Skip to main content
Erschienen in: European Radiology 9/2016

04.12.2015 | Ultrasound

Effects of diagnostic ultrasound-targeted microbubble destruction on the homing ability of bone marrow stromal cells to the kidney parenchyma

verfasst von: Gong Wang, Qian Zhang, Zhongxiong Zhuo, Shengzheng Wu, Zheng Liu, Hongmei Xia, Kaibin Tan, Linru Zou, Ling Gan, Yunhua Gao

Erschienen in: European Radiology | Ausgabe 9/2016

Einloggen, um Zugang zu erhalten

Abstract

Objectives

Bone marrow stromal cells (BMSC) transplantation proves successful in treating kidney disease and injury in many studies. However, their reparative capacity is limited by the poor homing ability in vivo, which is decided mainly by the local expression of chemoattractants. Our study explored the mechanical effects of ultrasound targeted microbubble destruction (UTMD) on BMSCs homing ability in treated kidney tissues.

Methods

Rats were injected with red fluorescent protein (RFP)-labelled BMSCs and sonicated with microbubble-mediated ultrasound. Then, we tested kidney micro-environment changes induced and their influence on stem cell homing ability.

Results

The results showed that the mechanical effects of UTMD would increase local and transient levels of chemoattractants (i.e. cytokines, integrins and growth factors) in targeted kidney tissues. Transmission electron microscopy showed that vascular endothelial cell was discontinuous in the UTMD group post-treatment, becoming smooth 72 h later. Confocal laser scanning microscopy and RT-PCR showed up to eight times more stem cells in the peritubular regions of experimental kidneys on days 1 and 3 post-treatment compared with the contralateral kidney.

Conclusions

These results confirmed that renal micro-environment changes caused by appropriate UTMD may promote BMSC homing ability toward treated kidney tissues without renal toxicity and cell damage.

