Skip to main content
Erschienen in: Clinical and Translational Oncology 8/2014

01.08.2014 | Research Article

Effects of metformin on breast cancer cell proliferation, the AMPK pathway and the cell cycle

verfasst von: S. M. Hadad, D. G. Hardie, V. Appleyard, A. M. Thompson

Erschienen in: Clinical and Translational Oncology | Ausgabe 8/2014

Einloggen, um Zugang zu erhalten

Abstract

Aim

The aim of this study was to compare the effects and mechanisms of action of metformin on estrogen receptor (ER)-positive and ER-negative breast cancer cell lines.

Methods

The anti-proliferative effects of metformin, and of the direct activator of adenosine monophosphate-activated protein kinase (AMPK), A-769662, on MCF-7 (ER-positive) and MDA-MB-231 (ER-negative) breast cancer cell lines were evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, a yellow tetrazole) assays. Fluorescence-activated cell sorting was also used to examine the effect of metformin on the cell cycle. Finally, phosphorylation of the metformin target AMPK, and of its potential downstream targets including acetyl-CoA carboxylase (ACC), p53, p70-S6K and Raptor, was examined using immunoblotting.

Results

Metformin and A-769662 caused significant, concentration-dependent suppression of cell proliferation with G1 cell cycle arrest in both MCF-7 and MDA-MB-231 cells. The proliferation suppression effect was more profound in MCF-7 cells. A concentration-dependent phosphorylation of AMPK was detected following metformin treatment, as was phosphorylation of ACC in both cell lines, but not p53, p70-S6k or Raptor.

Conclusion

Metformin acts as a growth inhibitor in both ER-positive and ER-negative breast cancer cells in vitro, and arrests cells in G1 phase, particularly in the ER-positive MCF-7 cells. The effect is likely to be mediated by AMPK activation, in part by inhibition of fatty acid synthesis via ACC phosphorylation.
Literatur
1.
Zurück zum Zitat Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. BMJ. 2005;330(7503):1304–5 (Epub 2005/04/26).PubMedCentralPubMedCrossRef Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD. Metformin and reduced risk of cancer in diabetic patients. BMJ. 2005;330(7503):1304–5 (Epub 2005/04/26).PubMedCentralPubMedCrossRef
2.
Zurück zum Zitat Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM. New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care. 2009;32(9):1620–5 (Epub 2009/07/01).PubMedCentralPubMedCrossRef Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM. New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care. 2009;32(9):1620–5 (Epub 2009/07/01).PubMedCentralPubMedCrossRef
3.
Zurück zum Zitat Currie CJ, Poole CD, Gale EA. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia. 2009;52(9):1766–77 (Epub 2009/07/03).PubMedCrossRef Currie CJ, Poole CD, Gale EA. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia. 2009;52(9):1766–77 (Epub 2009/07/03).PubMedCrossRef
4.
Zurück zum Zitat Decensi A, Puntoni M, Goodwin P, Cazzaniga M, Gennari A, Bonanni B. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res (Philadelphia). 2010;3(11):1451–61 (Epub 2010/10/16).CrossRef Decensi A, Puntoni M, Goodwin P, Cazzaniga M, Gennari A, Bonanni B. Metformin and cancer risk in diabetic patients: a systematic review and meta-analysis. Cancer Prev Res (Philadelphia). 2010;3(11):1451–61 (Epub 2010/10/16).CrossRef
5.
Zurück zum Zitat Bowker SL, Majumdar SR, Veugelers P, Johnson JA. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin: response to Farooki and Schneider. Diabetes Care. 2006;29(8):1990–1 (Epub 2006/07/29).PubMedCrossRef Bowker SL, Majumdar SR, Veugelers P, Johnson JA. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin: response to Farooki and Schneider. Diabetes Care. 2006;29(8):1990–1 (Epub 2006/07/29).PubMedCrossRef
6.
Zurück zum Zitat Bayraktar S, Hernadez-Aya LF, Lei X, Meric-Bernstam F, Litton JK, Hsu L, et al. Effect of metformin on survival outcomes in diabetic patients with triple receptor-negative breast cancer. Cancer. 2012;118(5):1202–11 (Epub 2011/07/30). Bayraktar S, Hernadez-Aya LF, Lei X, Meric-Bernstam F, Litton JK, Hsu L, et al. Effect of metformin on survival outcomes in diabetic patients with triple receptor-negative breast cancer. Cancer. 2012;118(5):1202–11 (Epub 2011/07/30).
7.
Zurück zum Zitat Bo S, Ciccone G, Rosato R, Villois P, Appendino G, Ghigo E, et al. Cancer mortality reduction and metformin: a retrospective cohort study in type 2 diabetic patients. Diabetes Obes Metab. 2012;14(1):23–9 (Epub 2011/08/05).PubMedCrossRef Bo S, Ciccone G, Rosato R, Villois P, Appendino G, Ghigo E, et al. Cancer mortality reduction and metformin: a retrospective cohort study in type 2 diabetic patients. Diabetes Obes Metab. 2012;14(1):23–9 (Epub 2011/08/05).PubMedCrossRef
8.
Zurück zum Zitat Hadad S, Iwamoto T, Jordan L, Purdie C, Bray S, Baker L, et al. Evidence for biological effects of metformin in operable breast cancer: a pre-operative, window-of-opportunity, randomized trial. Breast Cancer Res Treat. 2011;128(3):783–94 (Epub 2011/06/10).PubMedCrossRef Hadad S, Iwamoto T, Jordan L, Purdie C, Bray S, Baker L, et al. Evidence for biological effects of metformin in operable breast cancer: a pre-operative, window-of-opportunity, randomized trial. Breast Cancer Res Treat. 2011;128(3):783–94 (Epub 2011/06/10).PubMedCrossRef
9.
Zurück zum Zitat Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 2011;25(18):1895–908 (Epub 2011/09/23).PubMedCentralPubMedCrossRef Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function. Genes Dev. 2011;25(18):1895–908 (Epub 2011/09/23).PubMedCentralPubMedCrossRef
10.
Zurück zum Zitat Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;348(Pt 3):607–14 (Epub 2000/06/07).PubMedCentralPubMedCrossRef Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;348(Pt 3):607–14 (Epub 2000/06/07).PubMedCentralPubMedCrossRef
11.
Zurück zum Zitat Hawley SA, Ross FA, Chevtzoff C, Green KA, Evans A, Fogarty S, et al. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab. 2010;11(6):554–65 (Epub 2010/06/04).PubMedCentralPubMedCrossRef Hawley SA, Ross FA, Chevtzoff C, Green KA, Evans A, Fogarty S, et al. Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab. 2010;11(6):554–65 (Epub 2010/06/04).PubMedCentralPubMedCrossRef
12.
