Skip to main content
Erschienen in: Diabetologia 10/2017

18.07.2017 | Article

Effects of insulin and exercise training on FGF21, its receptors and target genes in obesity and type 2 diabetes

verfasst von: Rikke Kruse, Sara G. Vienberg, Birgitte F. Vind, Birgitte Andersen, Kurt Højlund

Erschienen in: Diabetologia | Ausgabe 10/2017

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Pharmacological doses of FGF21 improve glucose tolerance, lipid metabolism and energy expenditure in rodents. Induced expression and secretion of FGF21 from muscle may increase browning of white adipose tissue (WAT) in a myokine-like manner. Recent studies have reported that insulin and exercise increase FGF21 in plasma. Obesity and type 2 diabetes are potentially FGF21-resistant states, but to what extent FGF21 responses to insulin and exercise training are preserved, and whether FGF21, its receptors and target genes are altered, remains to be established.

Methods

The effects of insulin during euglycaemic–hyperinsulinaemic clamps and 10 week endurance training on serum FGF21 were examined in individuals with type 2 diabetes and in glucose tolerant overweight/obese and lean individuals. Gene expression of FGF21, its receptors and target genes in muscle and WAT biopsies was evaluated by quantitative real-time PCR (qPCR).

Results

Insulin increased serum and muscle FGF21 independent of overweight/obesity or type 2 diabetes, and there were no effects associated with exercise training. The insulin-induced increases in serum FGF21 and muscle FGF21 expression correlated tightly (p < 0.001). In WAT, overweight/obesity with and without type 2 diabetes led to reduced expression of KLB, but increased FGFR1c expression. However, the expression of most FGF21 target genes was unaltered except for reduced CIDEA expression in individuals with type 2 diabetes.