Key Points

This experiment showed a feasible strategy in promoting stem cell homing ability.
The treatment uses diagnostic ultrasound during enhancement with IV microbubbles.
A suitable micro-environment was important for targeted stem cell homing and retention.
The method is effective for stem cell homing to kidney diseases.
More work is required with larger animals before potential human trials.
Literatur
1.
Zurück zum Zitat Liu N, Tian J, Cheng J, Zhang J (2013) Effect of erythropoietin on the migration of bone marrow-derived mesenchymal stem cells to the acute kidney injury microenvironment. Exp Cell Res 13:2019–2027CrossRef Liu N, Tian J, Cheng J, Zhang J (2013) Effect of erythropoietin on the migration of bone marrow-derived mesenchymal stem cells to the acute kidney injury microenvironment. Exp Cell Res 13:2019–2027CrossRef
2.
Zurück zum Zitat Li D, Wang N, Zhang L, Hanyu Z, Xueyuan B, Fu B, Shaoyuan C, Zhang W, Xuefeng S, Li R (2013) Mesenchymal stem cells protect podocytes from apoptosis induced by high glucose via secrection of epithelial growth factor. Stem Cell Res Ther 4:2–11CrossRef Li D, Wang N, Zhang L, Hanyu Z, Xueyuan B, Fu B, Shaoyuan C, Zhang W, Xuefeng S, Li R (2013) Mesenchymal stem cells protect podocytes from apoptosis induced by high glucose via secrection of epithelial growth factor. Stem Cell Res Ther 4:2–11CrossRef
3.
Zurück zum Zitat Fang Y, Tian X, Bai S, Fan J, Hou W, Tong H, Li D (2012) Autologous transplantation of adipose-derived mesenchymal stem cells ameliorates streptozotocin-induced diabetic nephropathy in rats by inhibiting oxidative stress, pro-inflammatory cytokines and the p38 MAPK signaling pathway. Int J Mol Med 30:85–92PubMed Fang Y, Tian X, Bai S, Fan J, Hou W, Tong H, Li D (2012) Autologous transplantation of adipose-derived mesenchymal stem cells ameliorates streptozotocin-induced diabetic nephropathy in rats by inhibiting oxidative stress, pro-inflammatory cytokines and the p38 MAPK signaling pathway. Int J Mol Med 30:85–92PubMed
4.
Zurück zum Zitat Park JH, Hwang I, Hwang SH, Han H, Ha H (2012) Human umbilical cord blood-derived mesenchymal stem cells prevent diabetic renal injury through paracrine. Diabetes Res Clin Pract 98:465–473CrossRefPubMed Park JH, Hwang I, Hwang SH, Han H, Ha H (2012) Human umbilical cord blood-derived mesenchymal stem cells prevent diabetic renal injury through paracrine. Diabetes Res Clin Pract 98:465–473CrossRefPubMed
5.
Zurück zum Zitat Harting MT, Jimenez F, Xue H, Fischer UM, Baumgartner J, Dash PK, Cox CS (2009) IV mesenchymal stem cell therapy for traumatic brain injury. J Neurosurg 110:1189–1197CrossRefPubMedPubMedCentral Harting MT, Jimenez F, Xue H, Fischer UM, Baumgartner J, Dash PK, Cox CS (2009) IV mesenchymal stem cell therapy for traumatic brain injury. J Neurosurg 110:1189–1197CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, Prockop DJ (2009) IV hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5:54–63CrossRefPubMedPubMedCentral Lee RH, Pulin AA, Seo MJ, Kota DJ, Ylostalo J, Larson BL, Semprun-Prieto L, Delafontaine P, Prockop DJ (2009) IV hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5:54–63CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, Ichimura T, Bonventre JV (2005) Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 115:1743–1755CrossRefPubMedPubMedCentral Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, Ichimura T, Bonventre JV (2005) Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 115:1743–1755CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Deak E, Seifried E, Henschler R (2010) Homing pathways of mesenchymal stromal cells (MSCs) and their role in clinical applications. Int Rev Immunol 29:514–529CrossRefPubMed Deak E, Seifried E, Henschler R (2010) Homing pathways of mesenchymal stromal cells (MSCs) and their role in clinical applications. Int Rev Immunol 29:514–529CrossRefPubMed
9.
Zurück zum Zitat Lotfinejad P, Shamsasenjan K, Movassaghpour A, Majidi J, Baradaran B (2014) Immunomodulatory nature and site specific affinity of mesenchymal stem cells: a hope in cell therapy. Adv Pharm Bull 4:5–13 Lotfinejad P, Shamsasenjan K, Movassaghpour A, Majidi J, Baradaran B (2014) Immunomodulatory nature and site specific affinity of mesenchymal stem cells: a hope in cell therapy. Adv Pharm Bull 4:5–13
