Skip to main content
Erschienen in: European Journal of Applied Physiology 11/2018

20.08.2018 | Original Article

Effects of endurance cycling training on neuromuscular fatigue in healthy active men. Part II: Corticospinal excitability and voluntary activation

verfasst von: S. J. Aboodarda, J. Mira, M. Floreani, R. Jaswal, S. J. Moon, K. Amery, T. Rupp, G. Y. Millet

Erschienen in: European Journal of Applied Physiology | Ausgabe 11/2018

Einloggen, um Zugang zu erhalten

Abstract

This study investigated the effects of 9-week endurance cycling training on central fatigability and corticomotor excitability of the locomotor muscles. Fourteen healthy participants undertook three incremental fatiguing cycling tests to volitional exhaustion (EXH): (i) before training (PRE), (ii) after training at the same absolute power output as PRE (POSTABS) and (iii) after training at the same percentage of V̇O2max as PRE (POSTREL). At baseline (i.e. before cycling), every 5 min during cycling and immediately at EXH, a neuromuscular evaluation including a series of 5-s knee extensions at 100, 75 and 50% of maximal voluntary knee extension (MVC) was performed. During each contraction, transcranial magnetic and peripheral nerve stimuli were elicited to obtain motor evoked potential (MEP), silent period (SP) and compound muscle action potential (Mmax) and to calculate voluntary activation (VA). The MEP·Mmax−1 ratio recorded from vastus lateralis at 100 and 50% MVC did not show any difference between conditions. At 75% MVC, MEP exhibited significantly lower values in POSTABS and POSTREL compared to PRE at baseline (P = 0.022 and P = 0.011, respectively) as well as at 25% of time to EXH of PRE (P = 0.022) for POSTREL. No adaptations, either at baseline or during cycling, were observed for VA and SPs. In conclusion, endurance training may result in some adaptations in the corticomotor responses when measured at rest or with low level of fatigue, yet these adaptations do not translate into attenuation of central fatigue at a similar cycling workload or at exhaustion.
Literatur
Zurück zum Zitat Carroll TJ, Riek S, Carson RG (2002) The sites of neural adaptation induced by resistance training in humans. J Physiol 15(544):641–652CrossRef Carroll TJ, Riek S, Carson RG (2002) The sites of neural adaptation induced by resistance training in humans. J Physiol 15(544):641–652CrossRef
Zurück zum Zitat Daussin FN, Zoll J, Dufour SP, Ponsot E, Lonsdorfer-Wolf E, Doutreleau S, Mettauer B, Piquard F, Geny B, Richard R (2008) Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. Am J Physiol Regul Integr Comp Physiol 295(1):R264–R272. https://doi.org/10.1152/ajpregu.00875.2007 PubMedCrossRef Daussin FN, Zoll J, Dufour SP, Ponsot E, Lonsdorfer-Wolf E, Doutreleau S, Mettauer B, Piquard F, Geny B, Richard R (2008) Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. Am J Physiol Regul Integr Comp Physiol 295(1):R264–R272. https://​doi.​org/​10.​1152/​ajpregu.​00875.​2007 PubMedCrossRef
Zurück zum Zitat Gandevia SC, Allen GM, Butler JE, Taylor JL (1996) Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex. J Physiol 15(490):529–536CrossRef Gandevia SC, Allen GM, Butler JE, Taylor JL (1996) Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex. J Physiol 15(490):529–536CrossRef
Zurück zum Zitat Gandevia SC, Petersen N, Butler JE, Taylor JL (1999) Impaired response of human motoneurones to corticospinal stimulation after voluntary exercise. J Physiol 15:749–759CrossRef Gandevia SC, Petersen N, Butler JE, Taylor JL (1999) Impaired response of human motoneurones to corticospinal stimulation after voluntary exercise. J Physiol 15:749–759CrossRef
Zurück zum Zitat Jensen JL, Marstrand PC, Nielsen JB (2005) Motor skill training and strength training are associated with different plastic changes in the central nervous system. J Appl Physiol 99(4):1558–1568PubMedCrossRef Jensen JL, Marstrand PC, Nielsen JB (2005) Motor skill training and strength training are associated with different plastic changes in the central nervous system. J Appl Physiol 99(4):1558–1568PubMedCrossRef
Zurück zum Zitat Jones AM, Carter H (2000) The effect of endurance training on parameters of aerobic fitness. Sports Med 29(6):373–386PubMedCrossRef Jones AM, Carter H (2000) The effect of endurance training on parameters of aerobic fitness. Sports Med 29(6):373–386PubMedCrossRef
Zurück zum Zitat Le Pera D, Graven-Nielsen T, Valeriani M, Oliviero A, Di Lazzaro V, Tonali PA, Arendt-Nielsen L (2001) Inhibition of motor system excitability at cortical and spinal level by tonic muscle pain. Clin Neurophysiol 112(9):1633–1641PubMedCrossRef Le Pera D, Graven-Nielsen T, Valeriani M, Oliviero A, Di Lazzaro V, Tonali PA, Arendt-Nielsen L (2001) Inhibition of motor system excitability at cortical and spinal level by tonic muscle pain. Clin Neurophysiol 112(9):1633–1641PubMedCrossRef