Conclusions/interpretation

Insulin-induced expression of muscle FGF21 correlates strongly with a rise in serum FGF21, and this response appears intact in overweight/obesity and type 2 diabetes. FGF21 resistance may involve reduced KLB expression in WAT. However, increased FGFR1c expression or other mechanisms seem to ensure adequate expression of most FGF21 target genes in WAT.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Wente W, Efanov AM, Brenner M et al (2005) Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 55:2470–2478CrossRef Wente W, Efanov AM, Brenner M et al (2005) Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 55:2470–2478CrossRef
3.
Zurück zum Zitat Kharitonenkov A, Wroblewski VJ, Koester A et al (2007) The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148:774–781CrossRefPubMed Kharitonenkov A, Wroblewski VJ, Koester A et al (2007) The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148:774–781CrossRefPubMed
4.
Zurück zum Zitat Coskun T, Bina HA, Schneider MA et al (2008) Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149:6018–6027CrossRefPubMed Coskun T, Bina HA, Schneider MA et al (2008) Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149:6018–6027CrossRefPubMed
5.
Zurück zum Zitat Xu J, Lloyd DJ, Hale C et al (2009) Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58:250–259CrossRefPubMedPubMedCentral Xu J, Lloyd DJ, Hale C et al (2009) Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58:250–259CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Ding X, Boney-Montoya J, Owen BM et al (2012) BetaKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab 16:387–393CrossRefPubMedPubMedCentral Ding X, Boney-Montoya J, Owen BM et al (2012) BetaKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab 16:387–393CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Fisher FM, Kleiner S, Douris N et al (2012) FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26:271–281CrossRefPubMedPubMedCentral Fisher FM, Kleiner S, Douris N et al (2012) FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26:271–281CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Ost M, Coleman V, Voigt A et al (2016) Muscle mitochondrial stress adaptation operates independently of endogenous FGF21 action. Mol Metab 5:79–90CrossRefPubMed Ost M, Coleman V, Voigt A et al (2016) Muscle mitochondrial stress adaptation operates independently of endogenous FGF21 action. Mol Metab 5:79–90CrossRefPubMed
9.
Zurück zum Zitat Kim KH, Jeong YT, Oh H et al (2013) Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med 19:83–92CrossRefPubMed Kim KH, Jeong YT, Oh H et al (2013) Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med 19:83–92CrossRefPubMed
10.
Zurück zum Zitat Lee MS, Choi SE, Ha ES et al (2012) Fibroblast growth factor-21 protects human skeletal muscle myotubes from palmitate-induced insulin resistance by inhibiting stress kinase and NF-kappaB. Metabolism 61:1142–1151CrossRefPubMed Lee MS, Choi SE, Ha ES et al (2012) Fibroblast growth factor-21 protects human skeletal muscle myotubes from palmitate-induced insulin resistance by inhibiting stress kinase and NF-kappaB. Metabolism 61:1142–1151CrossRefPubMed
11.
Zurück zum Zitat Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E (2007) Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5:426–437CrossRefPubMed Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E (2007) Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5:426–437CrossRefPubMed
12.
Zurück zum Zitat Inagaki T, Dutchak P, Zhao G et al (2007) Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 5:415–425CrossRefPubMed Inagaki T, Dutchak P, Zhao G et al (2007) Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 5:415–425CrossRefPubMed
13.
Zurück zum Zitat Owen BM, Mangelsdorf DJ, Kliewer SA (2015) Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol Metab 26:22–29CrossRefPubMed Owen BM, Mangelsdorf DJ, Kliewer SA (2015) Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol Metab 26:22–29CrossRefPubMed
14.
Zurück zum Zitat Markan KR, Naber MC, Ameka MK et al (2014) Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes 63:4057–4063CrossRefPubMedPubMedCentral Markan KR, Naber MC, Ameka MK et al (2014) Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes 63:4057–4063CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Kurosu H, Choi M, Ogawa Y et al (2007) Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem 282:26687–26695CrossRefPubMedPubMedCentral Kurosu H, Choi M, Ogawa Y et al (2007) Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem 282:26687–26695CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Ogawa Y, Kurosu H, Yamamoto M et al (2007) BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci U S A 104:7432–7437CrossRefPubMedPubMedCentral Ogawa Y, Kurosu H, Yamamoto M et al (2007) BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci U S A 104:7432–7437CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Ito S, Kinoshita S, Shiraishi N et al (2000) Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein. Mech Dev 98:115–119CrossRefPubMed Ito S, Kinoshita S, Shiraishi N et al (2000) Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein. Mech Dev 98:115–119CrossRefPubMed
18.
Zurück zum Zitat Fon Tacer K, Bookout AL, Ding X et al (2010) Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol 24:2050–2064CrossRefPubMedPubMedCentral Fon Tacer K, Bookout AL, Ding X et al (2010) Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol 24:2050–2064CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Tyynismaa H, Carroll CJ, Raimundo N et al (2010) Mitochondrial myopathy induces a starvation-like response. Hum Mol Genet 19:3948–3958CrossRefPubMed Tyynismaa H, Carroll CJ, Raimundo N et al (2010) Mitochondrial myopathy induces a starvation-like response. Hum Mol Genet 19:3948–3958CrossRefPubMed
21.
Zurück zum Zitat Mashili FL, Austin RL, Deshmukh AS et al (2011) Direct effects of FGF21 on glucose uptake in human skeletal muscle: implications for type 2 diabetes and obesity. Diabetes Metab Res Rev 27:286–297CrossRefPubMed Mashili FL, Austin RL, Deshmukh AS et al (2011) Direct effects of FGF21 on glucose uptake in human skeletal muscle: implications for type 2 diabetes and obesity. Diabetes Metab Res Rev 27:286–297CrossRefPubMed
22.
Zurück zum Zitat Hojman P, Pedersen M, Nielsen AR et al (2009) Fibroblast growth factor-21 is induced in human skeletal muscles by hyperinsulinemia. Diabetes 58:2797–2801CrossRefPubMedPubMedCentral Hojman P, Pedersen M, Nielsen AR et al (2009) Fibroblast growth factor-21 is induced in human skeletal muscles by hyperinsulinemia. Diabetes 58:2797–2801CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Vienberg SG, Brons C, Nilsson E, Astrup A, Vaag A, Andersen B (2012) Impact of short-term high-fat feeding and insulin-stimulated FGF21 levels in subjects with low birth weight and controls. Eur J Endocrinol 167:49–57CrossRefPubMed Vienberg SG, Brons C, Nilsson E, Astrup A, Vaag A, Andersen B (2012) Impact of short-term high-fat feeding and insulin-stimulated FGF21 levels in subjects with low birth weight and controls. Eur J Endocrinol 167:49–57CrossRefPubMed
24.
Zurück zum Zitat Knowler WC, Barrett-Connor E, Fowler SE et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403CrossRefPubMed Knowler WC, Barrett-Connor E, Fowler SE et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403CrossRefPubMed
25.
Zurück zum Zitat Vind BF, Pehmoller C, Treebak JT et al (2011) Impaired insulin-induced site-specific phosphorylation of TBC1 domain family, member 4 (TBC1D4) in skeletal muscle of type 2 diabetes patients is restored by endurance exercise-training. Diabetologia 54:157–167CrossRefPubMed Vind BF, Pehmoller C, Treebak JT et al (2011) Impaired insulin-induced site-specific phosphorylation of TBC1 domain family, member 4 (TBC1D4) in skeletal muscle of type 2 diabetes patients is restored by endurance exercise-training. Diabetologia 54:157–167CrossRefPubMed
27.
28.
Zurück zum Zitat Hansen JS, Clemmesen JO, Secher NH et al (2015) Glucagon-to-insulin ratio is pivotal for splanchnic regulation of FGF-21 in humans. Mol Metab 4:551–560CrossRefPubMedPubMedCentral Hansen JS, Clemmesen JO, Secher NH et al (2015) Glucagon-to-insulin ratio is pivotal for splanchnic regulation of FGF-21 in humans. Mol Metab 4:551–560CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Hansen JS, Pedersen BK, Xu G et al (2016) Exercise-induced secretion of FGF21 and follistatin are blocked by pancreatic clamp and impaired in type 2 diabetes. J Clin Endocrinol Metab 101:2816–2285CrossRefPubMed Hansen JS, Pedersen BK, Xu G et al (2016) Exercise-induced secretion of FGF21 and follistatin are blocked by pancreatic clamp and impaired in type 2 diabetes. J Clin Endocrinol Metab 101:2816–2285CrossRefPubMed