10.
Zurück zum Zitat Zhao W, Phinney DG, Bonnet D, Dominici M, Krampera M (2014) Mesenchymal stem cell biodistribution, migration, and homing in vivo. Stem Cells Int 29:292–294 Zhao W, Phinney DG, Bonnet D, Dominici M, Krampera M (2014) Mesenchymal stem cell biodistribution, migration, and homing in vivo. Stem Cells Int 29:292–294
11.
Zurück zum Zitat Stefan B, Hans D, Monika L, Ulrich G, Johanna G, Bruno H, Markus V, Dirk A, Martina S, Reinhard K, Christian R, Robert D (2013) Enhanced stem cell migration mediated by VCAM-1/VLA-4 interaction improves cardiac function in virus-induced dilated cardiomyopathy. Basic Res Cardiol 108:388–402CrossRef Stefan B, Hans D, Monika L, Ulrich G, Johanna G, Bruno H, Markus V, Dirk A, Martina S, Reinhard K, Christian R, Robert D (2013) Enhanced stem cell migration mediated by VCAM-1/VLA-4 interaction improves cardiac function in virus-induced dilated cardiomyopathy. Basic Res Cardiol 108:388–402CrossRef
12.
Zurück zum Zitat Chavakis E, Urbich C, Dimmeler S (2008) Homing and engraftment of progenitor cells: a prerequisite for cell therapy. J Mol Cell Cardiol 45:514–522CrossRefPubMed Chavakis E, Urbich C, Dimmeler S (2008) Homing and engraftment of progenitor cells: a prerequisite for cell therapy. J Mol Cell Cardiol 45:514–522CrossRefPubMed
13.
Zurück zum Zitat Karp JM, Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4:206–216CrossRefPubMed Karp JM, Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4:206–216CrossRefPubMed
14.
Zurück zum Zitat Hills CE, Squires PE (2011) The role of TGF-β and epithelial-to mesenchymal transition in diabetic nephropathy. Cytokine Growth Factor Rev 22:131–139PubMed Hills CE, Squires PE (2011) The role of TGF-β and epithelial-to mesenchymal transition in diabetic nephropathy. Cytokine Growth Factor Rev 22:131–139PubMed
15.
Zurück zum Zitat Greco SJ, Rameshwar P (2008) Microenvironmental considerations in the application of human mesenchymal stem cells in regenerative therapies. Biologics 2:699–705PubMedPubMedCentral Greco SJ, Rameshwar P (2008) Microenvironmental considerations in the application of human mesenchymal stem cells in regenerative therapies. Biologics 2:699–705PubMedPubMedCentral
16.
Zurück zum Zitat Tang H, Wang Z, Li Q, Ran H, Zheng Y, Ren J, Ling Z, Li A, Zhao B (2012) Targeted delivery of bone mesenchymal stem cells by ultrasound destruction of microbubble promotes kidney recovery in acute kidney injury. Ultrasound Med Biol 4:661–669CrossRef Tang H, Wang Z, Li Q, Ran H, Zheng Y, Ren J, Ling Z, Li A, Zhao B (2012) Targeted delivery of bone mesenchymal stem cells by ultrasound destruction of microbubble promotes kidney recovery in acute kidney injury. Ultrasound Med Biol 4:661–669CrossRef
17.
Zurück zum Zitat Hu X, Wang J, Chen J, Luo R, He A, Xie X, Li J (2007) Optimal temporal delivery of bone marrow mesenchymal stem cells in rats with myocardial infarction. Eur J Cardiothorac Surg 31:438–443CrossRefPubMed Hu X, Wang J, Chen J, Luo R, He A, Xie X, Li J (2007) Optimal temporal delivery of bone marrow mesenchymal stem cells in rats with myocardial infarction. Eur J Cardiothorac Surg 31:438–443CrossRefPubMed
18.
Zurück zum Zitat Liu P, Wang X, Zhou S, Hua X, Liu Z, Gao Y (2011) Effects of a novel ultrasound contrast agent with long persistence on right ventricular pressure: comparison with SonoVue. Ultrasonics 14:210–214CrossRef Liu P, Wang X, Zhou S, Hua X, Liu Z, Gao Y (2011) Effects of a novel ultrasound contrast agent with long persistence on right ventricular pressure: comparison with SonoVue. Ultrasonics 14:210–214CrossRef
19.
Zurück zum Zitat Salinas-Navarro M, Jiménez-López M, Valiente-Soriano FJ, Alarcón-Martínez L, Avilés-Trigueros M, Mayor S, Holmes T, Lund RD, Villegas-Pérez MP, Vidal-Sanz M (2009) Retinal ganglion cell population in adult albino and pigmented mice: a computerized analysis of the entire population and its spatial distribution. Vis Res 49:637–647CrossRefPubMed Salinas-Navarro M, Jiménez-López M, Valiente-Soriano FJ, Alarcón-Martínez L, Avilés-Trigueros M, Mayor S, Holmes T, Lund RD, Villegas-Pérez MP, Vidal-Sanz M (2009) Retinal ganglion cell population in adult albino and pigmented mice: a computerized analysis of the entire population and its spatial distribution. Vis Res 49:637–647CrossRefPubMed
20.
Zurück zum Zitat Detante O, Moisan A, Dimastromatteo J, Richard MJ, Riou L, Grillon E, Barbier E, Desruet MD, De Fraipont F, Segebarth C, Jaillard A, Hommel M, Ghezzi C, Remy C (2009) IV administration of 99mTc-HMPAO-labeled human mesenchymal stem cells after stroke: in vivo imaging and biodistribution. Cell Transplant 18:1369–1379CrossRefPubMed Detante O, Moisan A, Dimastromatteo J, Richard MJ, Riou L, Grillon E, Barbier E, Desruet MD, De Fraipont F, Segebarth C, Jaillard A, Hommel M, Ghezzi C, Remy C (2009) IV administration of 99mTc-HMPAO-labeled human mesenchymal stem cells after stroke: in vivo imaging and biodistribution. Cell Transplant 18:1369–1379CrossRefPubMed
22.
Zurück zum Zitat Cheng K, Rai P, Plagov A, Lan X, Kumar D, Salhan D, Rehman S, Malhotra A, Bhargava K, Palestro CJ, Gupta S, Singhal PC (2013) Transplantation of bone marrow-derived MSCs improves cisplatinum-induced renal injury through paracrine mechanisms. Exp Mol Pathol 94:466–473CrossRefPubMedPubMedCentral Cheng K, Rai P, Plagov A, Lan X, Kumar D, Salhan D, Rehman S, Malhotra A, Bhargava K, Palestro CJ, Gupta S, Singhal PC (2013) Transplantation of bone marrow-derived MSCs improves cisplatinum-induced renal injury through paracrine mechanisms. Exp Mol Pathol 94:466–473CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Pawelczyk E, Jordan EK, Balakumaran A, Chaudhry A, Gormley N, Smith M, Lewis BK, Childs R, Robey PG, Frank JA (2009) In vivo transfer of intracellular labels from locally implanted bone marrow stromal cells to resident tissue macrophages. PLoS One 4:671–682CrossRef Pawelczyk E, Jordan EK, Balakumaran A, Chaudhry A, Gormley N, Smith M, Lewis BK, Childs R, Robey PG, Frank JA (2009) In vivo transfer of intracellular labels from locally implanted bone marrow stromal cells to resident tissue macrophages. PLoS One 4:671–682CrossRef
24.
Zurück zum Zitat Walczak P, Zhang J, Gilad AA, Kedziorek DA, Ruiz-Cabello J, Young RG, Pittenger MF, van Zijl PC, Huang J, Bulte JW (2008) Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke 39:1569–1574CrossRefPubMedPubMedCentral Walczak P, Zhang J, Gilad AA, Kedziorek DA, Ruiz-Cabello J, Young RG, Pittenger MF, van Zijl PC, Huang J, Bulte JW (2008) Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke 39:1569–1574CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Bos C, Delmas Y, Desmoulière A, Solanilla A, Hauger O, Grosset C, Dubus I, Ivanovic Z, Rosenbaum J, Charbord P, Combe C, Bulte JW, Moonen CT, Ripoche J, Grenier N (2004) In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 233:781–789CrossRefPubMed Bos C, Delmas Y, Desmoulière A, Solanilla A, Hauger O, Grosset C, Dubus I, Ivanovic Z, Rosenbaum J, Charbord P, Combe C, Bulte JW, Moonen CT, Ripoche J, Grenier N (2004) In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 233:781–789CrossRefPubMed
26.
Zurück zum Zitat Schrepfer S, Deuse T, Reichenspurner H, Fischbein MP, Robbins RC, Pelletier MP (2007) Stem cell transplantation: the lung barrier. Transplant Proc 39:573–576CrossRefPubMed Schrepfer S, Deuse T, Reichenspurner H, Fischbein MP, Robbins RC, Pelletier MP (2007) Stem cell transplantation: the lung barrier. Transplant Proc 39:573–576CrossRefPubMed
27.
Zurück zum Zitat Sohni A, Verfaillie CM (2013) Mesenchymal stem cells migration homing and tracking. Stem Cells Int 10:130–138 Sohni A, Verfaillie CM (2013) Mesenchymal stem cells migration homing and tracking. Stem Cells Int 10:130–138
28.
Zurück zum Zitat Kavanagh DPJ, Robinson J, Kalia N (2014) Mesenchymal stem cell priming: fine-tuning adhesion and function. Stem Cell Rev Rep 10:14–27CrossRef Kavanagh DPJ, Robinson J, Kalia N (2014) Mesenchymal stem cell priming: fine-tuning adhesion and function. Stem Cell Rev Rep 10:14–27CrossRef
29.
Zurück zum Zitat Steingen C, Brenig F, Baumgartner L, Schmidt J, Schmidt A, Bloch W (2008) Characterization of key mechanisms in transmigration and invasion of mesenchymal stem cells. J Mol Cell Cardiol 44:1072–1084CrossRefPubMed Steingen C, Brenig F, Baumgartner L, Schmidt J, Schmidt A, Bloch W (2008) Characterization of key mechanisms in transmigration and invasion of mesenchymal stem cells. J Mol Cell Cardiol 44:1072–1084CrossRefPubMed
30.