Zurück zum Zitat Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol. 2003;2(4):28 (Epub 2003/09/27).PubMedCentralPubMedCrossRef Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol. 2003;2(4):28 (Epub 2003/09/27).PubMedCentralPubMedCrossRef
13.
Zurück zum Zitat Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV, Carmena D, et al. Structure of mammalian AMPK and its regulation by ADP. Nature. 2011;472(7342):230–3 (Epub 2011/03/15).PubMedCentralPubMedCrossRef Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV, Carmena D, et al. Structure of mammalian AMPK and its regulation by ADP. Nature. 2011;472(7342):230–3 (Epub 2011/03/15).PubMedCentralPubMedCrossRef
14.
Zurück zum Zitat Lochhead PA, Salt IP, Walker KS, Hardie DG, Sutherland C. 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes. 2000;49(6):896–903 (Epub 2000/06/24).PubMedCrossRef Lochhead PA, Salt IP, Walker KS, Hardie DG, Sutherland C. 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes. 2000;49(6):896–903 (Epub 2000/06/24).PubMedCrossRef
15.
Zurück zum Zitat Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13(4):251–62 (Epub 2012/03/23).PubMedCrossRef Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13(4):251–62 (Epub 2012/03/23).PubMedCrossRef
16.
Zurück zum Zitat Foretz M, Hebrard S, Leclerc J, Zarrinpashneh E, Soty M, Mithieux G, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Investig. 2010;120(7):2355–69 (Epub 2010/06/26).PubMedCentralPubMedCrossRef Foretz M, Hebrard S, Leclerc J, Zarrinpashneh E, Soty M, Mithieux G, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Investig. 2010;120(7):2355–69 (Epub 2010/06/26).PubMedCentralPubMedCrossRef
17.
Zurück zum Zitat Fullerton MD, Galic S, Marcinko K, Sikkema S, Pulinilkunnil T, Chen ZP, et al. Single phosphorylation sites in ACC1 and ACC2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med. 2013 (Epub 2013/11/05). Fullerton MD, Galic S, Marcinko K, Sikkema S, Pulinilkunnil T, Chen ZP, et al. Single phosphorylation sites in ACC1 and ACC2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med. 2013 (Epub 2013/11/05).
18.
Zurück zum Zitat Pollak M. Metformin and other biguanides in oncology: advancing the research agenda. Cancer Prev Res (Philadelphia). 2010;3(9):1060–5 (Epub 2010/09/03).CrossRef Pollak M. Metformin and other biguanides in oncology: advancing the research agenda. Cancer Prev Res (Philadelphia). 2010;3(9):1060–5 (Epub 2010/09/03).CrossRef
19.
Zurück zum Zitat Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell. 2005;18(3):283–93 (Epub 2005/05/04).PubMedCrossRef Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell. 2005;18(3):283–93 (Epub 2005/05/04).PubMedCrossRef
20.
Zurück zum Zitat Hadad SM, Baker L, Quinlan PR, Robertson KE, Bray SE, Thomson G, et al. Histological evaluation of AMPK signalling in primary breast cancer. BMC Cancer. 2009;9:307 (Epub 2009/09/03).PubMedCentralPubMedCrossRef Hadad SM, Baker L, Quinlan PR, Robertson KE, Bray SE, Thomson G, et al. Histological evaluation of AMPK signalling in primary breast cancer. BMC Cancer. 2009;9:307 (Epub 2009/09/03).PubMedCentralPubMedCrossRef
21.
Zurück zum Zitat Wingo SN, Gallardo TD, Akbay EA, Liang MC, Contreras CM, Boren T, et al. Somatic LKB1 mutations promote cervical cancer progression. PloS One. 2009;4(4):e5137 (Epub 2009/04/03).PubMedCentralPubMedCrossRef Wingo SN, Gallardo TD, Akbay EA, Liang MC, Contreras CM, Boren T, et al. Somatic LKB1 mutations promote cervical cancer progression. PloS One. 2009;4(4):e5137 (Epub 2009/04/03).PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Zheng B, Jeong JH, Asara JM, Yuan YY, Granter SR, Chin L, et al. Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation. Mol Cell. 2009;33(2):237–47 (Epub 2009/02/04).PubMedCentralPubMedCrossRef Zheng B, Jeong JH, Asara JM, Yuan YY, Granter SR, Chin L, et al. Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation. Mol Cell. 2009;33(2):237–47 (Epub 2009/02/04).PubMedCentralPubMedCrossRef
23.
Zurück zum Zitat Algire C, Amrein L, Bazile M, David S, Zakikhani M, Pollak M. Diet and tumor LKB1 expression interact to determine sensitivity to anti-neoplastic effects of metformin in vivo. Oncogene. 2011;30(10):1174–82 (Epub 2010/11/26).PubMedCrossRef Algire C, Amrein L, Bazile M, David S, Zakikhani M, Pollak M. Diet and tumor LKB1 expression interact to determine sensitivity to anti-neoplastic effects of metformin in vivo. Oncogene. 2011;30(10):1174–82 (Epub 2010/11/26).PubMedCrossRef
24.
Zurück zum Zitat Goransson O, McBride A, Hawley SA, Ross FA, Shpiro N, Foretz M, et al. Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase. J Biol Chem. 2007;282(45):32549–60 (Epub 2007/09/15).PubMedCentralPubMedCrossRef Goransson O, McBride A, Hawley SA, Ross FA, Shpiro N, Foretz M, et al. Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase. J Biol Chem. 2007;282(45):32549–60 (Epub 2007/09/15).PubMedCentralPubMedCrossRef
25.
Zurück zum Zitat Zakikhani M, Dowling R, Fantus IG, Sonenberg N, Pollak M. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res. 2006;66(21):10269–73 (Epub 2006/10/26).PubMedCrossRef Zakikhani M, Dowling R, Fantus IG, Sonenberg N, Pollak M. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res. 2006;66(21):10269–73 (Epub 2006/10/26).PubMedCrossRef
26.
Zurück zum Zitat Segal ED, Yasmeen A, Beauchamp MC, Rosenblatt J, Pollak M, Gotlieb WH. Relevance of the OCT1 transporter to the antineoplastic effect of biguanides. Biochem Biophys Res Commun. 2011;414(4):694–9 (Epub 2011/10/12).PubMedCrossRef Segal ED, Yasmeen A, Beauchamp MC, Rosenblatt J, Pollak M, Gotlieb WH. Relevance of the OCT1 transporter to the antineoplastic effect of biguanides. Biochem Biophys Res Commun. 2011;414(4):694–9 (Epub 2011/10/12).PubMedCrossRef
27.
Zurück zum Zitat Dowling RJ, Niraula S, Stambolic V, Goodwin PJ. Metformin in cancer: translational challenges. J Mol Endocrinol. 2012;48(3):R31–43 (Epub 2012/02/23).PubMedCrossRef Dowling RJ, Niraula S, Stambolic V, Goodwin PJ. Metformin in cancer: translational challenges. J Mol Endocrinol. 2012;48(3):R31–43 (Epub 2012/02/23).PubMedCrossRef
28.
Zurück zum Zitat Imamura K, Ogura T, Kishimoto A, Kaminishi M, Esumi H. Cell cycle regulation via p53 phosphorylation by a 5′-AMP activated protein kinase activator, 5-aminoimidazole- 4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem Biophys Res Commun. 2001;287(2):562–7 (Epub 2001/09/14).PubMedCrossRef Imamura K, Ogura T, Kishimoto A, Kaminishi M, Esumi H. Cell cycle regulation via p53 phosphorylation by a 5′-AMP activated protein kinase activator, 5-aminoimidazole- 4-carboxamide-1-beta-D-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem Biophys Res Commun. 2001;287(2):562–7 (Epub 2001/09/14).PubMedCrossRef
29.
Zurück zum Zitat Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 2006;3(6):403–16.PubMedCrossRef Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 2006;3(6):403–16.PubMedCrossRef
30.
Zurück zum Zitat Sanders MJ, Ali ZS, Hegarty BD, Heath R, Snowden MA, Carling D. Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family. J Biol Chem. 2007;282(45):32539–48.PubMedCrossRef Sanders MJ, Ali ZS, Hegarty BD, Heath R, Snowden MA, Carling D. Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family. J Biol Chem. 2007;282(45):32539–48.PubMedCrossRef
31.
Zurück zum Zitat Huang X, Wullschleger S, Shpiro N, McGuire VA, Sakamoto K, Woods YL, et al. Important role of the LKB1–AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem J. 2008;412(2):211–21 (Epub 2008/04/05).PubMedCrossRef Huang X, Wullschleger S, Shpiro N, McGuire VA, Sakamoto K, Woods YL, et al. Important role of the LKB1–AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem J. 2008;412(2):211–21 (Epub 2008/04/05).PubMedCrossRef
32.
Zurück zum Zitat Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2):214–26 (Epub 2008/04/29).PubMedCentralPubMedCrossRef Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2):214–26 (Epub 2008/04/29).PubMedCentralPubMedCrossRef
33.
Zurück zum Zitat Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90 (Epub 2003/12/04).PubMedCrossRef Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90 (Epub 2003/12/04).PubMedCrossRef
34.
Zurück zum Zitat Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M, et al. The energy sensing LKB1–AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol. 2007;9(2):218–24 (Epub 2007/01/24).PubMedCrossRef Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M, et al. The energy sensing LKB1–AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol. 2007;9(2):218–24 (Epub 2007/01/24).PubMedCrossRef
35.
Zurück zum Zitat Stevens RJ, Ali R, Bankhead CR, Bethel MA, Cairns BJ, Camisasca RP, et al. Cancer outcomes and all-cause mortality in adults allocated to metformin: systematic review and collaborative meta-analysis of randomised clinical trials. Diabetologia. 2012;55(10):2593–603 (Epub 2012/08/10).PubMedCrossRef Stevens RJ, Ali R, Bankhead CR, Bethel MA, Cairns BJ, Camisasca RP, et al. Cancer outcomes and all-cause mortality in adults allocated to metformin: systematic review and collaborative meta-analysis of randomised clinical trials. Diabetologia. 2012;55(10):2593–603 (Epub 2012/08/10).PubMedCrossRef
Metadaten
Titel
Effects of metformin on breast cancer cell proliferation, the AMPK pathway and the cell cycle
verfasst von
S. M. Hadad
D. G. Hardie
V. Appleyard
A. M. Thompson
Publikationsdatum
01.08.2014
Verlag
Springer Milan
Erschienen in
Clinical and Translational Oncology / Ausgabe 8/2014
Print ISSN: 1699-048X
Elektronische ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-013-1144-8

Weitere Artikel der Ausgabe 8/2014

Clinical and Translational Oncology 8/2014 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.