Zurück zum Zitat Nybo L, Secher NH (2004) Cerebral perturbations provoked by prolonged exercise. Prog Neurobiol 72:223–261PubMedCrossRef Nybo L, Secher NH (2004) Cerebral perturbations provoked by prolonged exercise. Prog Neurobiol 72:223–261PubMedCrossRef
Zurück zum Zitat Perot C, Goubel F, Mora I (1991) Quantification of T- and H-responses before and after a period of endurance training. Eur J Appl Physiol 63:368–375CrossRef Perot C, Goubel F, Mora I (1991) Quantification of T- and H-responses before and after a period of endurance training. Eur J Appl Physiol 63:368–375CrossRef
Zurück zum Zitat Schnitzler A, Benecke R (1994) The silent period after transcranial magnetic stimulation is of exclusive cortical origin: evidence from isolated cortical ischemic lesions in man. Neurosci Lett 180(1):41–45PubMedCrossRef Schnitzler A, Benecke R (1994) The silent period after transcranial magnetic stimulation is of exclusive cortical origin: evidence from isolated cortical ischemic lesions in man. Neurosci Lett 180(1):41–45PubMedCrossRef
Zurück zum Zitat Sinoway L (1996) Neural responses to exercise in humans: implications for congestive heart failure. Clin Exp Pharmacol Physiol 23(8):693–699PubMedCrossRef Sinoway L (1996) Neural responses to exercise in humans: implications for congestive heart failure. Clin Exp Pharmacol Physiol 23(8):693–699PubMedCrossRef
Zurück zum Zitat Strojnik V, Komi PV (1998) Neuromuscular fatigue after maximal stretch-shortening cycle exercise. J Appl Physiol 84(1):344–350PubMedCrossRef Strojnik V, Komi PV (1998) Neuromuscular fatigue after maximal stretch-shortening cycle exercise. J Appl Physiol 84(1):344–350PubMedCrossRef
Zurück zum Zitat Svensson P, Miles TS, McKay D, Ridding MC (2003) Suppression of motor evoked potentials in a hand muscle following prolonged painful stimulation. Eur J Pain 7(1):55–62PubMedCrossRef Svensson P, Miles TS, McKay D, Ridding MC (2003) Suppression of motor evoked potentials in a hand muscle following prolonged painful stimulation. Eur J Pain 7(1):55–62PubMedCrossRef
Zurück zum Zitat Taylor JL, Petersen NT, Butler JE, Gandevia SC (2002) Interaction of transcranial magnetic stimulation and electrical transmastoid stimulation in human subjects. J Physiol 15:949–958CrossRef Taylor JL, Petersen NT, Butler JE, Gandevia SC (2002) Interaction of transcranial magnetic stimulation and electrical transmastoid stimulation in human subjects. J Physiol 15:949–958CrossRef
Zurück zum Zitat Taylor JL, Todd G, Gandevia SC (2006) Evidence for a supraspinal contribution to human muscle fatigue. Clin Exp Pharmacol Physiol 33(4):400–405PubMedCrossRef Taylor JL, Todd G, Gandevia SC (2006) Evidence for a supraspinal contribution to human muscle fatigue. Clin Exp Pharmacol Physiol 33(4):400–405PubMedCrossRef
Zurück zum Zitat Taylor JL, Amann M, Duchateau J, Meeusen R, Rice CL (2016) Neural contributions to muscle fatigue: from the brain to the muscle and back again. Med Sci Sports Exerc 48(11):2294–2306PubMedPubMedCentralCrossRef Taylor JL, Amann M, Duchateau J, Meeusen R, Rice CL (2016) Neural contributions to muscle fatigue: from the brain to the muscle and back again. Med Sci Sports Exerc 48(11):2294–2306PubMedPubMedCentralCrossRef
Zurück zum Zitat Todd G, Taylor JL, Gandevia SC (2003) Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation. J Physiol 551:661–671PubMedPubMedCentralCrossRef Todd G, Taylor JL, Gandevia SC (2003) Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation. J Physiol 551:661–671PubMedPubMedCentralCrossRef
Zurück zum Zitat Todd G, Taylor JL, Gandevia SC (2004) Reproducible measurement of voluntary activation of human elbow flexors with motor cortical stimulation. J Appl Physiol 97:236–242PubMedCrossRef Todd G, Taylor JL, Gandevia SC (2004) Reproducible measurement of voluntary activation of human elbow flexors with motor cortical stimulation. J Appl Physiol 97:236–242PubMedCrossRef
Metadaten
Titel
Effects of endurance cycling training on neuromuscular fatigue in healthy active men. Part II: Corticospinal excitability and voluntary activation
verfasst von
S. J. Aboodarda
J. Mira
M. Floreani
R. Jaswal
S. J. Moon
K. Amery
T. Rupp
G. Y. Millet
Publikationsdatum
20.08.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Applied Physiology / Ausgabe 11/2018
Print ISSN: 1439-6319
Elektronische ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-018-3951-7

Weitere Artikel der Ausgabe 11/2018

European Journal of Applied Physiology 11/2018 Zur Ausgabe