Zurück zum Zitat Zhou S, Li S, Liu Z, Tang Y, Wang Z, Gong J, Liu C (2010) Ultrasound-targeted microbubble destruction mediated herpes simplex virus-thymidine kinase gene treats hepatoma in mice. J Exp Clin Cancer Res 29:170–176CrossRefPubMedPubMedCentral Zhou S, Li S, Liu Z, Tang Y, Wang Z, Gong J, Liu C (2010) Ultrasound-targeted microbubble destruction mediated herpes simplex virus-thymidine kinase gene treats hepatoma in mice. J Exp Clin Cancer Res 29:170–176CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Li P, Zheng Y, Ran H, Tan J, Lin Y, Zhang Q, Ren J, Wang Z (2012) Ultrasound triggered drug release from 10-hydroxycamptothecin-loaded phospholipid microbubbles for targeted tumor therapy in mice. J Control Release 162:349–354CrossRefPubMed Li P, Zheng Y, Ran H, Tan J, Lin Y, Zhang Q, Ren J, Wang Z (2012) Ultrasound triggered drug release from 10-hydroxycamptothecin-loaded phospholipid microbubbles for targeted tumor therapy in mice. J Control Release 162:349–354CrossRefPubMed
32.
Zurück zum Zitat Liang HD, Tang J, Halliwell M (2010) Sonoporation, drug delivery, and gene therapy. Proc Inst Mech Eng 224:343–361CrossRef Liang HD, Tang J, Halliwell M (2010) Sonoporation, drug delivery, and gene therapy. Proc Inst Mech Eng 224:343–361CrossRef
33.
Zurück zum Zitat Yoshida J, Ohmori K, Takeuchi H, Shinomiya K, Namba T, Kondo I, Kiyomoto H, Kohno M (2005) Treatment of ischemic limbs based on local recruitment of vascular endothelial growth factor-producing inflammatory cells with ultrasonic microbubble destruction. J Am Coll Cardiol 46:899–905CrossRefPubMed Yoshida J, Ohmori K, Takeuchi H, Shinomiya K, Namba T, Kondo I, Kiyomoto H, Kohno M (2005) Treatment of ischemic limbs based on local recruitment of vascular endothelial growth factor-producing inflammatory cells with ultrasonic microbubble destruction. J Am Coll Cardiol 46:899–905CrossRefPubMed
34.
Zurück zum Zitat Ghanem A, Steingen C, Brenig F, Funcke F, Bai ZY, Hall C, Chin CT, Nichenig G, Bloch W, Tiemann K (2009) Focused ultrasound-induced stimulation of microbubbles augments site-targeted engraftment of mesenchymal stem cells after acute myocardial infarction. J Mol Cell Cardiol 47:411–418CrossRefPubMed Ghanem A, Steingen C, Brenig F, Funcke F, Bai ZY, Hall C, Chin CT, Nichenig G, Bloch W, Tiemann K (2009) Focused ultrasound-induced stimulation of microbubbles augments site-targeted engraftment of mesenchymal stem cells after acute myocardial infarction. J Mol Cell Cardiol 47:411–418CrossRefPubMed
35.
Zurück zum Zitat Jackson JK, Pirmoradi FN, Wan CP, Siu T, Chiao M, Burt HM (2011) Increased accumulation of paclitaxel and doxorubicin in proliferating capillary cells and prostate cancer cells following ultrasound exposure. Ultrasonics 51:932–939CrossRefPubMed Jackson JK, Pirmoradi FN, Wan CP, Siu T, Chiao M, Burt HM (2011) Increased accumulation of paclitaxel and doxorubicin in proliferating capillary cells and prostate cancer cells following ultrasound exposure. Ultrasonics 51:932–939CrossRefPubMed
36.
Zurück zum Zitat Tebebi PA, Burks SR, Kim SJ, Williams RA, Nguyen BA, Venkatesh P, Frenkel V, Frank JA (2015) Cyclooxygenase-2 or tumor necrosis factor inhibitor attenuate the mechanotransductive effects of pulsed focused ultrasound to suppress mesenchymal stromal cells homing to healthy and dystrophic muscle. Stem Cells 33:1173–1186CrossRefPubMedPubMedCentral Tebebi PA, Burks SR, Kim SJ, Williams RA, Nguyen BA, Venkatesh P, Frenkel V, Frank JA (2015) Cyclooxygenase-2 or tumor necrosis factor inhibitor attenuate the mechanotransductive effects of pulsed focused ultrasound to suppress mesenchymal stromal cells homing to healthy and dystrophic muscle. Stem Cells 33:1173–1186CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Ponte AL, Marais E, Gallay N, Langonné A, Delorme B, Hérault O, Charbord P, Domenech J (2007) The in vivo migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25:737–745CrossRef Ponte AL, Marais E, Gallay N, Langonné A, Delorme B, Hérault O, Charbord P, Domenech J (2007) The in vivo migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25:737–745CrossRef
38.
Zurück zum Zitat Levoye A, Balabanian K, Baleux F, Bachelerie F, Lagane B (2009) CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood 113:6085–6093CrossRefPubMed Levoye A, Balabanian K, Baleux F, Bachelerie F, Lagane B (2009) CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood 113:6085–6093CrossRefPubMed
