Skip to main content
main-content

01.12.2015 | Research article | Ausgabe 1/2015 Open Access

BMC Musculoskeletal Disorders 1/2015

Effects of eldecalcitol on cortical bone response to mechanical loading in rats

Zeitschrift:
BMC Musculoskeletal Disorders > Ausgabe 1/2015
Autoren:
Yusuke Yamasaki, Keita Nagira, Mari Osaki, Hideki Nagashima, Hiroshi Hagino
Wichtige Hinweise

Competing interests

YY, KN, and MO have no conflicts of interest. HM and HH have received research grants and consultant/honorarium fees from Chugai and Taisho Toyama.

Authors’ contributions

YY carried out the measurement of bone histomorphometry, performed the statistical analysis, and drafted the manuscript. KN carried out the four-point bending and eldecalcitol administration as well as participating in statistical analysis. MO participated in drafting the manuscript. HN participated in the design of the study and participated in drafting the manuscript. HH conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript

Abstract

Background

Mechanical loading of bones activates modeling and suppresses remodeling by promoting bone formation. Eldecalcitol is approved for the treatment of osteoporosis in Japan and is often used in patients undergoing exercise therapy. However, the effects of eldecalcitol on bone formation during mechanical loading are unknown. The aim of this study was to clarify the influence of eldecalcitol administration on bone response to mechanical loading using a four-point bending device.

Methods

Forty six-month-old female Wistar rats were randomized into four groups based on eldecalcitol dose (vehicle administration (VEH), low dose (ED-L), medium dose (ED-M), and high dose (ED-H)). Loads of 38 N were applied in vivo to the right tibia for 36 cycles at 2 Hz, by four-point bending, 3 days per week for 3 weeks. After calcein double-labeling, rats were sacrificed and tibial cross sections were prepared from the region with maximal bending at the central diaphysis. Histomorphometry was performed on the entire periosteal and endocortical surface of the tibiae, dividing the periosteum into lateral and medial surfaces.

Results

The effects of external loading on bone formation parameters were significant at all three surfaces. Bone formation parameters were highest in the ED-H group, and the effects of eldecalcitol on bone formation rate were significant at the endocortical surface. In addition, the interaction between loading and eldecalcitol dose significantly affected bone formation rate at the endocortical surface.

Conclusions

Eldecalcitol enhanced the cortical bone response to mechanical loading and a synergistic effect was observed in a rat model.
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2015

BMC Musculoskeletal Disorders 1/2015 Zur Ausgabe

Neu im Fachgebiet Orthopädie und Unfallchirurgie

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Orthopädie und Unfallchirurgie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise