoietin in ST-elevation myocardial infarction. Eur Heart J. 2010, 31 (21): 2593-2600. 10.1093/eurheartj/ehq304.PubMedCrossRef Voors AA, Belonje AM, Zijlstra F, Hillege HL, Anker SD, Slart RH, Tio RA, van 't Hof A, Jukema JW, Peels HO, et al: A single dose of erythropoietin in ST-elevation myocardial infarction. Eur Heart J. 2010, 31 (21): 2593-2600. 10.1093/eurheartj/ehq304.PubMedCrossRef
89.
Zurück zum Zitat Najjar SS, Rao SV, Melloni C, Raman SV, Povsic TJ, Melton L, Barsness GW, Prather K, Heitner JF, Kilaru R, et al: Intravenous erythropoietin in patients with ST-segment elevation myocardial infarction: REVEAL: a randomized controlled trial. JAMA. 2011, 305 (18): 1863-1872. 10.1001/jama.2011.592.PubMedCentralPubMedCrossRef Najjar SS, Rao SV, Melloni C, Raman SV, Povsic TJ, Melton L, Barsness GW, Prather K, Heitner JF, Kilaru R, et al: Intravenous erythropoietin in patients with ST-segment elevation myocardial infarction: REVEAL: a randomized controlled trial. JAMA. 2011, 305 (18): 1863-1872. 10.1001/jama.2011.592.PubMedCentralPubMedCrossRef
90.
Zurück zum Zitat Ludman AJ, Yellon DM, Hasleton J, Ariti C, Babu GG, Boston-Griffiths E, Venugopal V, Walker M, Holdright D, Swanton H, et al: Effect of erythropoietin as an adjunct to primary percutaneous coronary intervention: a randomised controlled clinical trial. Heart (British Cardiac Society). 2011, 97 (19): 1560-1565. 10.1136/hrt.2011.223867.CrossRef Ludman AJ, Yellon DM, Hasleton J, Ariti C, Babu GG, Boston-Griffiths E, Venugopal V, Walker M, Holdright D, Swanton H, et al: Effect of erythropoietin as an adjunct to primary percutaneous coronary intervention: a randomised controlled clinical trial. Heart (British Cardiac Society). 2011, 97 (19): 1560-1565. 10.1136/hrt.2011.223867.CrossRef
91.
Zurück zum Zitat Ferrario M, Arbustini E, Massa M, Rosti V, Marziliano N, Raineri C, Campanelli R, Bertoletti A, De Ferrari GM, Klersy C, et al: High-dose erythropoietin in patients with acute myocardial infarction: a pilot, randomised, placebo-controlled study. Int J Cardiol. 2011, 147 (1): 124-131. 10.1016/j.ijcard.2009.10.028.PubMedCrossRef Ferrario M, Arbustini E, Massa M, Rosti V, Marziliano N, Raineri C, Campanelli R, Bertoletti A, De Ferrari GM, Klersy C, et al: High-dose erythropoietin in patients with acute myocardial infarction: a pilot, randomised, placebo-controlled study. Int J Cardiol. 2011, 147 (1): 124-131. 10.1016/j.ijcard.2009.10.028.PubMedCrossRef
92.
Zurück zum Zitat Suh JW, Chung WY, Kim YS, Kim KI, Jeon EJ, Cho YS, Youn TJ, Chae IH, Kim CH, Choi DJ: The effect of intravenous administration of erythropoietin on the infarct size in primary percutaneous coronary intervention. Int J Cardiol. 2011, 149 (2): 216-220. 10.1016/j.ijcard.2010.02.002.PubMedCrossRef Suh JW, Chung WY, Kim YS, Kim KI, Jeon EJ, Cho YS, Youn TJ, Chae IH, Kim CH, Choi DJ: The effect of intravenous administration of erythropoietin on the infarct size in primary percutaneous coronary intervention. Int J Cardiol. 2011, 149 (2): 216-220. 10.1016/j.ijcard.2010.02.002.PubMedCrossRef
93.
Zurück zum Zitat Jorgensen CH, Gislason GH, Andersson C, Ahlehoff O, Charlot M, Schramm TK, Vaag A, Abildstrom SZ, Torp-Pedersen C, Hansen PR: Effects of oral glucose-lowering drugs on long term outcomes in patients with diabetes mellitus following myocardial infarction not treated with emergent percutaneous coronary intervention–a retrospective nationwide cohort study. Cardiovasc Diabetol. 2010, 9: 54-10.1186/1475-2840-9-54.PubMedCentralPubMedCrossRef Jorgensen CH, Gislason GH, Andersson C, Ahlehoff O, Charlot M, Schramm TK, Vaag A, Abildstrom SZ, Torp-Pedersen C, Hansen PR: Effects of oral glucose-lowering drugs on long term outcomes in patients with diabetes mellitus following myocardial infarction not treated with emergent percutaneous coronary intervention–a retrospective nationwide cohort study. Cardiovasc Diabetol. 2010, 9: 54-10.1186/1475-2840-9-54.PubMedCentralPubMedCrossRef
94.