39.
Zurück zum Zitat Thankamony SP, Sackstein R (2011) Enforced hematopoietic cell E- and L-selectin ligand (HCELL) expression primes transendothelial migration of human mesenchymal stem cells. Proc Natl Acad Sci 108:2258–2263CrossRefPubMedPubMedCentral Thankamony SP, Sackstein R (2011) Enforced hematopoietic cell E- and L-selectin ligand (HCELL) expression primes transendothelial migration of human mesenchymal stem cells. Proc Natl Acad Sci 108:2258–2263CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Krause DS, Lazarides K, Lewis JB, von Andrian UH, van Etten RA (2014) Selectins and their ligands are required for homing and engraftment of BCR-ABL11 leukemic stem cells in the bone marrow niche. Blood 12:1361–1372CrossRef Krause DS, Lazarides K, Lewis JB, von Andrian UH, van Etten RA (2014) Selectins and their ligands are required for homing and engraftment of BCR-ABL11 leukemic stem cells in the bone marrow niche. Blood 12:1361–1372CrossRef
41.
Zurück zum Zitat Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689CrossRefPubMed Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689CrossRefPubMed
42.
Zurück zum Zitat Chang P, Qu Y, Liu Y, Cui S, Zhu D, Wang H, Jin X (2013) Multi-therapeutic effects of human adipose-derived mesenchymal stem cells on radiation-induced intestinal injury. Cell Death Dis 13:685–696CrossRef Chang P, Qu Y, Liu Y, Cui S, Zhu D, Wang H, Jin X (2013) Multi-therapeutic effects of human adipose-derived mesenchymal stem cells on radiation-induced intestinal injury. Cell Death Dis 13:685–696CrossRef
43.
Zurück zum Zitat Klopp AH, Spaeth EL, Dembinski JL, Woodward WA, Munshi A, Meyn RE, Cox JD, Andreeff M, Marini FC (2007) Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res 67:11687–11695CrossRefPubMedPubMedCentral Klopp AH, Spaeth EL, Dembinski JL, Woodward WA, Munshi A, Meyn RE, Cox JD, Andreeff M, Marini FC (2007) Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res 67:11687–11695CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Ziadloo A, Burks SR, Gold EM, Lewis BK, Chaudhry A, Merino MJ, Frenkel V, Frank JA (2012) Enhanced homing permeability and retention of bone marrow stromal cells by noninvasive pulsed focused ultrasound. Stem Cells 30(6):1216–1227 Ziadloo A, Burks SR, Gold EM, Lewis BK, Chaudhry A, Merino MJ, Frenkel V, Frank JA (2012) Enhanced homing permeability and retention of bone marrow stromal cells by noninvasive pulsed focused ultrasound. Stem Cells 30(6):1216–1227
45.
Zurück zum Zitat Burks SR, Ziadloo A, Kim SJ, Nguyen BA, Frank JA (2013) Noninvasive pulsed focused ultrasound allows spatiotemporal control of targeted homing for multiple stem cell types in murine skeletal muscle and the magnitude of cell homing can be increased through repeated applications. Stem Cells 31:2551–2560CrossRefPubMed Burks SR, Ziadloo A, Kim SJ, Nguyen BA, Frank JA (2013) Noninvasive pulsed focused ultrasound allows spatiotemporal control of targeted homing for multiple stem cell types in murine skeletal muscle and the magnitude of cell homing can be increased through repeated applications. Stem Cells 31:2551–2560CrossRefPubMed
46.
47.
Zurück zum Zitat Orsi F, Zhang L, Arnone P, Orgera G, Bonomo G, Vigna PD, Monfardini L, Zhou K, Chen W, Wang Z, Veronesi U (2010) High-intensity focused ultrasound ablation: effective and safe therapy for solid tumors in difficult locations. AJR Am J Roentgenol 195:245–252CrossRef Orsi F, Zhang L, Arnone P, Orgera G, Bonomo G, Vigna PD, Monfardini L, Zhou K, Chen W, Wang Z, Veronesi U (2010) High-intensity focused ultrasound ablation: effective and safe therapy for solid tumors in difficult locations. AJR Am J Roentgenol 195:245–252CrossRef
Metadaten
Titel
Effects of diagnostic ultrasound-targeted microbubble destruction on the homing ability of bone marrow stromal cells to the kidney parenchyma
verfasst von
Gong Wang
Qian Zhang
Zhongxiong Zhuo
Shengzheng Wu
Zheng Liu
Hongmei Xia
Kaibin Tan
Linru Zou
Ling Gan
Yunhua Gao
Publikationsdatum
04.12.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 9/2016
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-015-4123-3

Weitere Artikel der Ausgabe 9/2016

European Radiology 9/2016 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.