30.
Zurück zum Zitat Yang SJ, Hong HC, Choi HY et al (2011) Effects of a three-month combined exercise programme on fibroblast growth factor 21 and fetuin-A levels and arterial stiffness in obese women. Clin Endocrinol 75:464–469CrossRef Yang SJ, Hong HC, Choi HY et al (2011) Effects of a three-month combined exercise programme on fibroblast growth factor 21 and fetuin-A levels and arterial stiffness in obese women. Clin Endocrinol 75:464–469CrossRef
31.
Zurück zum Zitat Besse-Patin A, Montastier E, Vinel C et al (2014) Effect of endurance training on skeletal muscle myokine expression in obese men: identification of apelin as a novel myokine. Int J Obes 38:707–713CrossRef Besse-Patin A, Montastier E, Vinel C et al (2014) Effect of endurance training on skeletal muscle myokine expression in obese men: identification of apelin as a novel myokine. Int J Obes 38:707–713CrossRef
32.
Zurück zum Zitat Cuevas-Ramos D, Almeda-Valdes P, Meza-Arana CE et al (2012) Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLoS One 7:e38022CrossRefPubMedPubMedCentral Cuevas-Ramos D, Almeda-Valdes P, Meza-Arana CE et al (2012) Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLoS One 7:e38022CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Taniguchi H, Tanisawa K, Sun X, Kubo T, Higuchi M (2015) Endurance exercise reduces hepatic fat content and serum fibroblast growth factor 21 levels in elderly men. J Clin Endocrinol Metab 101:191–198CrossRefPubMed Taniguchi H, Tanisawa K, Sun X, Kubo T, Higuchi M (2015) Endurance exercise reduces hepatic fat content and serum fibroblast growth factor 21 levels in elderly men. J Clin Endocrinol Metab 101:191–198CrossRefPubMed
34.
Zurück zum Zitat Galman C, Lundasen T, Kharitonenkov A et al (2008) The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man. Cell Metab 8:169–174CrossRefPubMed Galman C, Lundasen T, Kharitonenkov A et al (2008) The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man. Cell Metab 8:169–174CrossRefPubMed
35.
Zurück zum Zitat Zhang X, Yeung DC, Karpisek M et al (2008) Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 57:1246–1253CrossRefPubMed Zhang X, Yeung DC, Karpisek M et al (2008) Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 57:1246–1253CrossRefPubMed
36.
Zurück zum Zitat Chavez AO, Molina-Carrion M, Abdul-Ghani MA, Folli F, DeFronzo RA, Tripathy D (2009) Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabetes Care 32:1542–1546CrossRefPubMedPubMedCentral Chavez AO, Molina-Carrion M, Abdul-Ghani MA, Folli F, DeFronzo RA, Tripathy D (2009) Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabetes Care 32:1542–1546CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Gallego-Escuredo JM, Gomez-Ambrosi J, Catalan V, Domingo P, Giralt M, Fruhbeck G (2015) Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients. Int J Obes 39:121–129CrossRef Gallego-Escuredo JM, Gomez-Ambrosi J, Catalan V, Domingo P, Giralt M, Fruhbeck G (2015) Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients. Int J Obes 39:121–129CrossRef
38.
Zurück zum Zitat Cheng X, Zhu B, Jiang F, Fan H (2011) Serum FGF-21 levels in type 2 diabetic patients. Endocr Res 36:142–148CrossRefPubMed Cheng X, Zhu B, Jiang F, Fan H (2011) Serum FGF-21 levels in type 2 diabetic patients. Endocr Res 36:142–148CrossRefPubMed
39.
40.
Zurück zum Zitat Vind BF, Birk JB, Vienberg SG et al (2012) Hyperglycaemia normalises insulin action on glucose metabolism but not the impaired activation of AKT and glycogen synthase in the skeletal muscle of patients with type 2 diabetes. Diabetologia 55:1435–1445CrossRefPubMed Vind BF, Birk JB, Vienberg SG et al (2012) Hyperglycaemia normalises insulin action on glucose metabolism but not the impaired activation of AKT and glycogen synthase in the skeletal muscle of patients with type 2 diabetes. Diabetologia 55:1435–1445CrossRefPubMed
41.
Zurück zum Zitat Kruse R, Vind BF, Petersson SJ, Kristensen JM, Hojlund K (2015) Markers of autophagy are adapted to hyperglycaemia in skeletal muscle in type 2 diabetes. Diabetologia 58:2087–2095CrossRefPubMed Kruse R, Vind BF, Petersson SJ, Kristensen JM, Hojlund K (2015) Markers of autophagy are adapted to hyperglycaemia in skeletal muscle in type 2 diabetes. Diabetologia 58:2087–2095CrossRefPubMed