Zurück zum Zitat Schramm TK, Gislason GH, Vaag A, Rasmussen JN, Folke F, Hansen ML, Fosbol EL, Kober L, Norgaard ML, Madsen M, et al: Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction: a nationwide study. Eur Heart J. 2011, 32 (15): 1900-1908. 10.1093/eurheartj/ehr077.PubMedCrossRef Schramm TK, Gislason GH, Vaag A, Rasmussen JN, Folke F, Hansen ML, Fosbol EL, Kober L, Norgaard ML, Madsen M, et al: Mortality and cardiovascular risk associated with different insulin secretagogues compared with metformin in type 2 diabetes, with or without a previous myocardial infarction: a nationwide study. Eur Heart J. 2011, 32 (15): 1900-1908. 10.1093/eurheartj/ehr077.PubMedCrossRef
95.
Zurück zum Zitat Ye Y, Perez-Polo JR, Aguilar D, Birnbaum Y: The potential effects of anti-diabetic medications on myocardial ischemia-reperfusion injury. Basic Res Cardiol. 2011, 106 (6): 925-952. 10.1007/s00395-011-0216-6.PubMedCrossRef Ye Y, Perez-Polo JR, Aguilar D, Birnbaum Y: The potential effects of anti-diabetic medications on myocardial ischemia-reperfusion injury. Basic Res Cardiol. 2011, 106 (6): 925-952. 10.1007/s00395-011-0216-6.PubMedCrossRef
96.
Zurück zum Zitat Klepzig H, Kober G, Matter C, Luus H, Schneider H, Boedeker KH, Kiowski W, Amann FW, Gruber D, Harris S, et al: Sulfonylureas and ischaemic preconditioning; a double-blind, placebo-controlled evaluation of glimepiride and glibenclamide. Eur Heart J. 1999, 20 (6): 439-446. 10.1053/euhj.1998.1242.PubMedCrossRef Klepzig H, Kober G, Matter C, Luus H, Schneider H, Boedeker KH, Kiowski W, Amann FW, Gruber D, Harris S, et al: Sulfonylureas and ischaemic preconditioning; a double-blind, placebo-controlled evaluation of glimepiride and glibenclamide. Eur Heart J. 1999, 20 (6): 439-446. 10.1053/euhj.1998.1242.PubMedCrossRef
97.
Zurück zum Zitat Mocanu MM, Maddock HL, Baxter GF, Lawrence CL, Standen NB, Yellon DM: Glimepiride, a novel sulfonylurea, does not abolish myocardial protection afforded by either ischemic preconditioning or diazoxide. Circulation. 2001, 103 (25): 3111-3116. 10.1161/01.CIR.103.25.3111.PubMedCrossRef Mocanu MM, Maddock HL, Baxter GF, Lawrence CL, Standen NB, Yellon DM: Glimepiride, a novel sulfonylurea, does not abolish myocardial protection afforded by either ischemic preconditioning or diazoxide. Circulation. 2001, 103 (25): 3111-3116. 10.1161/01.CIR.103.25.3111.PubMedCrossRef
98.
Zurück zum Zitat Geisen K, Vegh A, Krause E, Papp JG: Cardiovascular effects of conventional sulfonylureas and glimepiride. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 1996, 28 (9): 496-507. 10.1055/s-2007-979841.PubMedCrossRef Geisen K, Vegh A, Krause E, Papp JG: Cardiovascular effects of conventional sulfonylureas and glimepiride. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 1996, 28 (9): 496-507. 10.1055/s-2007-979841.PubMedCrossRef
99.
Zurück zum Zitat Nishida H, Sato T, Nomura M, Miyazaki M, Nakaya H: Glimepiride treatment upon reperfusion limits infarct size via the phosphatidylinositol 3-kinase/Akt pathway in rabbit hearts. J Pharmacol Sci. 2009, 109 (2): 251-256. 10.1254/jphs.08202FP.PubMedCrossRef Nishida H, Sato T, Nomura M, Miyazaki M, Nakaya H: Glimepiride treatment upon reperfusion limits infarct size via the phosphatidylinositol 3-kinase/Akt pathway in rabbit hearts. J Pharmacol Sci. 2009, 109 (2): 251-256. 10.1254/jphs.08202FP.PubMedCrossRef
100.
Zurück zum Zitat Bhamra GS, Hausenloy DJ, Davidson SM, Carr RD, Paiva M, Wynne AM, Mocanu MM, Yellon DM: Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochondrial permeability transition pore opening. Basic Res Cardiol. 2008, 103 (3): 274-284. 10.1007/s00395-007-0691-y.PubMedCrossRef Bhamra GS, Hausenloy DJ, Davidson SM, Carr RD, Paiva M, Wynne AM, Mocanu MM, Yellon DM: Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochondrial permeability transition pore opening. Basic Res Cardiol. 2008, 103 (3): 274-284. 10.1007/s00395-007-0691-y.PubMedCrossRef
101.
Zurück zum Zitat Kravchuk E, Grineva E, Bairamov A, Galagudza M, Vlasov T: The effect of metformin on the myocardial tolerance to ischemia-reperfusion injury in the rat model of diabetes mellitus type II. Exp Diabetes Res. 2011, 2011: 907496.PubMedCentralPubMedCrossRef Kravchuk E, Grineva E, Bairamov A, Galagudza M, Vlasov T: The effect of metformin on the myocardial tolerance to ischemia-reperfusion injury in the rat model of diabetes mellitus type II. Exp Diabetes Res. 2011, 2011: 907496.PubMedCentralPubMedCrossRef
102.
Zurück zum Zitat Wilding JP: PPAR agonists for the treatment of cardiovascular disease in patients with diabetes. Diabetes Obes Metab. 2012, Epub ahead of print Wilding JP: PPAR agonists for the treatment of cardiovascular disease in patients with diabetes. Diabetes Obes Metab. 2012, Epub ahead of print
103.
Zurück zum Zitat Chinda K, Chattipakorn S, Chattipakorn N: Cardioprotective effects of incretin during ischaemia-reperfusion. Diab Vasc Dis Res. 2012, Epub ahead of print Chinda K, Chattipakorn S, Chattipakorn N: Cardioprotective effects of incretin during ischaemia-reperfusion. Diab Vasc Dis Res. 2012, Epub ahead of print
104.
Zurück zum Zitat Yin M, Sillje HH, Meissner M, van Gilst WH, de Boer RA: Early and late effects of the DPP-4 inhibitor vildagliptin in a rat model of post-myocardial infarction heart failure. Cardiovasc Diabetol. 2011, 10: 85-10.1186/1475-2840-10-85.PubMedCentralPubMedCrossRef Yin M, Sillje HH, Meissner M, van Gilst WH, de Boer RA: Early and late effects of the DPP-4 inhibitor vildagliptin in a rat model of post-myocardial infarction heart failure. Cardiovasc Diabetol. 2011, 10: 85-10.1186/1475-2840-10-85.PubMedCentralPubMedCrossRef
105.
Zurück zum Zitat Chinda K, Palee S, Surinkaew S, Phornphutkul M, Chattipakorn S, Chattipakorn N: Cardioprotective effect of dipeptidyl peptidase-4 inhibitor during ischemia-reperfusion injury. Int J Cardiol. 2012, Epub ahead of print Chinda K, Palee S, Surinkaew S, Phornphutkul M, Chattipakorn S, Chattipakorn N: Cardioprotective effect of dipeptidyl peptidase-4 inhibitor during ischemia-reperfusion injury. Int J Cardiol. 2012, Epub ahead of print
106.
Zurück zum Zitat Huisamen B, Genis A, Marais E, Lochner A: Pre-treatment with a DPP-4 inhibitor is infarct sparing in hearts from obese, pre-diabetic rats. Cardiovasc Drugs Ther. 2011, 25 (1): 13-20. 10.1007/s10557-010-6271-7.PubMedCrossRef Huisamen B, Genis A, Marais E, Lochner A: Pre-treatment with a DPP-4 inhibitor is infarct sparing in hearts from obese, pre-diabetic rats. Cardiovasc Drugs Ther. 2011, 25 (1): 13-20. 10.1007/s10557-010-6271-7.PubMedCrossRef
108.
Zurück zum Zitat Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N, Elbelghiti R, Cung TT, Bonnefoy E, Angoulvant D, et al: Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Eng J Med. 2008, 359 (5): 473-481. 10.1056/NEJMoa071142.CrossRef Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N, Elbelghiti R, Cung TT, Bonnefoy E, Angoulvant D, et al: Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Eng J Med. 2008, 359 (5): 473-481. 10.1056/NEJMoa071142.CrossRef
109.
Zurück zum Zitat Mewton N, Croisille P, Gahide G, Rioufol G, Bonnefoy E, Sanchez I, Cung TT, Sportouch C, Angoulvant D, Finet G, et al: Effect of cyclosporine on left ventricular remodeling after reperfused myocardial infarction. J Am Coll Cardiol. 2010, 55 (12): 1200-1205. 10.1016/j.jacc.2009.10.052.PubMedCrossRef Mewton N, Croisille P, Gahide G, Rioufol G, Bonnefoy E, Sanchez I, Cung TT, Sportouch C, Angoulvant D, Finet G, et al: Effect of cyclosporine on left ventricular remodeling after reperfused myocardial infarction. J Am Coll Cardiol. 2010, 55 (12): 1200-1205. 10.1016/j.jacc.2009.10.052.PubMedCrossRef
Metadaten
Titel
Effects of diabetes on myocardial infarct size and cardioprotection by preconditioning and postconditioning
verfasst von
Takayuki Miki
Takahito Itoh
Daisuke Sunaga
Tetsuji Miura
Publikationsdatum
01.12.2012
Verlag
BioMed Central
Erschienen in
Cardiovascular Diabetology / Ausgabe 1/2012
Elektronische ISSN: 1475-2840
DOI
https://doi.org/10.1186/1475-2840-11-67

Weitere Artikel der Ausgabe 1/2012

Cardiovascular Diabetology 1/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.