42.
Zurück zum Zitat Hey-Mogensen M, Hojlund K, Vind BF et al (2010) Effect of physical training on mitochondrial respiration and reactive oxygen species release in skeletal muscle in patients with obesity and type 2 diabetes. Diabetologia 53:1976–1985CrossRefPubMed Hey-Mogensen M, Hojlund K, Vind BF et al (2010) Effect of physical training on mitochondrial respiration and reactive oxygen species release in skeletal muscle in patients with obesity and type 2 diabetes. Diabetologia 53:1976–1985CrossRefPubMed
43.
Zurück zum Zitat Mogensen M, Vind BF, Hojlund K, Beck-Nielsen H, Sahlin K (2009) Maximal lipid oxidation in patients with type 2 diabetes is normal and shows an adequate increase in response to aerobic training. Diabetes Obes Metab 11:874–883CrossRefPubMed Mogensen M, Vind BF, Hojlund K, Beck-Nielsen H, Sahlin K (2009) Maximal lipid oxidation in patients with type 2 diabetes is normal and shows an adequate increase in response to aerobic training. Diabetes Obes Metab 11:874–883CrossRefPubMed
44.
Zurück zum Zitat Nielsen J, Mogensen M, Vind BF et al (2010) Increased subsarcolemmal lipids in type 2 diabetes: effect of training on localization of lipids, mitochondria, and glycogen in sedentary human skeletal muscle. Am J Physiol Endocrinol Metab 298:E706–E713CrossRefPubMed Nielsen J, Mogensen M, Vind BF et al (2010) Increased subsarcolemmal lipids in type 2 diabetes: effect of training on localization of lipids, mitochondria, and glycogen in sedentary human skeletal muscle. Am J Physiol Endocrinol Metab 298:E706–E713CrossRefPubMed
45.
Zurück zum Zitat Lundby C, Nordsborg N, Kusuhara K, Kristensen KM, Neufer PD, Pilegaard H (2015) Gene expression in human skeletal muscle: alternative normalization method and effect of repeated biopsies. Eur J Appl Physiol 95:351–360CrossRef Lundby C, Nordsborg N, Kusuhara K, Kristensen KM, Neufer PD, Pilegaard H (2015) Gene expression in human skeletal muscle: alternative normalization method and effect of repeated biopsies. Eur J Appl Physiol 95:351–360CrossRef
46.
Zurück zum Zitat Jeon JY, Choi SE, Ha ES et al (2016) Association between insulin resistance and impairment of FGF21 signal transduction in skeletal muscles. Endocrine 53:97–196CrossRefPubMed Jeon JY, Choi SE, Ha ES et al (2016) Association between insulin resistance and impairment of FGF21 signal transduction in skeletal muscles. Endocrine 53:97–196CrossRefPubMed
47.
48.
Zurück zum Zitat Nygaard EB, Moller CL, Kievit P, Grove KL, Andersen B (2014) Increased fibroblast growth factor 21 expression in high-fat diet-sensitive non-human primates (Macaca mulatta). Int J Obes 38:183–191CrossRef Nygaard EB, Moller CL, Kievit P, Grove KL, Andersen B (2014) Increased fibroblast growth factor 21 expression in high-fat diet-sensitive non-human primates (Macaca mulatta). Int J Obes 38:183–191CrossRef
49.
Zurück zum Zitat Nordstrom EA, Ryden M, Backlund EC et al (2005) A human-specific role of cell death-inducing DFFA (DNA fragmentation factor-alpha)-like effector A (CIDEA) in adipocyte lipolysis and obesity. Diabetes 54:1726–1734CrossRefPubMed Nordstrom EA, Ryden M, Backlund EC et al (2005) A human-specific role of cell death-inducing DFFA (DNA fragmentation factor-alpha)-like effector A (CIDEA) in adipocyte lipolysis and obesity. Diabetes 54:1726–1734CrossRefPubMed
50.
Zurück zum Zitat Puri V, Ranjit S, Konda S et al (2008) Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl Acad Sci U S A 105:7833–7838CrossRefPubMedPubMedCentral Puri V, Ranjit S, Konda S et al (2008) Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl Acad Sci U S A 105:7833–7838CrossRefPubMedPubMedCentral
Metadaten
Titel
Effects of insulin and exercise training on FGF21, its receptors and target genes in obesity and type 2 diabetes
verfasst von
Rikke Kruse
Sara G. Vienberg
Birgitte F. Vind
Birgitte Andersen
Kurt Højlund
Publikationsdatum
18.07.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 10/2017
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-017-4373-5

Weitere Artikel der Ausgabe 10/2017

Diabetologia 10/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.